
Chapter 8 
Problems and Solutions Section 8.1 (8.1 through 8.7) 
 
8.1 Consider the one-element model of a bar discussed in Section 8.1.  Calculate the 

finite element of the bar for the case that it is free at both ends rather than clamped. 

 

Solution: The finite element for a rod is derived in section 8.1.  Since u1 is not 

restrained equations (8.7) and (8.11) are the finite element matrices. 

 

8.2 Calculate the natural frequencies of the free-free bar of Problem 8.1.  To what 

does the first natural frequency correspond?  How do these values compare with 

the exact values obtained from methods of Chapter 6? 

 
Solution: 
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 The first natural frequency corresponds to the rigid body mode, or pure 

translation. 

 

 From the solution to problem 6.8, 
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 The first natural frequency is predicted exactly while the second is 10.2% high.  A 

point of interest is that, due to symmetry, the first mode of a clamped-free rod of 

length l/2 has the same natural frequency as the second mode of a free-free  rod of 

length l. 



8.3 Consider the system of Figure P8.3, consisting of a spring connected to a clamped-

free bar.  Calculate the finite element model and discuss the accuracy of the 

frequency prediction of this model by comparing it with the method of Chapter 6. 

 
Solution: 

 

 The finite element for the clamped-free rod is given by (8.14) as 

 

 
Al
3

Ý Ý u 
2
(t)  EA

l
u

2
(t)  0  

 

 The spring has the effect of adding stiffness K at u2.  Thus, 
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 From (1.16) 
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 Next consider the first natural frequency as predicted from the distributed 

parameter approach of chapter 6.  In particular Table 6.1 gives the frequency 

equation for this system as ncotn = -(Kl/EA) where n = nl/c, c2
 = E/.  

Approximating cotx = 1/x - x/3 the frequency equation of Table 6.1 becomes 

 

 n (1/n-n/3) = -(kl/EA)  or for n=1   2l2
/c2

=3(1+kl/EA) 

 

 which upon solving for  is identical to the one element FEM frequency derived 

above. 



8.4 Consider a clamped-free bar with a force f(t) applied in the axial direction at the 

free end as illustrated in Figure P8.4.  Calculate the equations of motion using a 

single-element finite element model. 

 
Solution: 

 

 The finite element equation of motion for an unforced clamped-free bar is given by 

equation (8.14).  Using (8.13) it can be seen that the forced equation is 
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8.5 Compare the solution of a cantilevered bar modeled as a single finite element with 

that of the distributed-parameter method summarized in Figure 8.1 truncated at 

three modes by calculating (a) u(x,t) and (b) u(l/2,t) for a 1-m aluminum beam at t 
= 0.1, 1, and 10s using both methods.  Use the initial condition u(x,0) = 0.1x m 

and ut (x,0) = 0. 

 
Solution:  (8.5, 8.6) 

 

 For the finite element of the bar 

 

  = 2700 kg/m
3
,  E = 7 10
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 N/m

2
 

 

 The unforced equation of motion is then 
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 From window 8.2 

 

 u2(t)=.1cos(8.81910
3t) 

 

 Using the shape functions for the bar 

 

 u(x,t) = u2(t)x=.1xcos(8.81910
3t) 

 
 For the continuous model truncated at 3 modes, (see example6.3.1) 

 

 1,2,3 = 8000 rad/s, 24000 rad/s, 40000 rad/s and the mode shapes are 
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 The solution is given by (6.27) as 

 

 u(x,t )  (cn sinn t  dn cosn t)Xn(x)
n1


  

 

 Since we are given Ý (x, t)  0,  cn  0  

 

 u(x,t )  an cos(n t)Xn(x)
n1


  



 

 Considering the initial condition u(x,0) = .1x 
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 and integrating from x = 0 to x = l, 
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 a1=.08106, a2=-.009006, a3=.003242, a4=0.001654, a5=.001001 

 

 from (6.63) 
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 Substitution into 6.27 yields 
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 Note that for problem 8.5 the last two terms are neglected. 

 

 

8.5 
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8.6 Repeat Problem 8.5 using a five-mode model.  Can you draw any conclusions? 

 

Solution: 
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 For the finite element solution from (8.17) 
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 Conclusion:  Not nearly enough elements were used to accurately determine the 1
st
  

natural frequency.  Since the 1
st
 mode dominates the response (this can be seen by 

comparing the coefficients, an), it must be determined well in order to predict the 

rod’s response. 



8.7 Repeat Problem 8.5 using only the first mode in the series solution and the initial 

condition u(x,0) = 0.1sin(x/2l), ut(x,0) = 0.  For this initial condition, the first 

mode is exact.  Why? 

 
Solution: 

 

 Using the same procedure as in problem 8.5, the solution is 
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 The finite element solution is unchanged.  Again there is horrible agreement 

between the finite element model and the distributed parameter model. 

 

 The fist mode is exact because the initial condition is in the first mode.  All 

coefficients, an, for modes other than the first mode are zero. 

 



Problems and Solutions Section 8.2 (8.8 through 8.20) 
 
8.8 Consider the bar of Figure P8.3 and model the bar with two elements.  Calculate 

the frequencies and compare them with the solution obtained in Problem 8.3.  

Assume material properties of aluminum, a cross-sectional area of 1 m, and a 

spring stiffness of 1  10
6
 N/m.  

 
Solution: The finite element model for the two-element bar is 
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 As in problem 8.3, the spring adds a stiffness K to degree of freedom 2.  The 

equation of motion is then 

 

 
Al
12

4 1

1 2






Ý Ý u (t)  2EA

l

2 1

1 1
Kl

2EA









u(t)  0  

 

 The natural frequencies can be found by eigenanalysis.  Using the material 

properties of aluminum 

 

 = 2700kg/m
3
 , E = 7  10

10
Pa 

 

 1 = 129.0 rad/s 

 

 2 = 368.4 rad/s 

 

 The solution obtained in problem 8.4 is 1 = 149.1 rad/s. 



8.9 Repeat Problem 8.8 with a three-element model.  Calculate the frequencies and 

compare them with those of Problem 8.8. 

 
Solution: 

 

 The finite element model of the 3 element rod for equal length elements is (from 

equation (8.25)) 
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 With the spring stiffness included, the global stiffness becomes 
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 Solving for the natural frequencies gives 1 = 125.85 rad/s, 2=333.1 rad/s, and 3 

= 591.7 rad/s 

 

 The natural frequencies predicted in 8.9 should be better than those predicted in 

8.8.  You can compare them to the results of 2 element model by using VTB8_2 

and loading the file p8_3_10.con. 

 



8.10 Consider Example 8.2.2.  Repeat this example with node 2 moved to /2 so that 

the mesh is uniform.  Calculate the natural frequencies and compare them to those 

obtained in the example.  What happens to the mass matrix? 

