
Harmonic Excitation

1 Introduction to Harmonic Excitation

In the previous chapters, the only force present was the force of the spring. Although we also considered
gravity, this was a constant force and thus not very interesting. What will happen if we cause a time-
dependent external force Fe(t) on the mass? In this case the differential equation for an undamped
motion should be rewritten to

mẍ + kx = Fe(t). (1.1)

We can get about any motion, depending on the external force. In reality external forces are often
harmonic. We therefore assume that

Fe(t) = F̂e cos ωt, (1.2)

where ω is the angular frequency of the external force. To solve this differential equation, we first
need to find the homogeneous solution. This solution is already known from previous chapters though.
So we focus on the particular solution xp(t). We assume that it can be written as

xp(t) = x̂p cos ωt. (1.3)

Inserting this in the differential equation will give

x̂p =
F̂e

m

1
(ω2

n − ω2)
⇒ xp(t) =

F̂e

m

1
(ω2

n − ω2)
cos ωt. (1.4)

If we combine this with the general solution to the homogeneous problem, we find that

x(t) =
v0

ωn
sinωnt + x0 cos ωnt +

F̂e

m

1
(ω2

n − ω2)
(cos ωt− cos ωnt) . (1.5)

A very important thing can be noticed from this equation. If ω → ωn, then xp(t) → ∞ and thus also
x(t) → ∞. This phenomenon is called resonance and is defined to occur if ω = ωn. It is something
engineers should definitely prevent.

2 Resonance

When looking at equation 1.5 we can see that it is undefined for ω = ωn. What happens if we force a
system to vibrate at its natural frequency? To find this out, we set ω = ωn. The differential equation
now becomes

ẍ + ω2
nx(t) =

F̂e

m
cos ωnt. (2.1)

If we try a solution of the form xp(t) = x̂p cos ωnt, we will only find the equation 0 =
(
F̂e/m

)
cos ωnt.

So there are no solutions of the assumed form. Instead, let’s try to assume that xp(t) = x̂pt sinωnt. We
now find that

x̂p =
F̂e

2mωn
⇒ xp(t) =

F̂e

2mωn
t sinωnt. (2.2)

What we get is a vibration in which the amplitude increases linearly with time. So as the time t
increases, also the amplitude of the motion increases. This continues until the system can’t sustain the
large amplitudes anymore and will fail.
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3 Beat Phenomenon

When the external force isn’t vibrating at exactly the natural frequency of a system, but only close to it,
also interesting things occur. First let’s define the two variables ∆ω and ω̄ as

∆ω =
ωn − ω

2
and ω̄ =

ωn + ω

2
. (3.1)

Let’s once more consider equation 1.5. If we have no initial displacement or velocity (x0 = 0 and v0 = 0),
then we can rewrite this equation to

2
F̂e

m

1
(ω2

n − ω2)
sin (∆ωt) sin (ω̄t) = 2

F̂e

m

1
(ω2

n − ω2)
sin

(
2π

T1
t

)
sin

(
2π

T2
t

)
. (3.2)

As ω → ωn also ∆ω → 0 and ω̄ → ωn. So it follows that T1 will become very large, while T2 is close to
the natural frequency of the system. Since T1 is so large, we can define the amplitude of the vibration as

A(t) = 2
F̂e

m

1
(ω2

n − ω2)
sin

(
2π

T1
t

)
. (3.3)

So we now have a rapid oscillation with a slowly varying amplitude. This phenomenon is called the beat
phenomenon and one variation of the amplitude is called a beat. As the forcing frequency ω goes closer
to the natural frequency ωn, both the amplitude and the period of a beat increase.

4 Harmonic Excitation of Damped Systems

Let’s involve damping in our equations. We then get

mẍ + cẋ + kx = F̂e cos ωt ⇔ ẍ + 2ζωnẋ + ω2
nx =

F̂e

m
cos ωt. (4.1)

Let’s assume our particular solution can be written as

xp(t) = X cos (ωt− θ) . (4.2)

Inserting this in the differential equation, and solving for X and θ, will eventually give

X =
F̂e

m

1√
(ω2

n − ω2)2 + (2ζωnω)2
and θ = arctan

(
2ζωnω

ω2
n − ω2

)
. (4.3)

To find the general solution set, add xp(t) up to the solution of the homogeneous equation and use initial
conditions to solve for the coefficients A and φ.

Let’s define the (dimensionless) frequency ratio as

r =
ω

ωn
. (4.4)

We can now rewrite X and θ to

X =
F̂e

k

1√
(1− r2)2 + (2ζr)2

and θ = arctan
(

2ζr

1− r2

)
. (4.5)

If r → 1 then X goes to a given maximum value. This maximum value strongly depends on the damping
ratio ζ. For large values of ζ, resonance is hardly a problem. However, if ζ is small, resonance can still
occur.
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5 Sinusoidal Forcing Functions

We have up to know only considered forcing functions involving a cosine. Of course forcing functions can
also be expressed using a sine. Let’s examine the forcing function

Fe(x) = F̂e sinωt. (5.1)

The particular solution to the (damped) differential equation then becomes

xp(t) = X sin (ωt− θ) . (5.2)

The variables X and θ are still the same as in equation 4.5.

6 Base Excitation

Let’s now suppose no external force is acting on the mass. Instead the base on which the spring is
connected, is moving by an amount xb(t), as shown in figure 1.

Figure 1: Definition of variables in base excitation.

The elongation of the spring is now not given by just x(t), but by x(t) − xb(t). Identically, its velocity
with respect to the ground is now ẋ(t) − ẋb(t). So this makes the differential equation describing the
problem

ẍ + 2ζωnẋ + ω2
nx = 2ζωnẋb(t) + ω2

nxb(t). (6.1)

Often the base excitation is harmonic, so we assume that

xb(t) = x̂b sinωbt. (6.2)

This makes the differential equation

ẍ + 2ζωnẋ + ω2
nx = 2ζωnωbx̂b cos ωbt + ω2

nx̂b sinωbt. (6.3)

We have two nonhomogeneous parts. We can therefore find two separate particular solutions for the
differential equation (one for each part). If we set F̂e/m = 2ζωnωb (or identically F̂e/k = 2ζr), then we
have exactly the same problem as we have seen earlier with the cosine forcing function (equation 4.2).
If we, on the other hand, set F̂e/m = ω2

nx̂b (or identically F̂e/k = x̂b), then we have the same problem
as we just saw with the sine forcing function (equation 5.2). Add the two solutions up to get the total
particular solution

xp(t) =
2ζrx̂b√

(1− r2)2 + (2ζr)2
cos (ωt− θ) +

x̂b√
(1− r2)2 + (2ζr)2

sin (ωt− θ) . (6.4)

The value of θ is still the same as it was in equation 4.5.
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