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Chapter 6 
 
Problems and Solutions Section 6.2 (6.1 through 6.7) 
 

6.1 Prove the orthogonality condition of equation (6.28). 

 

 Solution: 
 
 Calculate the integrals directly.  For n = n, let u = nx/l so that du = (n/l)dx and 

the integral becomes 

 

  

  

l
n

sin
2 udu 

l
n

1

2
u  1

4
sin2u






0
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
0

n

      
l
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1

2
n 

1

4
sin4n


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

 0 

l
2

 

 

 where the first step used a table of integrals.  For n  m let u = x/l so that du = 

(/l)dx and  

 

  

  
sin

nx
l

sin
mx

l
dx  l


sin mu sin nudu

0

l


0

l

  

 

 which upon consulting a table of integrals is 

 

  

  

l


sin(m  n)
2(m  n)


sin(n  m)

2(n  m)








 0 . 



6- 2

6.2 Calculate the orthogonality of the modes in Example 6.2.3. 

 

 Solution: 

 One needs to show that
  

X n (x) Xm(x)dx  0 for m  n,  where X m(t)  an sin nx.
0

1

   

But each mode Xn(x) must satisfy equation (6.14), i.e. 

 

  
  X n   n

2 X n        (1) 

 

 Likewise 

 

  
  Xm  m

2 Xm        (2) 

 

 Multiply (1) by Xm and integrate from 0 to l.  Then multiply (2) by Xn(x) and 

integrate from 0 to l.  This yields 

 

  

  

X n Xmdx   n
2 X n Xmdx

0

l


0

l


X m X ndx  m

2 Xm X ndx
0

l


0

l


 

 

 Subtracting these two equations yields 

 

  
  

X n X m  Xm X n dx   n
2  m

2  X n(x)Xm (x)dx
0

l


0

l

  

 

 Integrate by parts on the left side to get 

 

  

  

X n Xmdx  Xm X ndx  X n
0

l


0

l

 Xm 0

l
 Xm X n 0

l

       Xm(l)kX n(l)  X n(l)kXm (l)  0

 

 

 from the boundary condition given by eq. (6.50).  Thus 

 

  
  
 n

2  m
2  X n Xmdx  0.

0

l

  

 

 But from fig. 6.4, 
   n  m  for m  n so that 

 

  
  

X n Xmdx  an
2

sin nxsinmxdx  0
0

l


0

l

  

 

 and the modes are orthogonal. 
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6.3. Plot the first four modes of Example 6.2.3, for the case l = 1 m, k = 800 N/m and 

= 800 N/m. 

 

 Solution: 
 
 The mode shapes are given as sinnx where n satisfies eq. (6.51).  To solve this 

numerically values of l, k and  must be given.  For example chose l = 1 m, k = 

800 N/m, and  = 800 N/m the equation (6.51) becomes 

 

  tan  = - 

 

 Solving using MATLAB for the first 4 values yields 

 

   = 2.029,  = 4.913,  = 7.979,  = 11.0855 

 

 So that the mode shapes are sin(2.029)x, sin(4.913)x, sin(7.979)x and 

sin(11.0855)x.  These are plotted below using Mathcad. 
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6.4 Consider a cable that has one end fixed and one end free.  The free end cannot 

support a transverse force, so that wx(l,t) = 0.  Calculate the natural frequencies 

and mode shapes. 

 

 Solution: 
 
 The cable equation results in (6.17).  The boundary conditions are 

 

  
  w(x,t)  X (x)T (t)  0 at x = 0 (fixed end) 

 

 so that X(0) = 0 and 

 

  
  wx (x,t)  X (x)T (t)  0 at x = l (free end) 

 

 so that X(l) = 0.  Applying these to equation (6.17) yields 

 

  
  0  a

1
sin(0)  a

2
cos(0) so that a2 = 0 

  0= a1cos(l) 
 

 so that cos l = 0 or l = n for odd n and the natural frequency

  
 n 

n
2l

, n = 1, 3, 

5… or

  
 n 

2n 1
2l

, n = 1, 2, 3…Since a2 = 0, and a1 is arbitrary the mode 

shapes are 

 

  

  
an sin

2n 1  x
2l









 ,   n  1,2,3...  

 

 the natural frequencies are from (6.15) and (6.24): 

 

  

  
 n   n

2c2  c n 
(2n 1)c

2l


(2n 1)
2l

 /   
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6.5 Calculate the coefficients cn and dn of equation (6.27) for the system of a 

clamped-clamped string to the initial displacement given in Figure P6.5 and an 

initial velocity of wt(x,0) = 0. 

 

 Solution: 
 
 For the clamped-clamped string the solution is given by eq. (6.27) as 

 

  

  
w(x,t)  (cn sin nx sin nct  dn sin nx cos nct)

i1



  

 

 Series wt(x,0) = 0, equation (6.33) yields that cn = 0 for all n.  The coefficients dn 

are given by eq. (6.31) as 

 

  

  
dn 

2

l


0
(x)sin

mx
l

dx   m  1,2,...
0

l

  

 

 From fig. 6.16 

  


0
(x) 

    2x / l            0  x  l / 2

2(l  x) / l       l / 2  x  l




 cm. Calculation yields 

 

  

  

dn 
2

l
2x
l

sin
nx

l
dx  2

l
(l  x)sin

nx
l

dx
l / 2

l

0

l / 2










      
8

 2n2
sin

n
2

    n  1,3,5...

 

 

 and dn is zero for even values of n. 
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6.6 Plot the response of the string in Problem 6.5 for the piano string of Example 

6.2.2 (l = 1.4 m, m = 110 g,  =11.1x10
4
 N) at x = l/4 and x = l/2, using 3, 5, and 

10 terms in the solution. 

 

 Solution: 
 
 For the piano string of example 6.22, l = 1.4m and c = 11.89.  From problem 6.5 

the solution has the form 

 

  

  
w(x,t)  8

 2

1

m2
sin

m
2

sin
m x

l
cos

mc
l

t
m,odd1















 

 

 For 3 terms at x = l/4 = 3.5, this series becomes 

 

 
  w3

(3.5,t)  0.81 0.24cos26.68t  0.07858cos80.04t  0.02828cos133.40t  

 

 for 5 terms this becomes 

 

 
  w5

(3.5,t)  w
3
 0.01442cos182t  0.00873cos240.13t  

 

 The next terms have coefficients 0.00584, 0.00418, 0.00314, 0.00244 and 0.00195 

respectively.  Any of the codes can be used to easily plot these.  Plot of w3 and w5 

at l/4 are given below in Mathcad: 
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6.7 Consider the clamped string of Problem 6.5.  Calculate the response of the string 

to the initial condition 

 

  
w(x,0)  sin

3x
l

   wt (x,0)  0  

 

 Plot the response at x = l/2 and x = l/4, for the parameters of Example 6.2.2. 

 

 Solution: 
 
 Since wt = 0 each if the coefficients cn is zero in equation (6.33).  Thus the 

solution is of the form 

 

  

  
w(x,t)  dn sin

nx
l

cos
nc

l
t

i1



  

 

 as given in problem 6.5.  Equation (6.31) for the initial position yields 

 

  

  
dn 

2

l
sin

3 x
l

sin
m x

l
dx    m  1,2,...

0

l

  

 

 Because of the orthogonality all the dn = 0 except d3 and from the above integral 

d3 = 1.  Hence the solution collapses to the single term 

 

  

  
w(x,t)  sin

3x
l

sin
3c

l
t  

 

 At x = l/2 this becomes 

 

  
3 3 3

, sin cos cos
2 2

l c cw t t t
l l

       
 

 

 

 At x = l/4 

 

  

  
w l

4
,t






 sin

3
4

cos
3c

l
t  0.707cos

3c
l

t  

 

 Using the values for the piano string (l = 1.4, c = 1188 m/s) w(l/4,t) is simply a 

cosine of frequency 8000 rad/s and amplitude 0.707. 
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Problems and Solutions Section 6.3 (6.8 through 6.29) 
 

6.8 Calculate the natural frequencies and mode shapes for a free-free bar.  Calculate 

the temporal solution of the first mode. 