 
Solution: (8.10, 8.11) 

 

 The equation of motion can be shown to be 
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 The first natural frequency is slightly improved (closer to the distributed parameter 

‘true’ value) while the second natural frequency has become worse. 

 

  

 Truth Example 8.22 Problem 8.10 Example 8.2.1 

1 

1.571
1

l
E


 1.643
1

l
E


 1.611
1

l
E


 1.579
1

l
E


 

2 
4.712

1

l
E


 5.196
1

l
E


 5.629
1

l
E


 5.167
1

l
E


 

 

 The natural frequencies found using the 3 element model are much better than the 

2 element model. 

 

 

8.11 Compare the frequencies obtained in Problem 8.10 with those obtained in Section 

8.2 using three elements. 

 
Solution: 

 

 See the solution for problem 8.10. 



8.12 As mentioned in the text, the usefulness of the finite element method rests in 

problems that cannot readily be solved in closed form.  To this end, consider a 

section of an air frame sketched in Figure P8.13 and calculate a two-element finite 

model of this structure (i.e., find M and K) for a bar with 
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 Two methods exist for creating a finite element model for this wing.  The first is to 

assume each element has a constant cross section.  The second is to derive 

elements based on the variable cross section.  If enough elements are used, 

constant cross section elements can yield acceptable results.  However, since in 

this example only two elements are used, it is better to use a variable cross section 

element.  Both solutions are given. 

 

 A:  Variable cross section elements 

 

 Following the procedure of section 8.1, the shape function of the first element is 

given by 
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 However, since u1(t) = 0, 
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 For element 2, the shape function is 
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 The strain energy for element 2 is then given by 
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 The total strain energy is then 
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48l

( f
1
 f

2
)u

2

2
(t)  2 f

2
u

2
(t)u

3
(t)  f

2
u

3

2
(t)  

 

 where f
1
 7h

1

2  4h
1
h

2
 h

2

2
  and  f

2
 h

1

2  4h
1
h

2
 7h

2

2
 

 

 In matrix form this is 

 

 

V(t)  1

2
u

2
(t) u

3
(t) K u

2
(t) u

3
(t) T

where

K  E
24l

f
1
 f

2
 f

2

 f
2

f
2








 

 

 The kinetic energy of element 1 is given by 

 

 

T
1
( t)  A(x) u

1
(x,t)
x





0

l /2


2

dx

       
l

1920
(16h

1

2 18h
1
h

2
 6h

2

2
) Ý u 

2

2
(t)

 

 

 (since Ý u 
1
(t)  0 , terms including Ý u 

1
(t)  have been dropped) 

 

 Similarly, the kinetic energy of element 2 is 

 

 
T

2
(t)  A(x)

u
2
(x, t)
x





l / 2

l


2

dx  l
1920

[(6h
1

2 18h
1
h

2
16h

2

2
) Ý u 

2

2

        (3h
1

2  8h
1
h

2
 31h

2

2
) Ý u 

2
Ý u 
3
 (h

1

2  8h
1
h

2
31h

2

2
)Ý u 

3

2
]

 

 

 The total kinetic energy can be written 

 



 

T (t)  l
1920

[(22h
1

2  36h
1
h

2
 22h

2

2
)Ý u 

2

2  (3h
1

2 14h
1
h

2
 23h

2

2
)Ý u 

2
Ý u 
3

        (h
1

2  8h
1
h

2
 31h

2

2
) Ý u 

3

2
]  1

2
Ý u 
2

Ý u 
3 M Ý u 

2
Ý u 
3 T

where

M 
l

1920

44h
1

2  72h
1
h

2
 44h

2

2
3h

1

2 14h
1
h

2
 23h

2

2

3h
1

2  14h
1
h

2
 23h

2

2
2h

1

2 16h
1
h

2
 62h

2

2








 

 

 B:  Constant cross section elements 

 

 The average cross section area of element 1 is 

 

 A
1



48

(7h
1

2  4h
1
h

2
 h

2

2
)  

 

 and the average cross section area of element 2 is 

 

 A
2


48

(h
1

2  4h
1
h

2
 7h

2

2
)  

 

 Finding the potential energy again yields the same global stiffness matrix as for the 

variable cross section model. 

 

 The kinetic energy can then be found by 

 

 

T (t)  1

2
A

1
 u

1
(x,t)
x





0

l / 2


2

dx  1

2
A

2
 u

2
(x, t)
x





l /2

l


2

dx

      
1

2
Ý u 

2
Ý u 
3 M Ý u 

2
Ý u 

3 T

where

M 
l
12

2(A
1
 A

2
) A

2

A
2

2A
2








 

 

 which is not identical to the mass matrix derived using variable cross section 

elements. 



8.13 Let the bar in Figure P8.13 be made of aluminum 1 m in length with h1 = 20 cm 

and h2 = 10 cm.  Calculate the natural frequencies using the finite element model 

of Problem 8.12. 

 
Solution: 

 

 E = 7 10
10

Pa, = 2700 kg/m
3
 

 
 h1 = .2m, h2 = .1m, l = 1m 

 
 Using the variable cross section elements 

 

 

K  2.566 10
9 8.705 10

8

8.705 10
8

8.70510
8








and

M 
16.081 2.783

2.783 4.506







 

 

 The natural frequencies are then 1 = 7414 rad/s and 2 = 20368 rad/s 

 

 The constant cross sectional area mass matrix is 

 

 M 
16.493 2.798

2.798 5.596







 

 

 which give 1 = 7092 rad/s, 2 = 18636 rad/s 



8.14 Repeat Problems 8.12 and 8.13 using a three-element four-node finite element 

model. 

 
Solution: 

 

 The shape functions for 3 evenly spaced elements are 

 

 

u
1
(x,t)  1  3x

2l




u1

(t)  3x
l

u
2
(t)

u
2
(x,t)  2 1 

3x
2l





u2

(t)  3x
l
1





u3

(t)

u
3
(x,t)  3 1 

x
l





u3

(t)  2
3x
2l

1




u4

(t)

 

 

 Integrating to find the strain energy, the strain energies in matrix notation are 

 

 

V
1
(t)  1

2
u

1
u

2 K1
u

1
u

2 T

V
2
(t)  1

2
u

2
u

3 K2
u

2
u

3 T

V
3
( t)  1

2
u

3
u

4 K3
u

3
u

4 T

where

K
1


E
36l

(19h
1

2  7h
1
h

2
 h

2

2
)

1 1

1 1







K
2


E
36l

(7h
1

2 13h
1
h

2
 7h

2

2
)

1 1

1 1







K
3


E
36l

(h
1

2  7h
1
h

2
19h

2

2
)

1 1

1 1







 

 

