Calculus - Period 4

Three-Dimensional Integrals

Cylindrical Coordinates:
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Integrating Over Cylindrical Coordinates:
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Spherical Coordinates:
x=pcosfsing y=psinfsing z=pcos¢ (4)
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Integrating Over Spherical Coordinates:

If E is the spherical wedge given by E = {(p, 0, ¢)|a <

p<ba<<pBe<¢<d), then:
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Change of Variables:
The Jacobian of the transformation T" given by x =
g(u,v) and y = h(u,v) is:
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If the Jacobian is nonzero and the transformation
is one-to-one, then:
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This method is similar to the one for triple inte-
grals, for which the Jacobian has a bigger matrix
and the change-of-variable equation has some more
terms.

Basic Vector Field Theorems

Definitions
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e A piecewise-smooth curve - A union of a fi-
nite number of smooth curves.

e A closed curve - A curve of which its terminal
point coincides with its initial point.

e A simple curve - A curve that doesn’t inter-
sect itself anywhere between its endpoints.

e An open region - A region which doesn’t con-
tain any of its boundary points.

e A connected region - A region D for which
any two points in D can be connected by a
path that lies in D.

e A simply-connected region - A region D such
that every simple closed curve in D encloses
only points that are in D. It contains no
holes and consists of only one piece.

e Positive orientation - The positive orienta-
tion of a simple closed curve C' refers to a
single counterclockwise traversal of C'.

Vector Field:

A vector field on R™ is a function F that assigns
to each point (x,y) in an n-dimensional set an n-
dimensional vector F(z,y). The gradient Vf is
defined by:

Vi,y,..

and is called the gradient vector field. A vector
field F is called a conservative vector field if it is
the gradient of some scalar function.

D=friFfyit. (9)

Line Integrals:
The line integral of f along C' is:
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The line integral of f along C with respect to x is:
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The line integral of a vector field F along C' is:
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Where T = ﬁ is the unit tangent vector.

Conservative Vector Fields:
If C is the curve given by r(t) (a <t <b), then:

/C Vfode= f(r(h) - f(r(a))  (13)



The integral [, F - dr is independent of path in D
if and only if fc F - dr = 0 for every closed path C
in D.

If F(z,y) = P(x,y)i + Q(z,y)j is a conservative
vector field, then:
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Also, if D 1s an open simply-connected region, and

if %—P = 8 , then F is conservative in D.
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Parametric Surfaces:

A surface described by r(u,v) is called a paramet-
ric surface. ry = % and ry = %. For smooth
surfaces (ry X ry # 0 for every u and v) the tan-
gent plane is the plane that contains the tangent
vectors r, and ry, and the vector ry X ry is the

normal vector to the tangent plane.

Surface Areas:
For a parametric surface, the surface area is given
by:
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For a surface graph of g(z,y), the surface area is

given by:
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Surface Integrals:
For a parametric surface, the surface integral is
given by:
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For a surface graph of g(x,y), the surface integral

is given by:
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Normal Vectors:
For a parametric surface, the normal vector is given
by:
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For a surface graph of g(x,y), the normal vector is
given by:

—%1——_}+k

n= (20)

i (3)"+ (3)

Flux:
If F is a vector field on a surface S with unit normal
vector n, then the surface integral of F over S is:

//SF-dsz//SF-nds (21)

This integral is also called the flux of F across S.
For a parametric surface, the flux is given by:
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For a surface graph of g(z,y), the flux is given by:
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Advanced Vector Field Theorems
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Curl:
If F = Pi+ Qj + Rk, then the curl of F, denoted
by curl F or also V x F, is defined by:

OR 0Q oP OR 0Q 0P
g Y £ gt G B
(8@/ 82) +(8z Bx) +(8x 8y>
(24)
If f is a function of three variables, then:

curl(Vf) =0 (25)

This implies that if F is conservative, then curl F =
0. The converse is only true if F' is defined on all of
R™. Soif F is defined on all of R™ and if curl F = 0,
then F is a conservative vector field.

Divergence:
If F = Pi+ Qj + Rk, then the divergence of F,
denoted by div F or also V - F, is defined by:
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If F is a vector field on R", then div curl F = 0.
If div F = 0, then F is said to be incompressible.
Note that curl F returns a vector field and div F
returns a scalar field.



Green’s Theorem:

Let C be a positively oriented piecewise-smooth
simple closed curve in the plane and D be the re-
gion bounded by C. Now:
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This can also be useful for calculating areas. To
calculate an area, take functions P and @ such that
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In vector form, Green’s theorem can also be writ-

ten as:
/CF'dr://D(curl F)-kdA (28)
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Stoke’s Theorem:

Let S be an oriented piecewise-smooth surface that
is bounded by a simple, closed, piecewise-smooth
boundary curve C with positive orientation. Let F
be a vector field that contains S. Then:
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The Divergence Theorem:

Let E be a simple solid region and let S be the
boundary surface of E, given with positive (out-
ward) orientation. Let F be a vector field on an
open region that contains E. Then:
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