 

 Solution: 
 
 Following example 6.31 (with different B.C.’s), the spatial response of the bar 

will be 

 

  X(x)  a sinx  b cosx  

 

 The boundary conditions are .0)()0(  lXX   The expression for 

xbxaxXX  sincos)( is   so at 0: 

 

  0  a a  0 

 

 at l 
 

  0  bsinl,   b  0  

 

 so that l = n or  = n/l where n starts a zero. Hence the mode shapes are of the 

form 

 

  
X n(x)  bn cos

nx
l

 for n = 1, 2, 3, … and for n = 0, 

  
X

0
(x)  b

0
cos

0
l

x





 b

0
 a constant. 

 The temporal solution is given by eq. (6.15) to be 

 

  
2

2
)(

)(


tTc
tT

n

n


 

 

 so that the temporal solution of the first mode: 

           
  

&&T
0
(t)  0c2T

0
(t)  0  &&T

0
(t) T

0
(t)  b ct  
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6.9 Calculate the natural frequencies and mode shapes of a clamped-clamped bar. 

 

 Solution: The calculation of the natural frequencies and mode shapes of a 

clamped-clamped bar is identical to that of the fixed-fixed string since the 

equations of motion are mathematically the same.  The solution of this problem is 

thus given at the beginning of section 6.2, but is repeated here: Applying 

separation of variable to eq. (6.56) yields that the spatial variable must satisfy eq. 

(6.59) of example 6.3.1, i.e., xbxaxX  cossin)(   where a and b are 

constants to be determined.  The clamped boundary conditions require that X(0) = 

X(l) =  or 

  0 = b  or  X = asinx 

  0 = asinl  or   = n/l 
 Hence the mode shapes will be of the form 

  Xn = ansinnx 

 Where  = n/l.  The frequencies are determined from the temporal solution and 

become 

  n   nc 
n
l

E


,   n 1,2,3,... 

 
6.10 It is desired to design a 4.5 m, clamped-free bar such that the first natural 

frequency is 1878 Hz.  Of what material should it be made? 

 

Solution:  First change the frequency into radians: 

1878 Hz =1878x2 rad/s=11800 rad/s 

The first natural frequency is given computed in Example 6.3.1, Equation (6.63) 

as 

  


1


2
l

E



E



1

2
4l 2

 2
 (11800)

2
4l 2

 2

                                    
E

 7.14310

7

 

in Nm/kg.  Examining the ratios from Table 2.1 for the values given yields that 

for Steel: 

  

E



2  10
11

2.8 10
3
 7.14310

7
 Nm/kg  

Thus a steel bar with a length 4.5 meters will have a first natural frequency of 

1878 Hz.  This is something like a truck chassis.  
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6.11 Compare the natural frequencies of a clamped-free 1-m aluminum bar to that of a 

1-m bar made of steel, a carbon composite, and a piece of wood. 

 

 Solution: 
 
 For a clamped-free bar the natural frequencies are given by eq. (6.6.3) as 

 

  

  
 n 

(2n  1)
2l

E


 

 

 Referring to values of r and E from table 1.2 yields (for 1): 

 Steel 

 

  

 


(2)(1)

2.0 10
11

7.8 10
3
 7,954  rad/s (1266Hz) 

 

 Aluminum 

 

  

 


(2)(1)

7.110
10

2.7  10
3
 8,055  rad/s (1282 Hz) 

 

 Wood 

 

  

 


(2)(1)

5.4 10
9

6.0  10
2
 4,712  rad/s (750 Hz) 

 

 Carbon composite (student must hunt for E/ and guess a little) from Vinson and 

Sierakowski’s book on composites /E  = 3118 and 

 

  4897)3118(
2




 rad/s (780 Hz) 

 
 
6.12 Derive the boundary conditions for a clamped-free bar with a solid lumped mass, 

of mass M attached to free end. 

 

 Solution: At the clamped end, x = 0, the boundary condition is w(0,t) = 0 or X(x) 

= 0.  At the end x = l the tensile force in the bar must be equal to the inertia force 

of the attached mass.  For an attached mass of value M, this becomes 

 

  EAw(x, t)
x x l

 M  2w(x, t)
t2

x l
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6.13 Calculate the mode shapes and natural frequencies of the bar of Problem 6.12.  

State how the lumped mass affects the natural frequencies and the mode shapes. 

 

 Solution: Via separation of variables [i.e., w(x,t) = X(x)T(t)], the spatial equation 

becomes (following example 6.3.1 for instance) 

  X(x) = asinx+bcosx 

 Applying the boundary condition at x = 0 yields 

  
  X (0)  0  asin(0)  bcos(0)  b  0 0 = b 

 so the spatial solution reduces to X(x) = asinx.  Now the second boundary 

condition (see 6.12) involves time deviates so that w(x,t) = X(x)T(t) substituted 

into the boundary condition EAWx = -Mwtt(l,t) becomes: 

 

    EA X (l)T (t)  MX (l) &&T (t) 
EA X (l)
MX(l)

 
Ý Ý T (t)
T (t)

 

 From equation (6.15) Ý Ý T / T   2c2
, so this boundary condition becomes 

  
EA
M


X (l)

X(l)
  2c2

    (1) 

 Substitution of X(x) = asinx and X (x)  a cosx  into (1) yields 

  
EA
M

a cosl
asinl

  2c2
 

 or 

  cotl  c2M
EA

 

 

 which describes multiple values of  = n, n = 1, 2, 3,…  The frequency of 

oscillation is related to n by n = nc, where c  E /  .  Let Al = m be the 

mass of the beam and rewrite cot(l) as  

cotl  cot
 nl

c






 E /  M

EA
  

 nl / c 
Al

M 
 nl

c
M
m

.   

This can be rewritten as  

 

   cot  = 
 

 where  = m/M and  = nl/c.  As the mass ratio  increases (tip mass increases) 

the frequency increases.  The mode shapes are proportional to sin nx, where n is 

calculated numerically from cot (l) = (M/m)l, similar to the calculation 

showing in Figure 6.4.  This is illustrated in the following Mathcad session. 
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6.14 Calculate and plot the first three mode shapes of a clamed-free bar. 

 

 Solution: The second entry of Table 6.1 yields the solution  


Xn (x)  sin

(2n  1)

2
x   

which is calculated following the procedures out lined in Example 6.3.1. The plot 

is given in Mathcad for the case  = 1m. 
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6.15 Calculate and plot the first three mode shapes of a clamed-clamped bar and 

compare them to the plots of Problem 6.14. 

 

 Solution: As in problem 6.14 the solution is given in table 6.1.  The important 

item here is to notice the difference between mode shapes from the plots of 

sin x
l

n
2

)12( 
 and sin (nx/l).  In particular notice the difference at the free end. 

 

6.16 Calculate and compare the eigenvalues of the free-free, clamped-free, and the 

clamped-clamed bar.  Are the related?  What does this state about the system’s 

natural frequencies? 

 

 Solution: 
 
 Students can calculate these or just use the results listed in table 6.1.  Note for l = 

1 

 

  free-free 0, c, 2c… 

  clamped-free ...
2

5
,

2

3
,

2

ccc 
 

  clamped-clamped c, 2c, 3c… 

 

so that the free-free and clamped-clamped values are a  shift from one another 

with the clamped-free values falling in between: as the number of constraints 

increases, the frequency increases. 
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6.17 Consider the nonuniform bar of Figure P6.17, which changes cross-sectional area 

as indicated in the figure.  In the figure A1, E1, 1, and l1 are the cross-sectional 

area, modulus, density and length of the first segment, respectively, and A2, E2, 2, 

and l2 are the corresponding physical parameters of the second segment. 

Determine the characteristic equation. 

 

Solution: Let the subscript 1 denote the first part of the beam and 2 the second 

part of the beam.  The bar equation must be satisfied in each part so that equation 

of motion is in two parts: 



E
1

 2w
1
(x, t)

x 2
 

1

2 w
1
(x,t)

t2
  0  x  

1

E
2

 2w
2
(x, t)

x2
 

2

 2w
2
(x,t)

t2
  

1
 x  

1
 

2
 

 

The boundary conditions are the two from the clamped-free configuration then 

there are two more conditions expressing force and displacement continuity at the 

point where the two beams join (x = 1). Follow the procedure of separation of 

variables but this time keep the constant c in the spatial equation so that we may 

write: w1(x,t) = X1(x)T(t) and w2(x,t) = X2(x)T(t) where the function of time is 

common to both beams.   Then denoting 2
 as the separation constant and 

substituting the separated forms into the equation of motion yields: 

  

c
1

2 X
1
(x)

X
1
(x)


&&T (t)
T (t)

  2
  0  x  l

1
  and c

1


E
1


1

  (1)

c
2

2 X
2
(x)

X
2
(x)


&&T (t)
T (t)

  2
  l

1
 x  l   and c

2


E
2


2

  (2)

 

In this way the temporal equation for both parts is the same ( does not depend on 

which part of the beam and will show up in the characteristic equation).  Solving 

the two spatial equations yields: 



(1) X
1
 a

1
sin


c

1

x  a
2

cos

c

1

x   0  x  
1

(2)  X
2
 a

3
sin


c

2

x  a
4

cos

c

2

x   
1
 x  

 

 There are now 4 boundary conditions (one at each end and two in the middle) 

which will yield 4 equations in the 4 coefficients ai.  This set of equations must be 

singular yielding the characteristic equation for . 