 Writing the total strain energy in matrix form, the global stiffness matrix is 

 

 

K 
E
36l

f
1
 f

2
 f

2
0

 f
2

f
2
 f

3
 f

3

0  f
3

f
3















where

f
1
 19h

1

2  7h
1
h

2
 h

2

2
,   f

2
 7h

1

2 13h
1
h

2
 7h

2

2
  and  f

3
 h

1

2  7h
1
h

2
19h

2

2

 

 

 The kinetic energy of each element in matrix form is 



 

 

T
1
(t)  1

2
Ý u 

1
Ý u 

2 M1
Ý u 
1

Ý u 
2 T ,   T

2
(t)  1

2
Ý u 

2
Ý u 

3 M2
Ý u 

2
Ý u 

3 T ,

            T
3
(t)  1

2
Ý u 

3
Ý u 

4 M3
Ý u 

3
Ý u 

4 T

where

M
1


l
3240

76h
1

2 13h
1
h

2
 h

2

2 1

2
63h

1

2  24h
1
h

2
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2

2 
1

2
63h

1

2  24h
1
h

2
 3h

2

2  51h
1

2  33h
1
h

2
 6h

2

2















M
2


l
3240

31h
1

2  43h
1
h

2
16h

2

2 1

2
23h

1

2  44h
1
h

2
 23h

2

2 
1

2
23h

1

2  44h
1
h

2
 23h

2

2  16h
1

2  43h
1
h

2
 31h

2

2















M
3
 l

3240

6h
1

2  33h
1
h

2
 51h

2

2 1

2
3h

1

2  24h
1
h

2
 63h

2

2 
1

2
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1

2  24h
1
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 63h

2

2  h
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2 13h
1
h

2
 76h

2

2
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











 

 

 Evaluating and assembling the mass and stiffness matrices gives: 

 

 

K 
9.285 3.726 0

3.729 5.987 2.2602

0 2.2602 2.2602














10

9

M 
13.1423 2.6573 0

2.6573 8.4299 1.6101

0 1.6101 2.7751















 

 

 1 = 10406 rad/s, 2 = 27309 rad/s, 3 = 47797 rad/s 

 

 Note that a ten element model yields 

 

 1 = 10316 rad/s, 2 = 25183 rad/s 



8.15 Consider the machine punch of Figure P8.15.  This punch is made of two materials 

and is subject to an impact in the axial direction.  Use the finite element method 

with two elements to model this system and estimate (calculate) the first two 

natural frequencies.  Assume E1 = 8  10
10

 Pa, E2 = 2.0  10
11

 Pa, 1 = 7200 

kg/m
3
, 2 = 7800 kg/m

3
, l = 0.2 m, A1 = 0.009 m

2
, and A2 = 0.0009 m

2
. 

 
Solution: The total strain energy of the system is 

 

 V(t)  1

2
u

1

2 2E
1
A

1

l


2E
1
A

1

l
u

1

u
2







T
1 1

1 1







u
1

u
2















 

u
1

                   u2

 

 The vector of derivatives of the potential energy gives 

 

V
u

1

V
u

2


















2

l
E

1
A

1
 E

2
A

2
E

2
A

2

E
2
A

2
E

2
A

2







u
1

u
2







 

The stiffness matrix is then 

 

 K 
2

l
E

1
A

1
 E

2
A

2
E

2
A

2

E
2
A

2
E

2
A

2







 

 

 In similar fashion, the total kinetic energy is 

 

 T (t)  1

2
Ý u 

1

2 1
A

1
l

6


l
12

Ý u 
1

Ý u 
2







T
2

2
A

2


2
A

2


2
A

2
2

2
A

2







Ý u 
1

Ý u 
2















 

 



 The mass matrix is then 

 

 

M  l
12

2(
2
A

2
 

1
A

1
) 

2
A

2


2
A

2
2

2
A

2








E
1
 8 10

10
Pa,  

1
 7200kg/m

3
,  E

2
 2.010

11
Pa,  

2
 7800kg/m

3
,

l  .2A
1
 .0009, A

2
 .0001

K 
9.2 2

2 2






10

8
    M 

.242 .013

.013 .026







 

 

 1 = 47556.1 rad/s, 2 = 101975 rad/s 

 

 

 

 

 

 

8.16 Recalculate the frequencies of Problem 8.15 assuming that it is made entirely of 

one material and size (i.e., E1 = E2, 1 = 2, and A1 = A2), say steel, and compare 

your results to those of Problem 8.15. 

 

Solution: 
 

 Assume A1 = A2, E1 = E2, 1 = 2 

 

 K 
4 2

2 2






 10

8
   M 

.052 .013

.013 .026







 

 

 1 = 40798.6 rad/s, 2 = 142525 rad/s 

 

 The first natural frequency decreased.  This example illustrates how a punch can be 

modified to raise the first natural frequency by changing the base material. 



8.17 A bridge support column is illustrated in Figure P8.17.  The column is made of 

concrete with a cross-sectioned area defined by A(x) = A0e
-x/l

, where A0 is the area 

of the column at ground.  Consider this pillar to be cantilevered (i.e., fixed) at 

ground level and to be excited sinusoidally at its tip in the longitudinal direction 

due to traffic over the bridge.  Calculate a single-element finite element model of 

this system and compute its approximate natural frequency. 

 

Solution: 
 

 A(x) = A0e
-x/l

 

 

 The potential energy is 

 

 

V(t)  E
2

A(x)
u(x, t)
x







2

dx
0

l


where u(x ,t)  1  x
l





u1

(t)  x
l

u
2

(t)

V(t)  EA
0

2l
e1

e
u

1
(t)  u

2
( t) 2

        EA
2l

e 1

e
u

2

2
( t)

 

 

 The stiffness is then 

 

 K 
EA
l

(e 1)

e
 

 

 Likewise, the kinetic energy is 

 

 T (t) 
1

2
A

u(x, t)
x







2

dx
0

l
 

Al
2e

(2e 5) Ý u 
2

2
(t)  

 

 The mass is then 

 



 M 
Al
e

(2e  5)  

 

 The first natural frequency is then approximately 

 

 
1


K
M


E(e 1)

(2e  5)l2


1.984

l
E


 



8.18 Redo Problem 8.17 using two elements.  What would happen if the “traffic” 

frequency corresponds with one of the natural frequencies of the support column? 

 

Solution: The shape functions for a 2 element model are 

 

 

u
1
(x,t)  1  2x

l




u1

(t)  2x
l

u
2
(t)

u
2
(x,t)  2 1

x
l





u2

(t)  2x
l
1





u3

(t )

 

 The total stain energy in matrix form is 

 

 

V(t)  1

2
u

2
u

3 K u
2

u
3 T

where

K 
4A e 1 E0

el
1 e 1

1 1








 

 Likewise the mass matrix can be found from the total potential energy to be 

 

M 
Al

e
8 e 1 e  10  6 e

10  6 e 813 e







 

 and the natural frequencies are then 

 
1


1.939

l
E


 rad/s,   
2


5.605

l
E


 rad/s  

 If the traffic frequency corresponds to a natural frequency of a pillar, the bridge 

might fail. 

