
Problems and Solutions Section 7.2 (7.1-7.5) 
 

7.1 A low-frequency signal is to be measured by using an accelerometer.  The signal 

is physically a displacement of the form 5 sin (0.2t).  The noise floor of the 

accelerometer (i.e. the smallest magnitude signal it can detect) is 0.4 volt/g.  The 

accelerometer is calibrated at 1 volt/g.  Can the accelerometer measure this 

signal? 

 

Solution: 
 

From the problem statement: 

 

  x(t) = 0.5sin(0.2t) m 

  x (t) = 0.1cos(0.2t) m
s

 

  x (t) = -0.02sin(0.2t) m

s
2  

The peak acceleration is: 

 

  0.2 m

s
2

1g
9.8 m

s
2









 0.0204g  

 

Accelerometer calibration is g
V1 , therefore the peak output of the accelerometer 

is: 

 

  0.0204g
1V

g





 0.0204V  

 

Since the noise floor on the accelerometer is 0.4 V, then this acceleration cannot 

be measured. 

   



7.2 Referring to Chapter 2, calculate the response of a single-degree-of-freedom 

system to a unit impulse and then to a unit triangle input lasting T second.  

Compare the two responses.  The differences correspond to the differences 

between a "perfect" hammer hit and a more realistic hammer hit, as indicated in 

Figure 7.2.  Use   = 0.01 and   = 4 rad/s for your model. 

 

Solution: 
 

System: Ý Ý x  2n Ý x n
2 x  f (t)   (Letting m = 1) 

 

(i) )()( ttf  , a unit impulse 

 x(t)  e nt
sin(d t)   d n 1 2

 

 

(ii) f (t)  t
T

u(t)  2

T
(t  T )u(t  T) 

1

T
( t  2T )u(t  2T)  

 u(t-a) = unit step at t = a. 
 x(t)  1

T
r(t)  2r(t  T )  r(t  2T)  

 
From table of Laplace transforms: 

 

 r(t) 
1

n
2

t 
2
n


1

 d

e n t
sin(dt )








u(t)  12cos

2    

 x(t) 
1

Tn
3

nt  2  en t
sin(dt u(t)  

  2 n (t  T )  2  e n ( tT )
sin(d (t  T)) u(t  T )  

   n (t  2T )  2  en ( t 2T )
sin( d (t  2T )) u(t  2T )  

 since n d  and   /2   

 



7.3 Compare the Laplace transform of (t) with the Laplace transform of the triangle 

input of Figure 7.2 and Problem 7.2. 

 

Solution: 
 

(i) f(t) = (t), unit impulse 

F(s) = 1 

 

(ii) f(t) = 
t
T

u(t)  2

T
(t  T )u(t  T) 

1

T
( t  2T )u(t  2T) , unit triangle with 

period T. 

F(s) = 
1

T
te stdt  2 (t  T)e stdt  (t  2T )e st dt

2T




T




0












 

  F(s) = 
1

Ts2
1 esT  es2T  

 

 



7.4 Plot the error in measuring the natural frequency of a single-degree-of-freedom 

system of mass 10 kg and stiffness 350 N/m if the mass of the excitation device 

(shaker) is included and varies from 0.5 to 5 kg.   

 

Solution: 
 

m = 10 kg 

k = 350 N/m 

0.5  sm 5.0 kg 

Error = 

 

k
m  ms


k
m

 

 

 



 

7.5 Calculate the Fourier transform of f(t) = 3 sin 2t – 2 sin t – cos t and plot the 

spectral coefficients. 

 

Solution: 
 

F(t) = 3 sin(2t) - 2sin(t) - cos(t) 
T = 1 rad/sec 

1
a  = -1 

1
b = -2  

2
b = 3 

na  = 0, n = 2, 3, …. nb  = 0, n = 3, 4, 5, ….. 

 

 

 

 



Problems and Solutions Section 7.3 (7.6-7.9) 
 

7.6 Represent 5 sin 3t as a digital signal by sampling the signal at /3, /6 and /12 

seconds.  Compare these three digital representations. 

 

Solution: Four plots are shown.  The one at the top far right is the exact wave 

form.  The one on the top left is sampled at /3 seconds. 

 

 

 

 

 

The next plot is sampled at /6 seconds. 

 

 

 

 



 

The next plot is sampled at /12 seconds. 

 

None of the plots give the shape of a sine wave.  However if the s3 is 

connected by lines, the wave shape is close.