 From the clamped end:  

X
1
(0)  0  a

1
sin(0)  a

2
cos(0)  0     (3) 

From the free end: 


X 
2
()  0 


c

2

a
3

cos

c

2



c

2

a
4

sin

c

2

 0    (4) 

 From the middle and enforcing displacement continuity at x = 1: 

 


a

1
sin


c

1


1
 a

2
cos


c

1


1
 a

3
sin


c

2


1
 a

4
cos


c

2


1
    (5) 
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From the middle and enforcing force, equation (6.54) continuity at x = 1: 



E
1
A

1
X 
1
(

1
)  E

2
A

2
X (

1
)

 E
1
A

1


c

1

(a
1
cos


1

c
1

 a
2
sin


1

c
1

)  E
2
A

2


c

2

(a
3

cos


1

c
2



c

2

a
4

sin


1

c
2

)
 (6) 

Equations (3) through (6) are 4 equations in the 4 unknowns ai.  Writing these in 

matrix form as a homogeneous algebraic equation yields: 

  

0 1 0 0

0 0 cos
 l
c

2

 sin
 l
c

2

sin

c

1

l
1

cos

c

1

l
1

sin

c

2

l
1

cos

c

2

l
1

E
1
A

1

c
1

cos
 l

1

c
1


E

1
A

1

c
1

sin
 l

1

c
1


E

2
A

2

c
2

cos
 l

1

c
2

E
2
A

2

c
2

sin
 l

1

c
2





























a
1

a
2

a
3

a
4























0

0

0

0



















 

In order for the vector a to be nonzero, the determinant of the matrix coefficient 

must be zero (recall chapter 4). This yields the characteristic equation (computed 

using Mathcad): 



E
2
A

2
c

1
sin

 l
1

c
1

sin
 l
c

2

cos
 l

1

c
2

 sin
 l

1

c
2

cos
 l
c

2











             =E
1
A

1
c

2
cos

 l
1

c
1

sin
 l

1

c
2

sin
 l
c

2

 cos
 l

1

c
2

cos
 l
c

2













  (7) 



E
2
A

2
c

1

E
1
A

1
c

2

tan
 l

1

c
1

sin
 l
c

2

cos
 l

1

c
2

 cos
 l
c

2

sin
 l

1

c
2











                                          sin
 l
c

2

sin
 l

1

c
2

 cos
 l
c

2

cos
 l

1

c
2

 (8) 

 

Further simplifying yields 

  

E
2
A

2
c

1

E
1
A

1
c

2

tan
 l

1

c
1

sin
 (l  l

1
)

c
2

 cos
 (l  l

1
)

c
2

                                      
E

2
A

2
c

1

E
1
A

1
c

2

tan
 l

1

c
1

tan
 (l  l

1
)

c
2

 1

 

 

 

Given the parameter values, equation (9) must be solved numerically for , 

yielding the natural frequencies. 
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6.18 Show that the solution obtained to Problem 6.17 is consistent with that of a 

uniform bar. 

 

 Solution: 
 
 If the bar is the same, then E1 = E2 = E, 1 = 2 =  etc. and the characteristic 

equation from (1) in the solution to Problem 6.17 becomes (l = l1) 

 



sin

c

sin

c

cos

c
 sin


c

cos

c






 cos


c

sin

c

sin

c
 cos


c

cos

c







 sin

c

0   cos

c

sin
2 

c
 cos

2 
c







 0  cos

c

(1)

c


2n1

2


 

 

 so that n = n = 
(2n 1)

2l
E


 which according to table 6.1 entry 2 is the 

frequency of a clamped-free bar of length l . 
 

 

 

 

 

6.19 Calculate the first three natural frequencies for the cable and spring system of 

Example 6.2.3 for l = 1, k = 100,  = 100 (SI units). 

 

 Solution: 
 
 For l = 1, k = 100 and  = 100 the frequency equation (6.51) becomes 

 

  tan  = -
 

 Using MATLAB the first 3 solutions are 

 

  1 = 0, 2 =2.029, 3 = 4.913.  But zero is not allowed because of the 

boundary conditions. 
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6.20 Calculate the first three natural frequencies of a clamped-free cable with a mass of 

value m attached to the free end.  Compare these to the frequencies obtained in 

Problem 6.17. 

 

 Solution: 
 
 Recall example 6.1.1.  The force balance at the boundary x = l yields 

 

  wx (x, t) x l  mwtt (l,t)  

 

 The boundary condition at x = 3 remains w(0,t) = 0.  The equation of motion is 

(6.8) or 

 

  c2wxx (x, t)  wtt(x,t)  

 

 Again, separation of variable w(x,t) = X(x)T(t) yields eq. (6.12) or 

 

  
X (x)

X(x)


Ý Ý T (t)
c2T( t)

  2
 

 

 The spatial equation is 

 

  X   2 X(x)  0  

 

 which has solution X(x) = a1 sin x +a2 cos x.  Applying the boundary 

conditions yields X(0) = 0 or a2 = 0.  Substitution of X(x) = a1 sin 2x into the 

boundary condition at x = l yields 

 

  [a
1
 cost]T (t)  mÝ Ý T (t)a

1
sinl  

 

 But Ý Ý T (t)/ T(t)   2c2
 so this becomes 

 

   cosl  m 2c2
 

 

 or that 

 

  tanl  
mc2

   (or cotl  n


)  

 

is the characteristic equation (see also table 6.1) with mode shape sin nx.  A plot 

of their characteristic equation cos(l)  mc2

lr
l  m

lp
(l)  yields the value of the 

frequencies relative to those of problem 6.16. 
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6.21 Calculate the boundary conditions of a bar fixed at x = 0 and connected to ground 

through a mass and a spring as illustrated in Figure P6.21. 

 

 Solution: 
 
 A free body diagram of the boundary is shown in Figure 1. 

 

 

Figure 1 

 

Consider first the end of the rod, the force is related to the axial extension of the 

rod though 

 

   
lx

lx x
txwEAtlF


 




,
,   

 

On the other hand, applying Newton’s second law to the mass yields 

 

     
lx

lx t
txwmtxkwtlF


 




2

,
,,  

 

Hence, this yields the following boundary condition 

 

     
lx

lxlx

txkw
x

txwEA
t

txwm













,
,,

2
 

 
 
 
6.22 Calculate the natural frequency equation for the system of Problem 6.21. 

 

 Solution: 
 
 The boundary condition at x = 0 is just w(x,t)|x=0 = 0.  Again from separation of 

variables 

 

  Ý Ý T (t)/ T(t)  c2 2
,   X(x)  asinx  b cosx  

 

 Applying the boundary condition at 0 yields X(0) = 0 =  b, so the spatial solution 

will be of the form X(x) = a sin x.  Substitution of the separated form w(x,t) = 

X(x)T(t) into the boundary condition at l yields (from problem 6.21) 
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    mX (l) &&T (t)  kX (l)T (t)  EA X (l)T (t)  

 

 Dividing by T(t), and substitution of Ý Ý T / T   2c2
 and X = a sin l yields 

 

  -
  EA cos l  (m 2c2  k)sin l   or  

  
tan l  

EA
k  m 2c2

 is the 

frequency or characteristic equation.  Note that this reduces to the values given in 

Table 6.1 for the special case m = 0  and for the case k = 0. 
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6.23 Estimate the natural frequencies of an automobile frame for vibration in its 

longitudinal direction (i.e., along the length of the car) by modeling the frame as a 

(one-dimensional) steel bar. 