 

8.19 Problems 8.17 and 8.18 represent approximations.  As pointed out in Problem 

8.18, it is important to know the natural frequencies of this column as precisely as 

possible.  Hence consider modeling this column as a uniform bar of average cross 

section, calculate the first few natural frequencies, and compare them to the results 

in Problem 8.17 and 8.18.  Which model do you think is closest to reality?  

 
Solution: 

 

 The natural frequencies of a rod with constant cross sectional area are independent 

of the area.  Therefore the first 2 natural frequencies are 

 

 
1

1.571

l
E


 rad/s,   
2


4.712

l
E


 rad/s  

 

 It is doubtful that these results are better since we know from the finite element 

model that the varying cross sectional area does have an effect. 



8.20 Torsional vibration can also be modeled by finite elements.  Referring to Figure 

P8.20, calculate a single-element mass and stiffness matrix for the torsional 

vibration following the steps of Section 8.1. (Hint: (x,t) = c1(t) + c2(t),  
T(t) = 

1

2
I  t (x, t) 0

l
2

dx  and V(t)  1

2
GI t (x, t) 0

l
2

dx .) 

 

Solution: 
 

 From equation (6.64), The static (time independent) displacement of the torsional 

rod element must satisfy 

 

 

x

 0  GJ 
2 (x,t)
x2

 

 

 which has the same form as equation (8.1).  This can be integrated to yield 

 

 (x) = C1 + C2 

 

 At x = 0 

 

 (0) = 1(t) = C2 

 

 Likewise, at x = l 
 

 (l) = 2(t) = C1l + C2 

 

 C
1



2
(t) C

2

l



2
(t)  

1
(t)

l
 

 

 Substituting the values of C1 and C2 into the shape function yields 

 

  (x, t)  1
x
l





1

(t)  x
l





2

(t)  

 

 Evaluating the strain energy yields 

 

 

V(t)  GJ
2l


1

2  2
1


2
 

2

2 

       
1

2


1
(t) 

2
( t) K 

1
(t) 

2
(t) T

 

 



 where the stiffness matrix is defined by 

 

 K 
GJ
l

1 1

1 1







 

 

 Likewise, evaluating the kinetic energy yields 

 

 

T (t)  1

2

Al
3

Ý 
1

2  Ý 
1

Ý 
2
 Ý 

2

2 

       
1

2

Ý 
1
(t) Ý 

2
(t) M Ý 

1
(t) Ý 

2
(t) T

 

 

 where the mass matrix is defined by  

 

 M 
Al
6

2 1

1 2







 

 



Problems and Solutions Section 8.3 (8.21 through 8.33) 
 
8.21 Use equations (8.47) and (8.46) to derive equation (8.48) and hence make sure 

that the author and reviewer have not cheated you. 

 

Solution: 
 

 u(x,t )  C
1
(t)x3  C

2
(t)x2  C

3
(t)x  C

4
(t)                      (8.46) 

u(0, t)  u
1
(t)                  ux (0, t) = u

2
(t)

u(l,t)  u
3
(t)                   u x(l, t)  u

4
(t)                            (8.47) 

 

 Substituting(8.46) into (8.47) 

 

 

u(0, t)  C
4
(t)  u

1
(t)

ux (0,t)  C
3
(t)  u

2
(t)

u(l,t)  C
1
(t)l3  C

2
(t)l2 C

3
(t)l  C

4
(t)  u

3
(t)

ux (l, t)  3C
1
(t)l  2C

2
(t)l C

3
(t)  u

4
(t)

This gives

C
1
 1

l3
2(u

1
 u

3
)  l(u

2
 u

4
) 

C
2
 1

l2
3(u

3
 u

1
)  l(u

4
 2u

2
) 

C
3
 u

2

C
4
 u

1

 

 

 

8.22 It is instructive, though tedious, to derive the beam element deflection given by 

equation (8.49).  Hence derive the beam shape functions. 

 

Solution: 
 

 Substituting (8.48) into (8.46) gives 

 

 

u(x,t )  13
x2

l2
 2

x3

l3






u

1
(t)  l

x
l
 2

x2

l2


x3

l3







u

2
(t)

          3
x2

l 2
 2

x3

l3







u

3
(t)  l x 2

l2
 x3

l3







u

4
(t)

 



8.23 Using the shape functions of Problem 8.22, calculate the mass and stiffness 

matrices given by equations (8.53) and (8.56).  Although tedious, this involves 

only simple integration of polynomials in x. 

 

Solution: 
 

 

T (t)  1

2
A ut(x, t) 2

0

l
 dx

        1

2
Ý u T MÝ u 

where

u  u
1
( t) u

2
( t) u

3
(t) u

4
(t) T

 

 

 And M is given by equation (8.35). 

 

 Similarly 

 

 

V(t)  1

2
EI u xx(x, t) 2

0

l

 dx

        1

2
uTKu

 

 

 where K is given by (8.56) 

 



8.24 Calculate the natural frequencies of the cantilevered beam given in equation 

(8.69) using l = 1 m and compare your results with those listed in Table 6.1. 

 

Solution: 
 

 

M 
A
840

312 0 54 6.5

0 2 6.5 .75

54 6.5 156 11

6.5 .75 11 1



















                                                        K  8EI

24 0 12 3

0 2 3
1

2

12 3 12 3

3
1

2
3 1

























 

 

 Following the procedures of section 4.2 

 

 


1
 3.5177

EI
A

,  
2
 22.2215

EI
A


3
 75.1571

EI
A

,  
4
 218.138

EI
A

 

 

 From continuous theory, the natural frequencies of a cantilevered beam are 

  i  i
EI
A

 where 
1
 3.51601,  

2
 22.0345, 

3
 61.6972,  

4
120.9019.  

 

 The predictions of the first two natural frequencies are quite accurate while the 

predictions of the third and fourth natural frequencies are terrible. 



8.25 Calculate the finite element model of a cantilevered beam one meter in length 

using three elements.  Calculate the natural frequencies and compare them to 

those obtained in Problem 8.23 and with the exact values listed in Table 6.4. 