7.7 Compute the Fourier coefficient of the signal |1120 sin (120 t)|. 
 

Solution: 
 

f(t) = |120sin(120t)| (absolute value of the sine wave) 

 

To calculate the Fourier series: 

 

 T = 1/120 sec  T = 240  rad/sec 

ao  240 120sin(120t)dt
0

1
120

  

 


480oa  

 

an  240 120sin(120t)cos(240nt)dt
0

1
120

  

 

)41(

480

2n
an 




 

 

bn  240 120sin(120t )sin( 240nt)dt
0

1
120

  

 

0nb  

 

f (t) 
240


1

2

1 4n2
cos(240n)t

n1











 



7.8 Consider the periodic function 

 

    x(t) = 
5 0    t    
5     t    2





 

 

and x(t) = (t + 2).  Calculate the Fourier coefficients.  Next plot x(t): x(t) 
represented by the first term in the Fourier series, x(t) represented by the first two 

terms of the series, and x(t) represented by the first three terms of the series.  

Discuss your results.   

 

Solution: For the Fourier Series: T = 2  T  = 1 

0
0
a  

an 
2

2
5cos(nt)dt  5cos(nt)dt



2


0












 

                   an  0  

bn 
2

2
5sin(nt)dt 5sin( nt)dt



2


0











  

bn 
5

n
[1 2cos(n )  cos(2n )] 

 

x(t)   5


1

n
1 2 cos(n )  cos(2n sin(nt)

n1



  

 

 



7.9 Consider a signal x(t) with maximum frequency of 500 Hz.  Discuss the choice of 

record length and sampling interval. 

 

Solution: 
 

For a signal with maximum frequency of 500 Hz, the sampling rate, sf , should be 

 

    sf  > 2(500) = 1000 Hz 

 

Due to Shannon’s sampling theorem.  A better choice would be 

 

    sf  = 2.5(500) = 1250 Hz 

 

Thus, the minimum sampling rate is 0.001 sec. and the suggested rate is 0.0008 

sec.   

Lower sampling rates will produce aliasing. 

 

The record length N is usually a power of 2, such as 512, 1024, 2048, etc. 

Windowing is performed to reduce leakage.  

 

 



Problems and Solutions for Section 7.4 (7.10-7.19) 
 

7.10 Consider the magnitude plot of Figure P7.10.  How many natural frequencies does 

this system have, and what are their approximate values? 

 

Solution: 
 

The system looks to have 8 modes with approximate natural frequencies of 2, 4, 

10, 15, 22, 29, 36, and 47 Hz. 



7.11 Consider the experimental transfer function plot of Figure P7.11.  Use the 

methods of Example 7.4.1 to determine i  and i . 

 

Solution: 
 

For each mode: 

   

i

aibi
i 




2


  

where bi  and ai  are the frequencies where the magnitude is 
2

1  of the 

resonant magnitude.  All values given in the following table are approximate.   

 

 

Mode 

 

 

i  (Hz) 

 

)( iH   

 

2

)( iH 
 

 

ai  (Hz) 

 

bi  (Hz) 

 

i  

1 4.80 0.089 0.063 4.56 5.04 0.049 

2 15.20 1.050 0.742 14.76 15.48 0.024 

3 30.95 1.800 1.270 30.47 31.19 0.012 

4 52.62 2.000 1.414 52.14 52.85 0.007 

5 80.00 2.100 1.480 79.05 80.48 0.009 

 

 

 



7.12 Consider a two-degree-of-freedom system with frequencies 
1

  = 10 rad/s, 
2

  = 

15 rad/s, and damping ratios 
1

 = 
2

  = 0.01.  With modal s = 
1

2

1 1

1 1







, 

calculate the transfer function of this system for an input at 
1

x  and a response 

measurement at 
2

x . 

 

Solution: 
 

Since the natural frequencies, damping ratios and mode shapes are given, the 

system can be expressed in modal coordinates as 

 

1 0

0 1






Ý Ý r 

2(.01)10 0

0 2(.01)15







Ý r 
10

2
0

0 15
2







r 

1

2

1 1

1 1







1

0








f (t) 
1

2

1

1









f (t)

 

 

     y 
1

2
0 1 

1 1

1 1






r 

1

2
1 1 r  

 

This is the representation of the system in modal coordinates, if proportional 

damping is assumed.  The transfer function is: 

 

     Y (s) 
1

2
1 1 R(s)  

where 

 

     R(s) 
1

2

1

s 2  0.2s 100

1

s 2  0.3s  225














F(s)  

 

Combining the previous two expressions yields 

 

    
)2253.0)(1002.0(

)1250)(1.0(

)(

)(

22 



ssss

s
sF
sY

 



7.13 Plot the magnitude and phase of the transfer function of Problem 7.12 and see if 

you can reconstruct the modal data (
1

 , 
2

 , 
1

 , and 
2

 ) from your plot.   

 

Solution: 
 

For each mode: 

 

     

i

aibi
i 




2


  

 

where bi  and ai  are the frequencies where the magnitude is 
2

1  of the 

resonant magnitude.  All values in the following table are approximate.   