 

 Solution: 
 
 Note: The fundamental frequency of an automobile is of primary importance in 

assuming the quality of an automobile.  While an automobile certainly has 

numerous modes, its fundamental frequency apparently has a large correlation 

with the occupants perception of quality.  The fundamental frequency of a 

Mercedes 300 series is 25 Hz.  Infinity and Lexus have frequencies in the low 

twenties.  This problem has no straightforward answer.  Students should think 

about their own cars or that of their family.  For steel  = 7.8  10
3
 kg/m

2
, E = 2.0 

 10
11

 N/m.  For a Ford Taurus l = 4.5 m and assume the width to be 1 meter.  

The frequency equation in Hertz of a free-free beam is (excluding the rigid body 

mode) 

 

  fn 
n

2

l

E


562 Hz, 1125Hz… 

 

where n = 1,2,… The frequency measured by auto engineers is from a 3 

dimensional finite element model and modal test data.  The frequency most felt is 

probably a transverse frequency. 
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6.24 Consider the first natural frequency of the bar of Problem 6.21 with k = 0 and 

Table 6.2, which is fixed at one end and has a lumped-mass, M, attached at the 

free end.  Compare this to the natural frequency of the same system modeled as a 

single-degree-of-freedom spring-mass system given in Figure 1.21.  What 

happens to the comparison as M becomes small and goes to zero? 

 

 Solution: 
 
 From figure 1.21, k = EA/l is the stiffness of a cantilevered bar.  Hence the 

frequency is 

  

  
 n  k / m 

EA
lm

 

 for the bar with tip mass m modeled as a single degree of freedom system.  Now 

consider the first natural frequency of the distributed mass model of the same 

structure given in the last entry of table 6.1. 

 

  

  


1



1
c

l



1

l
E


 

 

 where  satisfies cot 
1


m
Al



 




1
.  This last expression can be written as 


1
tan

1

cl
m





 since 1 = 1l/c, 

 

  


1
l

c
tan


1
l

c




 

Al
m

 

 

 Now for small, or negligible beam mass, c becomes very large 
  
c  E /   and 

1l/c becomes small so that tan  can be approximated as .  Then this last 

expression becomes 

 

  


1
l

c






2


Al
m

, or 
1


EA
lm

 

 

 in agreement with the single degree of freedom values of figure 1.21.  As the tip 

mass goes to zero, the equation for figure 1.21 does not appear to make sense.  

The equation for 1 however reduces to that of a cantilevered beam, i.e., 1 = 

c/2l since the frequency equation returns to 1(l/c) = 0. 
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6.25 Following the line of thought suggested in Problem 6.24, model the system of 

Problem 6.21 as a lumped-mass single-degree-of-freedom system and compare 

this frequency to the first natural frequency obtained in Problem 6.22. 

 

 Solution: Note that the system of figure P6.21 is a mass connected to two springs 

in parallel if the bar is modeled as spring.  The stiffness of a bar is given in 

Chapter 1 to be 


k

bar


EA


 

 The equivalent stiffness is just the sum, so that the equation of motion is 


mÝ Ý x  EA


 k



x  0 

 Thus the natural frequency of the bar and spring of figure P6.21 modeled 

as a single degree of freedom system is just 


n 

EA
m


k
m

 

The first natural frequency of the system treated as a distributed mass systems is 

given by the characteristic equation given in the solution to problem 6.22.  To 

make a comparison, chose some specific values.  For a 4 m aluminum beam 

connected to 1000 kg mass through a 100,000 N/m spring the value is given in the 

following Mathcad session:  

 

 

  

Note for the 

parameter 

values chose 

the frequency 

of the lumped 

mass model is a 

little less then 

the actual value. 
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6.26 Calculate the response of a clamped-free bar to an initial displacement 1 cm at the 

free end and a zero initial velocity.  Assume that  = 7.   kg/m
3
, A = 0.001 

m
2
, E=10

10
 N/m

2
, and l = 0.5 m.  Plot the response at x = l and x = l/2 using the 

first three modes. 

 

 Solution: 
 
 The initial conditions are w(x,t) = 0.01(x-l) and wt(x,0) = 0 and the boundary 

conditions are w(0,t) = 0 and wx(l,t) = 0.  From example 6.3.1 the mode shapes are 

sin
2n 1

2l




x  and the natural frequencies are 

 

  n 
2n 1

2l






E

 (2n1)(1132.38)  

 

 The solution is given in example 6.3.2 as 

 

  w(x, t)  (cn sinnt  dn cos nt )sin
2n1

2l




x  

 

 so that the velocity is 

 

  wt (x, t)  (ncn cosnt  dnn sin nt)sin
2n1

2l




x

n 1



  

 

 Using wt(x,0) = 0 then yields cn = 0 for n = 1, 2, …, so that 

 

  0.01(x  l)  dn cosntsin
2n 1

2l
x  

 

 Multiplying by sin x
l

m


2

12 
 and integrating from 0 to l yields 

 

  0.01 (x  l)sin
2m  1

2l




xdx  cm sin

2 2m  1

2l




0

l

0

l

 xdx  

 

 using the orthogonality of sin nx.. 

 

  0.01sin
2m 1

2
  cm

l
2

, m  1,2,3...  

 

 so that 
11

)1)(004(./)1)(02(.
  mm

m lc  and the solution is 
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  w(x, t)  (.004)(1)
n1

sin[(2n 1)(1132.28)t]sin(2n1)x
n1



  

 

 For n = 3 and x = 0.5, 

 

  ]33968sin028.1132)[sin004(.),5.0( tttw   

 

 For n = 3 and x = l/2 = 0.25 

 

  w(.25,t)  (.004)[.707sin1132.28  sin2264.56t  .707sin 339684t]  

 

 These are plotted below using Mathcad: 
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6.27 Repeat the plots of Problem 6.26 for 5 modes, 10 modes, 15 modes, and so on, to 

answer the question of how many modes are needed in the summation of equation 

(6.27) in order to yield an accurate plot of the response for this system. 

 

 Solution: The following plots in Mathcad illustrate that it takes 10 modes to 

capture the behavior of this series, by plotting the formula of 6.26. 
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6.28 A moving bar is traveling along the x axis with constant velocity and is suddenly 

stopped at the end at x = 0, so that the initial conditions are (x,0) = 0 and w(x,0) = 

v.  Calculate the vibration response. 

 

 Solution: 
 
 Model the bar as a free-free bar.  Then from Table 6.2 the natural frequencies are 

nc/l and the mode shapes are cos(nx/l).  Thus the solution is of the form 

 

  w(x, t)  (An sinnt  Bn
n1



 cosnt)cos(nx / l)  

 

 Using the initial condition w(x,t) = 0 yields that Bn = 0 for n = 1, 2, 3,…, i.e. 

 

  w(x,0)  0  Bn cos(nx / l)  

 

 which is multiplied by cos(nx/l) and integrated over (0,l) using orthogonality to 

get Bn = 0.  Next differentiate 

 

  w(x, t)  An sinnt cosnx / l  

 

 to get wz(x,t), then set t = 0 to use the second initial condition. 

 

  wt (x,0)  Ann cos(0) cos(nx / l)  

 

 Modeling the initial velocity as v(x), multiplying by cos mx/l and integrating 

yields 

 

  (x)v cos(nx / l)dx  n
l
2





An

0

l

 ,    or   An 
V
ln

 

 

 so that 

 

  w(x, t)  2v
c

1

n



sin

nct
l





sin

nx
l







n 1



  

 

Note that Thomson uses a form of this problem as example 3 of section 5.3, but 

he models the moving beam as having a clamped free rather than free-free 

boundary.   What do you think? 
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6.29 Calculate the response of the clamped-clamped string of Section 6.2 to a zero 

initial velocity and an initial displacement of w0(x) = sin(2x/l).  Plot the response 

at x = l/2. 

 

 Solution: 
 
 The clamped-clamped string has eigenfunction sin nx/l and solution given by 

equation (6.27) where the unknown coefficients cn and dn are given by equation 

(6.31) and (6.33) respectively.  Since 0
0
w , equation 6.33 yields cn = 0, n = 

1,2,3.. with w0 = sin(2x/l), 
 

  dn 
2

l
sin(2x / l)sin( nx / l)dx

0

l

  

 

 which is zero for each n except n =2, in which case dn = 1.  Hence 

 

  )/2sin()/2sin(),( lxlcttxw   

 

 For x = l/2 
 

  )/2sin(),2/( lcttlw   

 

which has a well known plot given in the following Mathcad session using the 

values for a piano wire. 
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Problems and Solutions Section 6.4 (6.30 through 6.39) 
 

6.30 Calculate the first three natural frequencies of torsional vibration of a shaft of 

Figure 6.7 clamped at x = 0, if a disk of inertia J0 = 10 kg m
2
/rad is attached to the 

end of the shaft at x = l.  Assume that l = 0.5 m, J = 5 m
4
, G = 2.5  10

9
 Pa,  = 

2700 kg/m
3
. 