 

Solution: Define ui using the following figure; 

u2              u4                     u6         u8

u1              u3                     u5         u6

2
 

 The equation for element one is 

 

 
Al
420

156 22 l
22l 4l 2







Ý Ý u 
3

Ý Ý u 
4








EI
l3

12 6l
6l 4l2







u
3

u
4






 0  

 

 The equation for element two is 

 

 
Al
420

156 22l 54 13l
22l 4l 2

13l 3l2

54 13l 156 22l
13l 3l 2 22l 4l2

















Ý Ý u 
3

Ý Ý u 
4

Ý Ý u 
5

Ý Ý u 
6


















EI
l3

12 6 l 12 6l
6l 4l2 6l 2l2

12 6l 12 6l
6l 2l2 6l 4l2

















u
3

u
4

u
5

u
6

















 0  

 

 The equation for element 3 is the same as for element 2 but with the vector 

 

 [u3 u4 u5 u6]
T
 replaced with [u5 u6 u7 u8]

T
. 

 

 Combining the elemental equation using the superposition of the like coordinates 

yields 

 



 

Al
420

312 0 54 13l 0 0

0 8l2
13l 3l2

0 0

54 13l 312 0 54 13l
13l 3l 2

0 8l 2
13l 3l 2

0 0 54 13l 156 22l
0 0 13l 3l2 22l 4l2





















Ý Ý u 
3

Ý Ý u 
4

Ý Ý u 
5

Ý Ý u 
6

Ý Ý u 
7

Ý Ý u 
8






















EI
l3

24 0 12 6l 0 0

0 8l2 6l 2l2
0 0

12 6l 24 0 12 6l
6l 2l2

0 8l2 6l 2l2

0 0 12 6l 12 6l
0 0 6l 2l2 6l 4l2





















u
3

u
4

u
5

u
6

u
7

u
8





















 0

 

 

 which can also be written in the form 

 

 

Al
420

312 0 54 13 0 0

0 8 13 3 0 0

54 13 312 0 54 13

13 3 0 8 13 3

0 0 54 13 156 22

0 0 13 3 22 4





















Ý Ý u 
3

lÝ Ý u 
4

Ý Ý u 
5

lÝ Ý u 
6

Ý Ý u 
7

lÝ Ý u 
8






















EI
l3

24 0 12 6 0 0

0 8 6 2 0 0

12 6 24 0 12 6

6 2 0 8 6 2

0 0 12 6 12 6

0 0 6 2 6 4





















u
3

lu
4

u
5

lu
6

u
7

lu
8





















 0

 

 

 Following the procedure of example 8.3.3 

 

 


1
 .3907

1

l2

EI
A

 , 
2
 2.456

1

l2

EI
A


3
 6.941

1

l2

EI
A

 ,  
4
 15.63

1

l 2

EI
A


5
 29.42

1

l2

EI
A

 , 
6
 58.64

1

l2

EI
A

 



8.26 Consider the cantilevered beam of Figure P8.26 attached to a lumped spring-mass 

system.  Model this system using a single finite element and calculate the natural 

frequencies.  Assume m = (Al)/420. 

 

Solution: Define ui using the following figure: 
    u

1
                                          u

3

u2                            u4

  u5

 

 The model for the spring mass system is 

 

 

0 0

0 m






Ý Ý u 
3

Ý Ý u 
5







 EI

l3

1 1

1 1







u
3

u
5







 0

The single element model for the beam is

Al
420

156 22 l
22l 4l 2







Ý Ý u 
3

Ý Ý u 
4








EI
l3

12 6l
6l 4l2







u
3

u
4






 0

Superimposing like coordinates yields

Al
420

156 22 l 0

22l 4l 2
0

0 0 1















Ý Ý u 
3

Ý Ý u 
4

Ý Ý u 
5
















EI
l3

13 6l 1

6l 4l2
0

1 0 1















u
3

u
4

u
5














 0

The equation of motion may also be written 

Al4

420EI

156 22 0

22 4 0

0 0 1















Ý Ý u 
3

lÝ Ý u 
4

Ý Ý u 
5
















13 6 1

6 4 0

1 0 1















u
3

lu
4

u
5














 0

 

 

 The eigenvalue/eigenvector problem is then 

 

 (A-I)v=0 

 



 where 

 

 

A  M 1K Al 4

420EI
,    Al 4

420EI
 2

A 
.5714 .4571 .0286

4.6429 3.5143 .1571

1 0 0
















1
 .0294, 

2
1, 

3
 2.9134

 

 


1
 3.52

1

l2

EI
A


2
 20.49

1

l2

EI
A


3
 34.98

1

l2

EI
A

 



8.27 Repeat Problem 8.26 using two finite elements for the beam and compare the 

frequencies. 

 

Solution: 
 

 A two element model of a cantilevered beam has been created in example 8.3.3. 

 

 Superimposing like coordinates for this example with the spring mass model 

yields 

 

Al
840

312 0 54 6.5l 0

0 2l2
6.5l .75l2

0

54 6.5l 156 11l 0

6.5l .75l2 11l l2
0

0 0 0 0 2



















Ý Ý u 
3

Ý Ý u 
4

Ý Ý u 
5

Ý Ý u 
6

Ý Ý u 
7




















8EI
l3

24 0 12 3l 0

0 2l2 3l 1

2
l2

0

12 3l 12
1

8
3l 

1

8

3l 1

2
l2 3l l2

0

0 0  1

8
0

1

8























u
3

u
4

u
5

u
6

u
7



















 0

 

 

 Note that the coordinate vector for the spring mass system has changed from [u3 

u5]
T
 to [u5 u6]

T
. 

 

 As in (8.26), the equations may be written in the form 

 



  

Al4

6720EI

312 0 54 6.5 0

0 2 6.5 .75 0

54 6.5 156 11 0

6.5 .75 11 1 0

0 0 0 0 2



















Ý Ý u 
3

lÝ Ý u 
4

Ý Ý u 
5

lÝ Ý u 
6

Ý Ý u 
7




















8EI
l3

24 0 12 3 0

0 2 3
1

2
0

12 3 12
1

8
3 

1

8

3
1

2
3 1 0

0 0  1

8
0

1

8























u
3

lu
4

u
5

lu
6

u
7



















 0

 

 

 The eigenvalue/eigenvector problem is then 

 

  

(A  I)v  0

where

A  M 1K Al4

6720EI
,   Al4

6720EI
2

A 

.2878 .0640 .2907 .0868 .0004

3.6700 2.1247 5.9000 1.5919 .0062

.9274 .2094 1.0368 .3516 .0041

17.8241 4.8163 20.7187 6.6253 .0519

0 0 .0625 0 .0625




















1
 .0427, 

2
 .2455, 

3
 .2772,  

4
 .9173,  

5
 2.6614


1


3.50

l2

EI
A

,  
2


20.12

l2

EI
A

, 
3


22.73

l2

EI
A

 

 

 The one element (3 DOF) model predicted the first 2 natural frequencies well.  

The prediction of the third natural frequency was extremely poor using only one 

element. 