 

 

Mode 

 

 

i  (rad/s) 

 

)( iH   

 

2

)( iH 
 

 

ai  (rad/s) 

 

bi  (rad/s) 

 

i  

1 10 0.50 0.354 9.89 10.07 0.009 

2 15 0.22 0.156 14.83 15.16 0.011 

 

 

 



 



7.14 Consider equation (7.14) for determining the damping ratio of a single 

mode.  If the measurement in frequency varies by 1%, how much will the value of 

 change? 

 

Solution: 
 

    

d

ab





2


  

 

If )01.01(  dod   where do  is the measured natural frequency, then the 

damping ratio is  

 

     
b  a

2 do

1

1 0.01



 o

1

1  0.01




 

 

If d  is 0.99 do , then  = 1.01 o  

 

If d  is 1.01 do , then  = 0.99 o  

 

Thus, 1 percent changes in the measured natural frequency produce similar 

changes in the measured damping ratio. 

 

 
 
 
 
 
 
 

7.15 Discuss the problems of using equation (7.14) if the natural frequencies of the 

structure are very close together.  

 

Solution: 
 

Equation (7.14) assumes that the response at resonance is due to a single degree 

of freedom system.  If the natural frequencies are very close together, this 

assumption is not valid.  This will introduce error into the damping ratio 

calculation since the peak response at each resonant frequency will be due to a 

combination of responses from each of the closely spaced modes.  

 

 



7.16 Discuss the limitation of using equation (7.15) if  is very small.  What happens if 

 is very large? 

 

Solution:  When  is very small (<0.01), it is difficult to determine where R() is 

the largest since equation (7.15) is changing very rapidly in the vicinity of 

resonance.  When  is very large (>0.707), the frequency response near resonance 

is very flat, again making it difficult to determine the damped natural frequency.  

In either case, experimentally determined damping ratios will contain error since 

they depend on an accurate determination of the resonant frequency.  Problem 

7.18 contains plots that illustrate these ideas. 

 

 

7.17 Consider the two-degree-of-freedom system described by  

 

1 0

0 1







Ý Ý x 
1

Ý Ý x 
2








0 0

0 c






Ý x 
1

Ý x 
2








2 1

1 2







x
1

x
2








f
0
sint
0







 

 

and calculate the transfer function |X/F| as a function of the damping parameter c. 

 

Solution: 
 

The equations of motion for the system are: 

 

  
1 0

0 1






Ý Ý x 

0 0

0 c





Ý x 

2 1

1 2






x 

fo

0









f (t)  

 

Taking the Laplace transform yields 

 

  
s 2  2 1

1 s 2  cs  2







X(s) 

fo

0









F(s)  

 

Inverting the matrix on the left hand side leads to an expression for X(s): 

 

  X(s) 
1

(s2  2)(s2  cs  2) 1

s 2  cs  2 1

1 s2  2







fo
0









F(s)  

 

Performing the multiplication leads to  
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
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7.18 Plot the transfer function of Problem 7.17 for the four cases:  c = 0.01, c = 0.2, c = 

1, and c = 10.  Discuss the difficulty in using these plots to measure i  and i  for 

each value of c. 

 

Solution: 
 

For c = 0.01, the resonant peaks are very sharp, making an accurate determination 

of i  difficult.  In the case c = 0.2, i  and i  could be determined fairly easily 

using the techniques of section 7.4.  Increasing c to 1.0 makes the frequency 

response very flat, which again makes finding i  and i  difficult.  Finally, when 

c = 10, it almost looks as if there is one resonant peak, which would lead to a 

completely erroneous result. 

 

 



7.19 Use a numerical procedure to calculate the natural frequencies and damping ratios 

of the system of Problem 7.18.  Label these on your plots from Problem 7.18 and 

discuss the possibility of measuring these values using the methods of Section 7.4 

 

Solution: 
 

For the case where c = 0.01 

 

 

Mode 

 

 

i  (rad/s) 

 

)( iH   

 

2

)( iH 
 

 

ai  (rad/s) 

 

bi  (rad/s) 

 

i  

1 1.0 59 41.72 0.99 1.02 0.015 

2 1.7 48 33.94 1.71 1.69 0.006 

Actual values:  
1

  = 1.00 
1

  = 0.003 

    
2

  = 1.73 
2

  = 0.001 

 

The actual values are calculated directly from the equations. 