Solution:The equation of motion is

 
&& 

G


 .  Assume separation of variables: 

    ( X )q(t) to get 

  
&&q 

G


 q or 

G

&&q
q





  2
 so that 

  
&&q  G


 2q  0 and    2  0  

where 

  
 2 

G

 2

.   The clamped-inertia boundary condition is (0,t) = 0, and   

  GJ  (l,t)  J
0

&&(l,t).   This yields that (0) = 0 and 

  

  
GJ  (l)q(t)  J

0
(l)&&q(t)  J

0
(l) G


 2q(t)  

 or 

  
J  (l)  J

0

 2


(l)  

 The solution of the spatial equation is of the form 

 

  
  (x)  Asin x  Bcos x  

 

 but the clamped boundary condition yields B = 0.  The inertia boundary condition 

yields  

  

JA cos l  J
0

 2


Asin l

tan l  J
J

0

l
 l


1

 l
5 m

4

10kg m
2







      (2700kg/m

3
)(0.5m)

 

 So the frequency equation is 

  

  
tan l  675

 l
 

 Using the MATLAB function fsolve; this has the solutions 

  

  


1
l  1.5685


2
l  4.7054


3
l  7.8424









  or  


1
 3.1369


2
 9.4108


3
 15.6847









 

 Thus  1 = 3018.5 rad/s   f1 = 480.4 Hz 

   2 =9055.6 rad/s   f2 = 1441.2 Hz 

   3 = 15092.6 rad/s   f3 = 2402.1 Hz 
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6.31 Compare the frequencies calculated in the previous problem to the frequencies of 

the lumped-mass single-degree-of-freedom approximation of the same system. 

 

 Solution: 
 
 First calculate the equivalent torsional stiffness of the rod. 

 

  

  

k 
GJ
l


(2.510

9
)(5)

0.5
 2.5 10

10

J
0

&&  k
J

0

&&  k  0

10&&  2.510
10  0  or  &&  2.510

9  0

 

 

 so that 2
 = 2.5  10

9
,  = 5  10

5
 rad/s or about 80,000 Hz, far from the 482 Hz 

of problem 6.30. 
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6.32 Calculate the natural frequencies and mode shapes of a shaft in torsion of shear 

modulus G, length l, polar inertia J, and density  that is free at x = 0 and 

connected to a disk of inertia J0 at x = l. 
 

 Solution: 
 
 Assume zero initial conditions, i.e. (x,0) =   &(x,0) = 0.  From equation 6.66 

 

  

  

2(x,t)
t2


G







2(x,t)
x2

      (1) 

 

 The boundary condition at x = l and at x = 0 is 

 

  

  
GJ (l,t)

x
 J

0

2(l,t)
t2

         
(0,t)
x

 0  

 

 Using separation of variable in (1) of form (x,t) = (x)T(t) yields: 

 

  

  

 (x)

(x)


1

c2

&&T (t)
T (t)

  2
      (2) 

 

 where 

  
c2 

G


 and  2
 is a separation constant.  (2) can now be rewritten as 2 

equations 

 

  

  

 (x)  2(x)  0

&&T (t)  c2 2T (t)  0     
G


 

 

 from the boundary condition at x = l 
 

  

  

GJ  (l)T (t)  J
0
(l) &&T (t)


GJ
J

0

 (l)
(l)


&&T (t)
T (t)

 c2 2

 (l) 
J

0

GJ
G

 2 

J
0
 2

J
(l)

 

 

 The boundary condition at x = 0 yields simply 
 
 (0)  0.   The general solution is 

of the form 
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   x  a

1
sin x  a

2
cos x   so that   x  a

1
 cos x  a

2
 sin x  

 

 The boundary conditions applied to these solutions yield: 

 

  

  

 l  a
1
 cos l  a

2
 sin l 

J
0
 2

J
[a

1
sin l  a

2
cos l]

a
1

cos l 
J

0
 2

J
sin l












 a

2
sin l 

J
0


J
cos l











 0  a
1
  0 a

1
 0

a
2

sin l 
J

0


J
cos l









  0

 

 

 For the non-trivial solution of this last expression, the coefficients of a2 must 

vanish, which yields 

 

  

  
tan l  

J
0

J
  

 

 This must be solved numerically for  (except for the rigid body case of  = 0) 

and the frequency is calculated from

 
  

G


.  The mode shapes are (x) = a2 

cos x.  Note the solution for  is illustrated in figure 6.4 page 479 of the text. 
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6.33 Consider the lumped-mass model of Figure 4.21 and the corresponding three-

degree-of-freedom model of Example 4.8.1.  Let J1 = k1 = 0 in this model and 

collapse it to a two-degree-of-freedom model.  Comparing this to Example 6.4.1, 

it is seen that they are a lumped-mass model and a distributed mass model of the 

same physical device.  Referring to Chapter 1 for the effects of lumped stiffness 

on a rod in torsion (k2), compare the frequencies of the lumped-mass two-degree-

of-freedom model with those of Example 6.4.1. 

 

 Solution: From Mathcad: 
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6.34 The modulus and density of a 1-m aluminum rod are E = 7.1  10
10

 N/m
2
, G = 2.7 

 10
10

 N/m
2
, and  = 2.7  10

3
 kg/m

2
.  Compare the torsional natural frequencies 

with the longitudinal natural frequencies for a free-clamped rod. 

 

 Solution: 
 
 The appropriate boundary conditions are: 

   (0,t)  0 and (l,t)  0 for the rod and 

  w (0,t)  0  w(l,t)  for the bar.  The separated equations are 

 

  

  

&& 
G








  and &&q 
G








 q

&&q  G








 2q  0 and   2  0

 

 

 Solutions are 

 

  
  qn  An sin nt  Bn cos nt   and  n  Cn sin nx  Dn cos nx  

 

 where 

  
 n

2 
G

 n

2
.   But 

 
 (0)  0  so that Cn = 0.  The other boundary condition 

yields n(l) = Dncos nl = 0 so that 

 

  

  
 nl 

(2n 1)
2

,     n  1,2,...  

 

 Thus the torsional frequencies are 

 

  

 
 n 

G

 n  

 

 and the longitudinal frequencies are 

  

 
 n 

E

 n  

 where 

  

  
 n 

(2n 1)
2l

 

 From the values given 

 

G


= 3162 m/s and 

 

E


= 5128 m/s.  Thus the natural 

frequencies of the longitudinal vibration are 1.6 times larger than the torsional 

vibrations. 
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6.35 Consider the aluminum shaft of Problem 6.32.  Add a disk of inertia J0 to the free 

end of the shaft.  Plot the torsional natural frequencies versus increasing the tip 

inertia J0 of a single-degree-of-freedom model and for the first natural frequency 

of the distributed-parameter model in the same plot.  Are there any values of J0 

for which the single-degree–of-freedom model gives the same frequency as the 

full distributed model? 

 

 Solution: 
 
 Refer to problem 6.32 of the rod clamped at x = 0 with inertia J0 at x = l.  The sdof 

model of the frequency is given in example 1.5.1 as 

 

  

  
 

GJ
lJ

0

 

 

 where G = torsional rigidity, J = polar moment of inertia of the rod of length l and 

J0 is the disc inertia.  The first natural frequency according to distributed 

parameter theory is given in problem 6.30 as the solution of 

 

  

  
tan / 2  


 J

0

,      
G


 

 

 which will have a solution for a given value of J0 equivalent to that of the sdof 
system. 
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6.36 Calculate the mode shapes and natural frequencies of a bar with circular cross 

section in torsional vibration with free-free boundary conditions.  Express your 

answer in terms of G, l, and . 