8.28 Calculate the natural frequencies of a clamped-clamped beam for the physical 

parameters l = 1m, E = 210
11

 N/m
2
,  = 7800 kg/m

3
, I = 10

-6
 m

4
, and A = 10

-2
 

m
2
, using the beam theory of Chapter 6 and a four-element finite element model 

of the beam. 

 

Solution: 
 

 Using VTB8_1 

 

  

M 

14.49 0 2.5071 .151 0 0

0 .0232 .0151 .0087 0 0

2.507 .151 14.49 0 2.507 .151

.151 .0087 0 .0232 .151 .0087

0 0 2.5071 .151 14.49 0

0 0 .151 .0087 0 .0232





















and

K  110
5

3072 0 1536 192 0 0

0 64 192 16 0 0

1536 192 3072 0 1536 192

192 16 0 64 192 16

0 0 1536 192 3072 0

0 0 192 16 0 64





















 

 

 Remember to zero the x translations since we are not interested in the extensional 

deformations.  The natural frequencies are then found to be 

 

 1= 1134 rad/s, 2 = 3152 rad/s, 3 = 6253 rad/s, 4 = 11830 rad/s, 5 = 19565 

rad/s, 6 = 31524 rad/s 

 

 From distributed theory 

 

 1= 1132.9 rad/s, 2 = 3122.9 rad/s, 3 = 6122.2 rad/s, 4 = 10120 rad/s, 5 = 

15118 rad/s, 6 = 21115 rad/s 

 



8.29 Repeat Problem 8.28 with two elements and compare the frequencies with the 

four-element model.  Calculate the frequencies of a clamped-clamped beam using 

one element.  Any comment? 

 

Solution: 
 

 Since only two of the six degrees of freedom are free, the mass and stiffness 

matrices are simply 

 

 

M 
2A l

2

420

156 0

0 4
l
2






2










and

K  2EI
l
2







3

12 0

0 4
l
2






2










 

 

 where l = 1 m.  The natural frequencies are then 

 

 


1


192EI
l3

156Al
420

 22.736
1

l2

EI
A

1151 rad/s


2


16EI
l3

Al
420

 81.96
1

l2

EI
A

 4151 rad/s

 

 

 If you are only interested in the first natural frequency, a two degree of freedom 

model is adequate.  However, the six degree of freedom model is much more 

accurate and can better predict the second mode.  (In general, a finite element 

model must have twice as many degrees of freedom as the number of modes you 

want to predict). 



8.30 Estimate the first natural frequency of a clamped-simply supported beam.  Use a 

single finite element. 

 

Solution: Since we are using only one element, we need only take the finite 

element matrix for a single element and strike out the rows and columns 

corresponding to the fixed degrees of freedom to get the global matrices.  This 

yields 

M 
4l3A
420

,   K 
4l2EI

l3
 

 

 Since there is only a single degree of freedom 

 

  
 n 

K
M

 420
1

l2

EI
A

 20.49
1

l2

EI
A

  rad/s  

 

 Distributed theory yields 

n 15.42
1

l2

EI
A

 

 One degree of freedom is not enough to predict the first natural frequency. 

 
 
 
 
8.31 Consider the stepped beam of Figure P8.31 clamped at each end.  Both pieces are 

made of aluminum.  Use two elements, one for each step, and calculate the natural 

frequencies. 

 

Solution: Only a single degree of freedom is free.  The mass and stiffness 

matrices are therefore scalars. 

 

K 
E

1
A

1

l
1


E

2
A

2

l
2

 809375000 N/m

M 
1

3


1
A

1

l
1




2
A

2

l
2




 


 10.41 kg

  K
M

 8819.2 rad/s

 



8.32 Use a two-element model of nonuniform length to estimate the first few natural 

frequencies of a clamped-clamped beam.  Use the spacing indicated in Figure 

P8.32.  Compare the result to the actual frequencies and to those of Problem 8.28 

and 8.29. 

 

 
Solution: Since it has been shown in example 8.3.3 that the variable l can be 

factored outside of the mass and stiffness matrices, we can substitute the 

percentage of total length of each element into the mass and stiffness matrices and 

get the correct natural frequencies. 

 

 

M  A(.25l)
420

156 22  .25

22  .25 4  .25
2






 A(.75l)

420

156 22  .75

22  .75 4  .75
2







      Al
420

156 11

11 1.75







Similarly,

K  EI
(.25l)3

12 6 .25

6  .25 4 .25
2






 EI

(.75l)3

12 6  .75

6  .75 4  .75
2







     
EI
l3

796.4 85.3

85.3 21.33







  eig ˜ M 1 ˜ K  1

l2

EI
A

 

 where ˜ M  and ˜ K  represent the mass and stiffness matrices with the variables E, I, 
l,  and A factored out. 


1
 25.31

1

l2

EI
A

,  
2
 132.6

1

l2

EI
A

 

 

 This is not nearly as good as the two element model where 1 was found to be 

 


1
 22.74

1

l2

EI
A

 

 

 as opposed to the “actual” (from distributed parameter theory) value of 

 


1
 22.37

1

l2

EI
A

 



8.33 Calculate the first natural frequency of a clamped-pinned beam using first one, 

then two elements. 

 

Solution: 
 

  From problem 8.30, using one element yields 

 

 
1
 20.49

1

l2

EI
A

 

 

 Using the vibration toolbox and the method described in 8.3.3 (also in the 

README.8 file) the two element model yields 

 

 


1
 15.56

1

l2

EI
A


2
 58.41

1

l2

EI
A


3
 155.6

1

l2

EI
A

 

 

 

 



Problems and Solutions Section 8.4 (8.34 through 8.43) 
 
8.34 Refer to the tapered bar of Figure P8.13.  Calculate a lumped-mass matrix for this 

system and compare it to the solution of Problem 8.13.  Since the beam is tapered, 

be careful how you divide up the mass. 

 

Solution: The lumped mass at node 2 should be the total mass between x = .25 

and x = .75. Therefore 

 

 
M

2
 2700


4.25

.75

 h
1

2 
h

2
 h

1

l






2

x2  2h
1

h
2
 h

1

l




x







dx

     26.5

 

 likewise for node 3 

 
M

3
 2700


4.75

1

 h
1

2 
h

2
 h

1

l






2

x2  2h
1

h
2
 h

1

l




x







dx

     7.289

 

 The mass matrix is then 

 

M 
26.5 0

0 7.289







 

 and the natural frequencies are 

 

 1 = 6670 rad/s and 2 = 13106 rad/s. 

 

 For the distributed mass system 

 

1 = 7414 rad/s and 2 = 20368 rad/s. 

 

 The first natural frequency found by the distributed mass model is slightly better 

than the lumped mass model when compared to the three element distributed mass 

model derived in problem 13. 