 

For the case where c = 0.2 

 

 

Mode 

 

 

i  (rad/s) 

 

)( iH   

 

2

)( iH 
 

 

ai  (rad/s) 

 

bi  (rad/s) 

 

i  

1 1.0 5.1 3.61 0.93 1.06 0.064 

2 1.7 2.9 2.05 1.69 1.79 0.030 

 

Actual values:  
1

  = 1.00 
1

  = 0.050 

    
2

  = 1.73 
2

  = 0.029 

 

For the case c = 0.01, there is more error in the measured parameters than for the 

case c = 0.2 due to the sharpness of the resonant peak.   

 



 

 

 



Problems and Solutions Section 7.5 (7.20-7.24) 
 

7.20 Using the definition of the mobility transfer function of Window 7.4, calculate the 

Re and Im parts of the frequency response function and hence verify equations 

(7.15) and (7.16). 

 

Solution: 
 

From Window 7.4: 
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
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The previous expression can be separated into real and imaginary parts: 

 

Re  ( )   2c
(k 2 m)

2  (c)
2

  Im  
222

2

)()(

)(
)(

cmk
mk








  



7.21 Using equations (7.15) and (7.16), verify that the Nyquist plot of the mobility 

frequency response function does in fact form a circle.   

 

Solution: 
 

Define  A 
 2c

(k 2 m)
2  (c)

2


1

2c
Re( ) 

1

2c
 

 

  B 
(k -2 m)

(k  2m)
2  (c)

2
 Im( )  

 

Show that 

 

    A2  B2 
1

2c






2

 

which is a circle of radius 
c2

1
 with center at Re() = 

c2

1
, Im() = 0. 

 

A2  B2 
 2c

(k  2m)
2
(c)

2


1

2c






2


(k  2m)

(k  2m)
2  (c)

2







2

 

 

A2  B2 
( 2c)

2

(k   2m)
2  (c)

2 2


 2
(k  2m)

2

(k  2m)
2  (c)

2 2


2

(k   2m)
2  (c)

2


1

2c






 

A2  B2 
 2

(k  2m)
2  (c)

2

(k  2m)
2  (c)

2

(k  2m)
2  (c)

2








 2

(k  2m)
2  (c)

2


1

2c






2

 

A2  B2 
1

2c






2

 

Which is the equation of a circle.



7.22 Consider a single-degree-of-freedom system of mass 10 kg, stiffness 1000 

N/m, and damping ratio of 0.01.  Pick five values of  between 0 and 20 rad/s and 

plot five points of the Nyquist circle using equations (7.15) and (7.16).  Do these 

form a circle? 

 

Solution: 
 

SDOF oscillator: 

 

     0 kxxcxm   

 

    m = 10 kg  k = 1000 N/m   = 0.01 

 

 First, calculate the damping constant c. 

 100
2 

m
k

n  

 c  2 nm  2(0.01)(10)(10)  2 Ns
m

 

 

 Re   22

(1000 10 2
)

2  (2)
2

 

 

 Im   (100010 2
)

(1000 10 2
)

2  (2)
2

 

 

    

 Re() Im() 

9.90 0.2487 0.2500 

9.95 0.3996 0.2003 

10.00 0.5000 0.0000 

10.05 0.4004 -0.1997 

10.10 0.2512 0.2500 

 

The following plot displays the 5 points listed in the table, as well as the same 

plot with a fine discretization of the driving frequency . 

 



 

 





7.23 Derive equation (7.20) for the damping ratio from equations (7.18) and 

(7.19).  Then verify that equation (7.20) reduces to equation (7.21) at the half-

power points. 

 

Solution: Begin with equations (7.18) and (7.19) 

  tan 
2 

a


3







2

1

2
3
a


3

 

  tan 
2 

b


3







2

1

2
3
b


3

 

Multiplying the right hand side of each expression by 
2

3

2

3




 yields 

  tan 
2  a

2 
3

2

2
3
a3

 

  tan 
2  

3

2 b
2

2
3
b3

 

 

After a suitable multiplication, these expressions are: 

 

  (2
3
 a3

)tan 
2  a

2  
3

2

 

  (2
3
 b3

) tan 
2 3

2  b
2

 

 

Adding the previous two equations results in: 

 

  2
3
( a b ) tan 

2 a
2  b

2

 

 

Which can be manipulated to yield equation (7.20) 

 

  
3


a
2 b

2

2
3
a tan 

2  b tan 
2   

 

At the half-power points,  = 90° and tan 
2 = 1, so (7.20) reduces to: 

 

  

3

3

2


 ba   

 



7.24 Consider the experimental curve fit Nyquist circle of Figure P7.24.  Determine the 

modal damping ratio for this mode 

 

Solution: 
 

From Figure 7.18, 

 

      45  

    
3
 9Hz 

    10b Hz 

    8a Hz 

 

Using (7.20) 

   
3


10
2  8

2

2(9) 8tan 45
2  10tan 45

2   
 

   27.0
3
  

 

 