 

 Solution: 
 

 The separated equations are 

  
&&q  G


 2







q  0 and   2  0  

where

 
 n 

G

 n .  Thus 

 

  
  qn  An sin nt  Bn cos nt   and  n  Cn sin nx  Dn cos nx  

 

 The boundary conditions are 

 

  

  

n(0)  0

n(l)  0
 

 

 But 
  n  Cn n cos nx  Dn n sin nx  so that 

  n(0)  0 Cn  0  and the 

frequency equation becomes 
  n(l)  0  Dn n sin n0.   This has the solution 

  
 nl  n   or   n 

n
l

.   Hence 

 

  

 
 n 

G


n
l

   and 

  
n(x)  cos

nx
l

. 
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6.37 Calculate the mode shapes and natural frequencies of a bar with circular cross 

section in torsional vibration with fixed boundary conditions.  Express you answer 

in terms of G, l, and , 

 

 Solution: From equation 6.66 

  

  

2(x,t)
t2


G







2(x,t)
x2

 

 Assume a solution of the form (x,t) = (x)T(t) so that 

  

  
(x) &&T (t)  G


 (x)T (t)  

 Separate where 2
 is the separation constant and 

  
c2 

G


 

 

  

  

 (x)

(x)


1

c2

&&T (t)
T (t)

  2
 

 

 or 

  
 (x)  2(x)  0  and  &&T (t)   2c2T (t)  0  where   

G

 .  The 

boundary conditions for a fixed-fixed rod are (0) = 0 and (l) = 0 from the 

solution of the spatial equations 

 

  

  

 0  a
2
 0

 l  a
1
sin l  0.  

.

 

 

 For the non-trivial solution 

 

  

  

sin l  0

 
n
l

,    n  0,1,2,..
 

 

 natural frequency 

 

  

  
 

G


n
l

,    n  1,2,...  

 

 mode shape 

 

  

  
 x  a

1
sin

n
l

x,    n  0,1,2,...  
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6.38 Calculate the eigenfunctions of Example 6.4.1. 

 

 Solution: 
 
 From example 6.4.1 the eigenfunctions are 

 

  

  
n(x)  a

1
sin nx  a

2
cos nx   or n(x)   An 

 J
1

J
sin nx  cos nx







 

 

 where n are determined by equation 6.8.4. 

 
 
 
 
 
6.39 Show that the eigenfunctions of Problem 6.38 are orthogonal. 

 

 Solution: 
 

 Orthogonality requires 
  
n(x)m(x)dx  0,    m  n.

0

l

   From direct calculation 

 

  

  


 J

1

J
sin nx  cos nx






0

l

 
 J

1

J
sinmx  cosmx







dx

        
 J

1

J







2

sinmx sin nxdx
0

l



        
 J

1

J
sin nx sinmxdx

0

l

 
 J

1

J
sinmx sin nxdx

0

l



         cos nxcosmxdx
0

l



 

 

 where each integral vanishes.  Also one can use the same calculation as problem 

6.3 since the natural frequencies have distinct values. 
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Problems and Solutions Section 6.5 (6.40 through 6.47) 
 

6.40 Calculate the natural frequencies and mode shapes of a clamped-free beam.  

Express your solution in terms of E, I, , and l.  This is called the cantilevered 

beam problem. 

 

 Solution: 
 
 Clamped-free boundary conditions are 

 

  
  w(0,t)  wx (0,t)  0  and  wxx (l,t)  wxxx (l,t)  0  

 

 assume E, I, , l constant.  The equation of motion is 

 

  

  

2w
t2


EI
A






4w
x4

 0  

 

 assume separation of variables 
  w(x,t)  (x)q(t) to get 

 

  

  

EI
A










 
&&q
q
 2

 

 

 The spatial equation becomes 

 

  

  
 

A
EI






 2  0  

 

 define 

  
 4 

A 2

EI
  so that     4  0  which has the solution: 

  

  
    C

1
sinx C

2
cosx C

3
sinhx  C

4
coshx  

 

 Applying the boundary conditions 

  w(0,t)  wx (0,t)  0  and  wxx (l,t)  wxxx (l,t)  0   

  
  (0)   (0)  0  and   (l)   (l)  0  

 Substitution of the expression for  into these yields: 

  C2 +C4 = 0 

  C1 + C3 = 0 

 
  

C
1
sinl  C

2
cosl  C

3
sinhl C

4
coshl  0

C
1
cosl C

2
sinl  C

3
coshl  C

4
sinhl  0

 

 Writing these four equations in four unknowns in matrix form yields: 
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0 1 0 1

1 0 1 0

sinl cosl sinhl coshl
cosl sinl coshl sinhl



















c
1

c
2

c
3

c
4





















 0  

 

 

 For a nonzero solution, the determinant must be zero to that (after expansion) 

 

 

  

sinl  sinhl cosl  cosh
cosl  cosh sinl  sinh



                   ( sinl  sinhl)(sinl  sinhl) 
                                                          (cosl  coshl)(cosl  coshl)  0

 

 

 Thus the frequency equation is cos l cosh l = -1 or 

  
cosnl  

1

coshnl
 and 

frequencies are

  
 n 

n
4 EI
A

.  The mode shapes are 

 

  
  n  C

1n sinnx C
2n cosnx  C

3n sinhnx  C
4n coshnx  

 

 Using the boundary condition information that 
  C4

 C
2
  and  C

3
 C

1
 yields 

 

  

  

C
1
sinl  C

2
cosl  C

1
sinhl C

2
coshl

C
1
(sinl  sinhl)  C

2
(cosl  coshl)

 

 

 so that 

 

  

  
C

1
 C

2

cosl  coshl
sinl  sinhl







 

 

 and the mode shapes can be expressed as: 

 

  

  

n  C
2n 

cosnl  coshnl
sinnl  sinhnl







sinnx  cosnx







                  

 

                              

  
            

cosnl  coshnl
sinnl  sinhnl







sinhnx  coshnx






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6.41 Plot the first three mode shapes calculated in Problem 6.40.  Next calculate the 

strain mode shape [i.e.,
  X (x) ], and plot these next to the displacement mode 

shapes X(x).  Where is the strain the largest? 

 

 Solution: The following Mathcad session yields the plots using the values of  

taken from Table 6.4. 

 
 The strain is largest at the free end. 
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6.42 Derive the general solution to a fourth-order ordinary differential equation with 

constant coefficients of equation (6.100) given by equation (6.102). 

 

 Solution: 
 
 From equation (6.100) with

  
4  A 2

/ EI , the problem is to solve 

  X   4 X  0.   Following the procedure for the second order equations 

suggested in example 6.2.1 let X(x) = Aet
 which yields 

 

  
  

4   4 Aex  0  or   4   4
 

 

 This characteristic equation in  has 4 roots 

 

  
    ,, j,  and  j  

 

 each of which corresponds to a solution, namely A1e-x
, A2ex

, A3e-jx
 and A4ejx

.  

The most general solution is the sum of each of these or 

 

  
  X (x)  A

1
ex  A

2
ex  A

3
e jx  A

4
e jx

    (a) 

 

 Now recall equation (A.19), i.e., 
  e
 x  cosx  j sinx , and add equations (A.21) 

to yield 
  e
 jx  sinhx  coshx.  Substitution of these two expressions into (a) 

yields 

 

  
  X (x)  Asinx  Bcosx  C sinhx  Dcoshx  

 

 where A, B, C, and D are combinations of the constants A1, A2, A3 and A4 and may 

be complex valued. 
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6.43 Derive the natural frequencies and mode shapes of a pinned-pinned beam in 

transverse vibration.  Calculate the solution for w0(x) = sin 2x/l min and 

  &w0
(x)  0. 

 
 Solution: Use w(x,t) = (x)q(t) in equation (6.29) with   &w(x,0)  0 or &q(0)  0.   

Then the temporal solution q = A sin t + B cos t with   &q(0)  0 yields A = 0.  

The spatial solution is  = C1 sin x + C2 cos x + C3 sinh x + C4 cosh x where 

  
 4 

A 2

EI
.  The boundary conditions become 

  
  (0)   (0)  (l)   (l)  0  

 Applied to (x) these yield the matrix equation 

 

  

  

0 1 0 1

0 1 0 1

sinl cosl sinhl coshl
sinl cosl sinhl coshl



















C
1

C
2

C
3

C
4





















 0  

 

 But 
  C2

C
4
 0 and -C

2
C

4
 0 so C

2
 C

4
 0and this reduces to 

 

  

  

sinl sinh
sin sinh










C
1

C
3












 0  

 

 or sin l sinh l + sin l sinh l = 0, 

  
C

3
 

C
1
sinl

sinhl
,  and 

  C
1
sinl  C

1
sinl  0  so that the frequency equation 

becomes sin l = 0 and thus nl = n, n = 1,2,3,… and n =
 
n
l

, n = 1,2,3,…so 

that C3 = 0 and the frequencies are 

  
 n 

n
l







2

EI
A

 with mode shapes n(x) = 

C1n sin nx.  The total solution is the series 
  w(x,t)  n cos nt sinnx .

n1

  

Applying the second initial condition yields 

  
w(x,0)  sin

2x
l

 n sin
nx

ln1

  

and therefore 

 

  

  

Bn 
0   n  1

    n  3,4,...