 

8.35 Calculate and compare the natural frequencies obtained for a tapered bar by using 

first, the consistent-mass matrix (Problem 8.12), and second, the lumped-mass 

matrix (Problem 8.34). 

 

Solution: 
 

 See solution for Problem 8.34. 



8.36 Consider again the machine punch of Problem 8.16 and Figure P8.15.  Calculate 

the natural frequencies of this system using a lumped-mass matrix and compare 

the results to those obtained with the consistent-mass matrix. 

 

Solution: 
 

 The lumped mass matrix is 

 

 

M 


1
A

1
l
1

2



2
A

2
l
2

2
0

0


2
A

2
l
2

2















     rl
A

1
 A

2
0

0 A
2







    
.078 0

0 .039







 

 

 The natural frequencies are 

 

 1 = 38756 rad/s and 2 = 93565 rad/s. 

 

 The results for the consistent mass matrix were 

 

 1 = 40798.6 rad/s and 2 = 142525 rad/s. 

 

 The first natural frequency is within 5% for both predictions.  For this case, the 

inconsistent mass matrix is adequate for the 1
st
 mode. 

 



8.37 Consider again the bridge support of Figure P8.17 discussed in connection with 

Problem 8.17.  Develop a four-element finite element model of this structure 

using a lumped-mass approximation and calculate the natural frequencies.  Use 

constant area elements. 

 

Solution: 
 

 We will use elements which each have constant cross section by finding the 

average area for each element.  Elements are numbered from one to four from 

bottom to top. 

 

 

A
1
 1

.25l
A(x)dx

0

.25l
  A

0

.25l
le


x
l











0

.25l

     4A
0

e.25 1  .8848A
0

likewise

A
2
 .6891A

0
,  A

3
 .5367A

0
,  A

4
 .4179A

0

 

 

 Assembling the stiffness matrix yields 

 

 K 
EA

0

.25l

1.5739 .6891 0 0

.6891 1.2258 .5367 0

0 .5367 .9546 .4179

0 0 .4179 .4179

















 

 

 To find the mass matrix, we will assume again that the elements have constant 

cross section.  This yields 

 

 M 
A

0
l

8

1.5739 0 0 0

0 1.2258 0 0

0 0 .9546 0

0 0 0 .4179

















 

 

 The natural frequencies are then 

 

 
1
 1.86

1

l
E


,  
2
 4.50

1

l
E


,  
3
 6.62

1

l
E


,  
4
 7.78

1

l
E


,  



8.38 Consider the torsional vibration problem illustrated in Figure P8.20 and discussed 

in Problem 8.20.  Calculate a lumped-mass matrix for the single element. 

 

Solution: 
 

 The total mass moment of inertia would be divided between the two degrees of 

freedom. 

 

 Therefore 

 

 M 
1

2

Ip 0

0 Ip







 

 

 

8.39 Estimate the first three natural frequencies of a clamped-free bar of length l in 

torsional vibration by using a lumped-mass model and four elements. 

 

Solution: 
 

 The stiffness matrix is 

 

 K 
4G

l

2 1 0 0

1 2 2 0

0 2 2 1

0 0 1 1

















 

 

 The mass matrix is 

 

 M 
Jl
4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0
1

2

















 

 

The natural frequencies are then 

 

 
1
 1.56

1

l
G
J

, 
2
 4.445

1

l
G
J

, 
3
 6.65

1

l
G
J

, 
4
 7.8463

1

l
G
J

 

 

 From table 6.3, it can be seen that the first two natural frequencies predicted by 

the finite element model are good approximations. 



8.40 Calculate the natural frequencies of a pinned-pinned beam of length l using one 

element and the consistent-mass matrix of equation (8.73). 

 

Solution: 
 

 The mass matrix is 

 

 M 
Al3

48

1 0

0 1







 

 

 and the stiffness matrix is 

 

 K 
EI
l

4 2

2 4







 

 

 Finding the natural frequencies gives 

 

 
1
 9.798

1

l2

EI
A

,  
2
 16.971

1

l2

EI
A

 

 

 The first natural frequency from distributed theory is 

 

 n  9.869
1

l 2

EI
A

 

 

 

8.41 Calculate the natural frequencies of a pinned-pinned beam of length l using one 

element and the lumped-mass matrix of equation (8.73).  Compare your results to 

those obtained with at consistent-mass matrix of Problem 8.40. 

 

Solution: 
 

 The consistent mass matrix is 

 

 

M 
Al3

420

4 3

3 4







which gives


1
 10.96

1

l2

EI
A

,  
2
 50.20

1

l2

EI
A

 

 

 which is worse than the inconsistent mass matrix results.  (See solution 8.40) 

 

 



8.42 Calculate a three-element finite element model of a cantilevered beam (see 

Problem 8.25) using a lumped mass that includes rotational inertia.  Also calculate 

the system’s natural frequencies and compare them with those obtained with a 

consistent-mass matrix of Problem 8.25 and with the values obtained by the 

methods of Chapter 6. 

 

Solution: 
 

 The mass matrix is M  Al diag 1,
1

24
,1,

1

24
,
1

2
,

1

48





 using the [u1 lu2] convention 

for the displacement vector. 

 

 The natural frequencies are then 

 

 
 i  ai

1

l2

EI
A

ai  .368, 2.00,  4.98,  10.7,  14.5,  17.1

 

 

 This is not as good as the consistent mass matrix results.  From distributed 

parameter theory a1 = .3911. 

 

 

 

8.43 Repeat Problem 8.42 using a lumped-mass matrix that neglects the rotational 

degree of freedom.  Discuss any problems you encounter when trying to solve the 

related eigenvalue problem. 

 

Solution: 
 

 M  Al diag 1,0,1,0,
1

2
,0





 

 

The singularity of the mass matrix does not allow a solution to be found. 

 



Problems and Solutions Section 8.5 (8.44 through 8.49) 
 
8.44 Derive a consistent-mass matrix for the system of Figure 8.9.  Compare the 

natural frequencies of this system with those calculated with the lumped-mass 

matrix computed in Section 8.5. 

 

Solution: Using the vibration toolbox 

M  Al
.6857 0

0 .7238







 

The natural frequencies are then 


1
 .8311

1

l
E


 and 
1
1.479

1

l
E


 

 These are higher than those predicted with the inconsistent mass matrix 

 

8.45 Consider the two beam system of Figure P8.45.  Use VTB8_1 to create a two-

element, rod/beam element model and compute the first three natural frequencies.  

Use A = 0.0004 m
2
, I = 1.33 10

-8
 m

4
, and the properties of aluminum.  Assume 

that nodes 1 and 3 are clamped. 

