Calculus - Period 3

Functions of Multiple Variables

Definitions:

The domain D is the set (x, y) for which $f(x, y)$ exists. The range is the set of values z for which there are x, y such that $z=f(x, y)$. The level curves are the curves with equations $f(x, y)=k$ where k is a constant.

Checking for Limits:

If $f(x, y) \rightarrow L_{1}$ as $(x, y) \rightarrow(a, b)$ along a path C_{1} and $f(x, y) \rightarrow L_{2}$ as $(x, y) \rightarrow(a, b)$ along a path C_{2}, where $L_{1} \neq L_{2}$ then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ does not exist. Also f is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$

Partial Derivatives:

The partial derivative of f with respect to x at (a, b) is:

$$
\begin{equation*}
f_{x}(a, b)=g^{\prime}(a) \quad \text { where } \quad g(x)=f(x, b) \tag{1}
\end{equation*}
$$

In words, to find f_{x}, regard y as constant and differentiate $f(x, y)$ with respect to $x . f_{y}$ is defined similarly. If $f_{x y}$ and $f_{y x}$ are both continuous on D, then $f_{x y}=f_{y x}$.

Tangent Planes:

For points close to $z_{0}=f\left(x_{0}, y_{0}\right)$ the curve of $f(x, y)$ can be approximated by:

$$
\begin{equation*}
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \tag{2}
\end{equation*}
$$

The plane described by this equation is the plane tangent to the curve of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$.

Differentials:

$$
\begin{equation*}
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y \tag{3}
\end{equation*}
$$

If $z=f(x, y), x=g(s, t)$ and $y=h(s, t)$ then:

$$
\begin{equation*}
\frac{d z}{d s}=\frac{\partial z}{\partial x} \frac{d x}{d s}+\frac{\partial z}{\partial y} \frac{d y}{d s} \tag{4}
\end{equation*}
$$

Directional Derivatives:

The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector (meaning, $|\mathbf{u}|=1) \mathbf{u}=$ $\langle a, b\rangle$ is:

$$
\begin{equation*}
D_{u} f\left(x_{0}, y_{0}\right)=f_{x}(x, y) a+f_{y}(x, y) b=\nabla f \cdot \mathbf{u} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{grad} f=\nabla f=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \tag{6}
\end{equation*}
$$

The maximum value of $D_{u} f(x, y)$ is $|\nabla f(x, y)|$ and occurs when the vector $\mathbf{u}=\langle a, b\rangle$ has the same direction as $\nabla f(x, y)$.

Local Maxima and Minima:

If f has a local maximum or minimum at (a, b), then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$. If $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ then (a, b) is a critical point. If (a, b) is a critical point, then let D be defined as:

$$
\begin{equation*}
D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2} \tag{7}
\end{equation*}
$$

- If $D>0$ then:
- If $f_{x x}(a, b)>0$, then $f(a, b)$ is a minimum.
- If $f_{x x}(a, b)<0$, then $f(a, b)$ is a maximum.
- If $D<0$, then $f(a, b)$ is a saddle point.

Absolute Maxima and Minima:

To find the absolute maximum and minimum values of a continuous function f on a closed bounded set D, first find the values of f at the critical points of f in D. Then find the extreme values of f on the boundary of D. The largest of these values is the absolute maximum. The lowest is the minimum.

Multiple Integrals

Integrals over Rectangles:

If R is the rectangle such that $R=\{(x, y) \mid a \leq x \leq$ $b, c \leq y \leq d\}$, then:

$$
\begin{align*}
& \iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \tag{8}\\
& \iint_{R} f(x, y) d A=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y \tag{9}
\end{align*}
$$

Integrals over Regions:

If D_{1} is the region such that $D_{1}=\{(x, y) \mid a \leq x \leq$ $\left.b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$, then:

$$
\begin{equation*}
\iint_{D_{1}} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x \tag{10}
\end{equation*}
$$

If D_{2} is the region such that $D_{2}=\{(x, y) \mid a \leq y \leq$ $\left.b, h_{1}(y) \leq x \leq h_{2}(y)\right\}$, then:

$$
\begin{equation*}
\iint_{D_{2}} f(x, y) d A=\int_{a}^{b} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y \tag{11}
\end{equation*}
$$

Integrating over Polar Coordinates

$$
\begin{equation*}
r^{2}=x^{2}+y^{2} \quad \tan \theta=\frac{y}{x} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
x=r \cos \theta \quad y=r \sin \theta \tag{13}
\end{equation*}
$$

If R is the polar rectangle such that $R=\{(r, \theta) \mid 0 \leq$ $a \leq r \leq b, \alpha \leq \theta \leq \beta\}$ where $0 \leq \beta-\alpha \leq 2 \pi$, then:

$$
\begin{equation*}
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta \tag{14}
\end{equation*}
$$

If D is the polar rectangle such that $D=\{(r, \theta) \mid 0 \leq$ $\left.h_{1}(\theta) \leq r \leq h_{2}(\theta), \alpha \leq \theta \leq \beta\right\}$ where $0 \leq \beta-\alpha \leq$ 2π, then:
$\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta$

Applications:

If m is the mass, and $\rho(x, y)$ the density, then:

$$
\begin{equation*}
m=\iint_{D} \rho(x, y) d A \tag{16}
\end{equation*}
$$

The x-coordinate of the center of mass is:

$$
\begin{equation*}
\bar{x}=\frac{\iint_{D} x \rho(x, y) d A}{\iint_{D} \rho(x, y) d A} \tag{17}
\end{equation*}
$$

The moment of inertia about the x-axis is:

$$
\begin{equation*}
I_{x}=\iint_{D} y^{2} \rho(x, y) d A \tag{18}
\end{equation*}
$$

The moment of inertia about the origin is:

$$
\begin{equation*}
I_{0}=\iint_{D}\left(x^{2}+y^{2}\right) \rho(x, y) d A=I_{x}+I_{y} \tag{19}
\end{equation*}
$$

Triple Integrals

If E is the volume such that $E=\{(x, y, z) \mid a \leq$ $\left.x \leq b, g_{1}(x) \leq y \leq g_{2}(x), h_{1}(x, y) \leq z \leq h_{2}(x, y)\right\}$, then:

$$
\begin{equation*}
\iiint_{E} f(x, y, z) d V=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{h_{1}(x, y)}^{h_{2}(x, y)} f(x, y, z) d z d y d x \tag{20}
\end{equation*}
$$