1   n  2








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 so that 

  
w(x,t)  cos

2
t sin

2 x
l
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6.44 Derive the natural frequencies and mode shapes of a fixed-fixed beam in 

transverse vibration. 

 

 Solution: Follow example 6.5.1 to get the solution in the 5
th

 entry of table 6.4.  

The spatial equation for the transverse vibration of a beam has solution of the 

form (6.102) 

  
  X (x)  a

1
sinx  a

2
cosx  a

3
sinhx  a

4
coshx  

 where
  

4  A 2
/ EI .  The clamped boundary conditions are given by equation 

(6.94) as 
  X (0)  X (0)  X (l)  X (l)  0.   Applying these boundary conditions 

to the solution yields 

  
  X (0)  0  a

1
(0)  a

2
(1)  a

3
(0)  a

4
(1)     (1) 

  
  X (0)  0  a

1
(1)  a

2
(0)  a

3
(1)  a

4
(0)    (2) 

  
  X (l)  0  a

1
sinl  a

2
cosl  a

3
sinhl  a

4
coshl   (3) 

  
  X (l)  0  a

1
cosl  a

2
sinl  a

3
coshl  a

4
sinhl  

 (4) 

 dividing (2) and (3) by 
 
  0  and writing in matrix form yields 

  

  

0 1 0 1

1 0 1 0

sinl cosl sinhl coshl
cosl sinl coshl sinhl



















a
1

a
2

a
3

a
4























0

0

0

0



















 

 The coefficient matrix must have zero determinant for a nonzero solution for the 

an.  Taking the determinant yields (expanding by minors across the top row). 

  

  

sinh
2 l  cosh

2 l  sinl sinhl  cosl coshl 
                      coslcoshl sinl sinhl  sin

2 l  cos
2 l  0

 

 which reduces to 

  
  1 2cosl coshl 1 0  or  cosl coshl  1  

 since sinh
2
 l – cosh

2
 l = -1 and sin

2
 x + cos

2
 x = 1.  The solutions of this 

characteristic equation are given in table 6.4.  Next from equation (1) a2 = -a4 and 

from equation (2) a1 = -a3 so equation (3) can be written as 

  
  a

3
sinl  a

4
cosl  a

3
sinhl  a

4
coshl  4  

 Solving this for a3 yields 

  

  
a

3
 a

4

cosl  coshl
sinhl  sinl







 

 Recall also that a1 = -a3.  Substitution into the solution X(x) and factoring out a4 

yields 

  

  
X (x)  a

4
coshx  coshx  cosl  coshl

sinl  sinhl






sinhx  sinx  
in agreement with table 6.4.  Note that a4 is arbitrary as it should be. 
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6.45 Show that the eigenfunctions or mode shapes of Example 6.5.1 are 

orthogonal.  Make them normal. 

 

 Solution: 
 
 The easiest way to show the orthogonality is to use the fact that the eigenvalues 

are not repeated and follow the solution to problem 6.2.  The eigenfunctions are 

(table 6.4 or example 6.5). 

 

  
  
X n(x)  an coshnx  cosnx  n sinhnx  sinnx   

 

 Note that the constant an is arbitrary (a constant times a mode shape is still a mode 

shape) and normalizing involves choosing the constant an so that 
  X n X ndx  1. 

Calculating this integral yields: 

 

  
  
an

2
cosh

2 nx  2cosnxcoshnx  cos
2 nx

0

l

  

  
           2 n sinhnx  sinnx  coshnx  cosnx  

  
  
         n

2
sinh

2 nx  2sinnx sinhnx  sin
2 nx dx  

 

 so 

 

  

  

1 an
2

1

n

sinh2nl  sin 2nl
4







 nl













       
1

n

sinhnl sinnl  cosnl coshnl   n

n

cos
2 nl  cosh 2nl

      sinhnl sinnl  cosnl  coshnl cosn  sinnl 
      

 n
2

n

sinh
2 nl  sin2nl

4
1 sinnl sinhnl  coshnl cosnl













 

 

 So denoting the term in [ ] as n and solving for an = 1/  n  yields the 

normalization constant. 
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6.46 Derive equation (6.109) from equations (6.107) and (6.108). 

 

 Solution: 
 
 Using subscript notation for the partial derivatives, equation (6.108) with f = 0 

yields an expression for   x  i.e. 

 

 
   x  ( AGWxx  Awtt ) / 2 AG      (a) 

 

 Equation (6.107) can be differentiated once with respect to x to yield a middle 

term identical to the first term of equation (6.108).  Substitution yields 

 

   EI xx  Awtt  I xtt       (b) 

 

 Equation (a) can be differentiated twice with respect to time to get an expression 

for  I xx  in terms of w(x,t) which when substituted into (b) yields 

 

  
  EI xxx  Awtt  Iwxxtt  2I / 2G wtttt  

 

 The first term  EI xxx  can be eliminated by differentiating (a) twice with respect 

to x to yield 

 

  
  EI  2 AGwxxxx  Awttxx  Awtt  

2 AGwxxtt  AEIwtttt  

 

 when substituted into (c).  This is an expression in w(x,t) only.  Rearranging terms 

and dividing by 2AG yields equation (6.109). 

 

 
6.47 Show that if shear deformation and rotary inertia are neglected, the Timoshenko 

equation reduces to the Euler-Bernoulli equation and the boundary conditions for 

each model become the same. 

 

 Solution: 
 
 This is a bit of a discussion problem.  Since I is the inertia of the beam in 

rotation about   the term Iwxxxtt represents rotary inertia.  The term 

(IE/2G)wtttt is the shear distortion and the term (2I/2G)wxxtt is a combination 

of shear distortion and rotary inertia.  Removing these terms from equation 

(6.109) results in equation (6.92). 
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Problems and Solutions Section 6.6 (6.48 through 6.52) 
 

6.48 Calculate the natural frequencies of the membrane of Example 6.6.1 for the case 

that one edge x = 1 is free. 

 

 Solution: 
 
 The equation for a square membrane is 

 

  

 
wtt  wyy 




wtt







 

 

 with boundary condition given by w(0,y) = 0, wx(l,y) = 0, w(x,0) = 0, w(x,l) = 0.  

Assume separation of variables w = X(x)Y(y)q(t) which yields 

 

  

  

X
X


Y

Y


1

c2

&&q
q
  2

  where  c   /   

 

 Then 

 

    &&q  c2 2q  0  

 

 is the temporal equation and 

 

  

  
X

X
  2 

Y
Y

  2
 

 

 yields 

 

  

  

X  2 X  0

Y   2Y  0

 

 

 as the spatial equation where 2
 = 2

 – 2
 and 2

 = 2
 + 2

.  The separated 

boundary conditions are X(0) = 0, 
  X (l)  0 and Y(0) = Y(l) = 0.  These yield 

 

  

  

X  Asinx  Bcosx
B  0

Acosl  0

 nl 
(2n 1)

2

 n 
(2n  1)

2l
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 Next Y = C sin y + D cos y with boundary conditions which yield D = 0 and C 

sin l = 0.  Thus 

 

    m  m l  

 

 and for l = 1 we get an = 

  
(2n 1)

2
,  for m = m n,m = 1, 2, 3,… 

 

  

  

 nm
2   n

2   m
2 

(2n 1)
2 2

4
 m2 2 

(2n  1)
2  4m2

4











2

c2 nm
2  c2

(2n 1)
2  4m2

4











2

 

 

 So that 

 

  

  
 nm  (2n 1)

2  4m2 c
2

 

 

 are the natural frequencies. 
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6.49 Repeat Example 6.6.1 for a rectangular membrane of size a by b.  What is the 

effect of a and b on the natural frequencies? 

 
 Solution: 
 

 The solution of the rectangular membrane of size a  b is the same as given in 

example 6.6.1 for a unit membrane until equation 6.13.1.  The boundary condition 

along x = a becomes 

 

  
  A1

sina sin y  A
2
sinacos y  0  

 

 or 

 

  
  sina( A

1
 sin y  A

2
cos y)  0  

 

 Thus sin a = 0 and a = n or = n/a, n = 1, 2,… Similarly, the boundary 

conditions along y = b yields that 

 

  

  
 

n
b

   n=1,2,3,... 