 

Solution: 
 %scipt file for problem 8.45 
 node=[0 0;1 .5;2 1;1  1.5;0 2]; 
 ncon=[1 2 69e10 .004 1.33e-8 0 2700; 
   2 3 69e10 .004 1.33e-8 0 2700; 
   3 4 69e10 .004 1.33e-8 0 2700; 
   4 5 69e10 .004 1.33e-8 0 2700]; 
 zero=[1 1; 
   1 2; 
   1 3; 
    5 1; 
   5 2; 
   5 3]; 
 conm=[]; 
 force=[]; 
 save VTB8_45.con 
 
 Running this yields that the first three natural frequencies are given as 377.5, 

8763.7 and 10951.2 rad/s. 



8.46 Follow the procedure of Problem 8.45 using two elements for each beam.  

Compare the natural frequencies and mode shapes of the four element model 

produced here to those of the two-element model of Problem 8.45.  State which 

model is better and why. 

 
Solution: Use the script file from 8.45 ending in VTB8_46.con 

 The first five natural frequencies are 286.8, 419.1, 1074.5, 1510.8, and 2838.9 

rad/s.  The result from the four element model is probably better because the 

additional elements allow the first few modes to be found in more detail.  Notice 

the difference in the result for the first mode.  The first mode is primarily a 

rotation of the joint between the two beams.  The two element model shows this 

to be the only significant motion (load the .out data file to observe the mode shape 

vector).  The four element model shows that the middle of each beam displaces 

and rotates as well.  

 

 The eight element model predicts the first five natural frequencies to be 284.3, 

413.0 ,925.6, 1147.3, and 1959.7 rad/s, the first four of which agree well with the 

four element model results. 

 

8.47 Determine a finite element model of the three-bar truss of Figure P8.47 using a 

lumped-mass matrix. 

 

Solution: 
 

 Using VTB8_1 

 

 K 
EA
l

1.89 .48

.48 .36







 

 

 The inconsistent mass matrix is 

 

 M  Al
.9 0

0 .9







 



8.48 Determine a finite element model for the three-bar truss of Figure P8.47 using a 

consistent-mass matrix. 

 

Solution: 
 

 Using VTB8_1 the consistent mass matrix is  

 

 M  Al
.6137 .0183

.0183 .6549







 

 

 However, this mass matrix is created using beam/rod elements.  Using simple rod 

elements gives a consistent mass matrix 

 

 M  Al
.48 .16

.16 .12







 

 

 

 

8.49 Compare the frequencies obtained for the system of Problem 8.48 with those of 

Figure P8.47. 

 

Solution: 
 

 The natural frequencies using the consistent mass matrix are 

 

 1 = 1.7321    2 = 2.1651 

 

 The natural frequencies using the inconsistent mass matrix are 

 

 1 =.4966    2 = 1.5012 

 

 These results are terribly inconclusive, but since we have seen in previous 

examples that the consistent mass matrix generally yields the better results, one 

would expect the same to be true in this case. 

 



Problems and Solutions Section 8.6 (8.50 through 8.54) 
 

8.50 Consider the machine punch of Figure P8.15.  Recalculate the fundamental 

natural frequency by reducing the model obtained in Problem 8.16 to a single 

degree of freedom using Guyan reduction. 

 

Solution: 
 

 From the results of 8.16 

 

 

K 
4 2

2 2






 10

8
,   M 

.052 .013

.013 .026







From (8.104)

QT MQ  .052  .013 .013 .026  .104

From (8.105)

QT KQ  (4  2) 10
8  2 10

8

  2 10
8

.104
 43852.9 rad/s

 

 

 which is a poor prediction of the first natural frequency.  If we reorder K and M 
(reducing to coordinate 2) we get  

 

 

QT MQ  .026  .013 .013  .052

QT KQ  (2 1) 10
8  1 10

8

  43852.9 rad/s

 

 

 which is the same result as reducing to coordinate 1. 



8.51 Compute a reduced-order model of the three-element model of a cantilevered bar 

given in Example 8.3.2 by eliminating u2 and u3 using Guyan reduction.  Compare 

the frequencies of each model to those of the distributed model given in Window 

8.1. 

 

Solution: 
 

 

M  Al
18

4 1 0

1 4 1

0 1 2















K 
3EI

l

2 1 0

1 2 1

0 1 1















 

 

 Let ˜ M  and ˜ K  be the matrices with the coefficients factored out. 

 

 

˜ M 
11
 4,  ˜ M 

21


1

0





 ˜ M 

12

T
,  M

22


4 1

1 2







˜ K 
11
 2,  ˜ K 

21


1

0






 ˜ K 

11

T
,  K

22


2 1

1 1







 

 

 Using equations (8.104) and (8.105) 

 

 

˜ M r  QT MQ  14

˜ K r  QT KQ  1

and

n 

3EA
l

14Al
18

1.964
1

l
E


 

 

 as compared to the distributed model value of 

 

 
1
 1.57

1

l
E


 

 



8.52 Consider the system defined by the matrices 

   M 

2 0 0 0

0 0 0 0

0 0 2 0

0 0 0 0

















        K 

20 1 0 0

1 20 3 0

0 3 20 17

0 0 17 17

















 

 

Use mass condensation to reduce this to a two-degree-of-freedom system with a 

nonsingular mass matrix. 

 

Solution: 
 

 Following the same procedure as example 8.6.1 

 

 Mr 
2 0

0 2






 and Kr 

19.95 .15

.15 36.55







 

 

 

8.53 Recall the punch press problem modeled in Figure 4.28 and treated in Example 

4.8.3.  The mass and stiffness matrices are given by 

M 
0.4 10

3
0 0

0 2.0 10
3

0

0 0 8.010
3














   K 

30 10
4

3010
4

0

30 10
4

3810
4

810
4

0 8 10
4

88 10
4















 

Recalling that the only external force acting on the machine is at the x1(t) 
coordinate, reduce this to a single-degree-of-freedom system using Guyan 

reduction to remove x2 and x3.  Compare this single frequency with those of 

Example 4.8.3. 

 

Solution: 
 

 Following the same procedure as example 8.6.1 

 

 Mr  1.7385 10
3
, Kr  5.8537 10

4
 and the natural frequency is 

 

 n 
Kr

Mr
 5.803rad/s 

 

 Example 4.8.3 gave the first natural frequency as1 = 5.387 rad/s which is within 

10% of the Guyan reduced prediction. 

 

 

 

 

 



8.54. Consider the beam example given in Example 7.6.2.  Using the values given there 

(An aluminum beam: 0.5128 m x 25.5 mm x 3.2 mm, E = 6.9×10
10

 N/m
2
 ,  = 

2715 kg/m
3
, A = 8.16 m

2
 and I = 6.96×10

-11 
m

4
), compute the first 4 natural 

frequencies as accurately as possible and compare them to both the analytical 

values and the measured values. 

 

 