 

 Thus the natural frequency becomes 

 

  
   nm   a2n2  b2m2

   n,m  1,2,3,...  

 

 Note that nm are no longer repeated, i.e., 
 


12


21
, etc. 
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6.50 Plot the first three mode shapes of Example 6.6.1. 

 

 Solution: A three mesh routine from any of the programs can be used.  Mathcad 

results follow for the 11, 12, 21 and 31 modes: 
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6.51 The lateral vibrations of a circular membrane are given by 

  

  

 2(r,,t)
r 2


1

r
(r,,t)

r


1

r 2

 2(r,,t)
r




 2(r,,t)

t2
 

 where r is the distance form the center point of the membrane along a radius and 

 is the angle around the center.  Calculate the natural frequencies if the 

membrane is clamped around its boundary at r = R. 

 

 Solution: 
 
 This is a tough problem.  Assign it only if you want to introduce Bessel functions.  

The differential equation of a circular membrane is: 

 

  

  

 2W (r,)

r 2


1

r
W (r,)

r


1

r 2

 2W (r,)

2
  2W (r,)  0

 2 

c







2

   c  T


 

 

 Assume: 

 

  
  W (r,)  F(r)G()  

 

 The differential equation separates into: 

 

  

  

d 2G
d2

 m2G  0

d 2F
dr 2


1

r
dF

1

dr
  2 

m2

r 2







F  0

 

 

 Since the solution in  must be continuous, m must be an integer.  Therefore 

 

  
  Gm ()  B

1m sin m  B
2m cos m  

 

 The equation in r is a Bessel equation and has the solution 

 

  
  Fm (r)  B

3mJm(r)  B
4mYm(r)  

 

 Where Jm(r) + Ym(r) are the mth
 order Bessel functions of the first and second 

kind, respectively.  Writing the general solution F(r)G() as 

 

  

  

Wm(r,)  A
1mJm(r)sin m  A

2m Jm (r)cos m
              A

3mYm(r)sin m  A
4mYm(r)cos m
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 Enforcing the boundary condition 

 

  
  Wm(R,)  0   m  0,1,2,...  

 

 Since every interior point must be finite and Ym(r) tends to infinity as r   0, A3m 

= A4m = 0.  At r = R 
 

  
  Wm(R,)  A

1m Jm (R)sin m  A
2mJm(R)cos m  0  

 

 This can only be satisfied if 

 

  
  Jm(R)  0   m  1,2,...  

 

 For each m, Jm(R) = 0 has an infinite number of solutions.  Denote mn as the nth 

root of the mth order Bessel function of the first kind, normalized by R.  Then the 

natural frequencies are: 

 

   mn  cmn  

 
 
6.52 Discuss the orthogonality condition for Example 6.6.1. 

 

 Solution: 
 
 The eigenfuncitons of example 6.6.1 are given as 

 

  
  X n(x)Yn( y)  Anm sin m x sin n y  

 

 Orthogonality in this case is generalized to two dimensions and becomes 

 

  
  

Anm Apq sin m xsin n ysin p ysin q ydxdy  0
0

1


0

1

    mn  pq  

 

 Integrating yields 

 

 

 

  

Anm Apq sin nx sin pxdx sin mg sin gydy
0

1


0

1


       Anm Apq

sin(n  p)x
2(n  p)


sin(n  p)x

2(m  p)











sin(m 1)x
2(m q)


sin(m p) x

2(m  p)










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 Evaluating at x = 0 and x = 1 this expression is zero.  The expression is also zero 

provided n = p and n   q illustrating that the modes are in fact orthogonal. 
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Problems and Solutions Section 6.7 (6.53 through 6.63) 
 

6.53 Calculate the response of Example 6.7.1 for l = 1 m, E = 2.6  10
10

 N/m
2
 and  = 

8.5  10
3
 kg/m

3
.  Plot the response using the first three modes at x = l/2, l/4, and 

3l/4.  How many modes are needed to represent accurately the response at the 

point x = l/2? 

 

 Solution: 
 

  

  
w(x,t)  0.02

l2 n
2

(1)
n1









 e0.01n t

cos
2nt sin nx

n1



  

 

 Where 

 

  

  

 n 
(2n  1)

2l

 n   n

E


 dn  0.9999 n

  

 

 For l = 1 m 

 

  

  

E  2.6 10
10

 N/m
2

  8.510
3
 kg/m

3
 

 

 Response using first three modes at 

  
x  l

2
,
l
4

,
3l
4

 plotted below. 

 

 Three modes accurately represents the response at

  
x  l

2
.  The error between a 

three and higher mode approximation is less than 0.2%. 
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6.54 Repeat Example 6.7.1 for a modal damping ratio of n = 0.01. 

 

Solution:  Using n = 0.01 and the frequency given in the example 

  
 dn  n 1 n

2  0.995 n ,    n 
2n  1

2l
E

  n

E


 

The time response is then 
  Tn(t)  Ane

0.1n t
sin( dnt n )  and the total solution is: 

  
w(x,t)  Ane

0.1n t
sin( dnt n )

n1



 sin
(2n  1)

2l
x  

The initial conditions are: 

  
w(x,0)  0.01

x
l

 m  and  wt (x,0)  0  

Therefore: 

  
0.01

x
l
 An sinn sin nx  

Multiply by sinmx and integrate over the length of the bar to get 

  
0.01

(1)
m1

l m
2

 Am sinm

l
2

   m  1,2,3,... 

From the velocity initial condition 

  
wt (x,0)  0  An 0.1 n sinn  dn cosn 

n1



 sin nx  

Again, multiply by sinmx and integrate over the length of the bar to get 

  
Am (0.1 n sinn  dn cosn )

l
2
 0  

Since Am is not zero this yields: 

  
tann 

sinn

cosn


1 n

3

0.1
 9.9499 n  1.4706 rad  84.3  

Substitution into the equation from the displacement initial condition yields: 

  
Am 

0.01

l 2m
2

(1)
m1

1

sinn


0.0201

l 2m
2

(1)
m1

 

The solution is then 

  
w(x,t)  0.01

l 2m
2

(1)
m1e0.1n t

sin( dnt  n )

n1



 sin
(2n 1)

2l
 x  
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6.55 Repeat Problem 6.53 for the case of Problem 6.54.  Does it take more or fewer 

modes to accurately represent the response at l/2? 

 

 Solution: Use the result given in 6.54 and 

 

  

l  1 m

E  2.6 10
10

 N/m
2

  8.5 10
3
 kg/m

3

 

 

 The response is plotted below at

  
x  l

4
,
l
2

,
3l
4

.  An accurate representation of the 

response is obtained with three modes.  The error between a three mode and a 

higher mode representation is always less than 0.2%.  The results here are from 

Mathcad: 
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6.56 Calculate the form of modal damping ratios for the clamped string of equation 

(6.151) and the clamped membrane of equation (6.152). 

 

 Solution: 
 
 (a) For the string: 

 

  

  

wtt   wt  wxx  0

&&q  &q    q  0




&&q
q




&q
q





  2

&&q  








&q  







 2q  0

 

 

 
 
  2  0 which has the solution

    Asin x  Bcos x .  The boundary 

conditions 
  (0)  (l)  0 yield 

  
 n 

n
l

,   n  1,2,3,...  

 

  

  

 n
2 









 n

2 



n
l







2

2n n 



 n 

2




n
l







 n 


2 

n
l







 

 

 (b) For the membrane 

 

  

  




wtt 



wt  wxx  wyy










XY&&q  








XY&q  X Yq  X Y q










&&q
q











&q
q


X
X


Y

Y
  2

&&q  








&q  







 2q  0
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X

X
 

Y
Y

  2   2
.The boundary conditions are X(0) = X(l) = 0 and Y(0) = 

Y(l) = 0.  The two spatial solutions become 

 

  

  

        X  2  0

X  Asinx  Bcosx
            B  0

   n 
n
l

  n  1,2,3,...

 

  

       Y   2Y  0

Y  C sin x  Dcos x
            D  0

 m 
n
l

  m  1,2,3,...

 

 

 Thus 

 

  

  

mn
2  n2  m2  

l







2

mn
2 




n2  m2  
l







2

2mnmn  


mn 


2mn



2

1




n2  m2 
l


mn 
 l

2  n2  m2 

 

 
 
6.57 Calculate the units on  and  in equation (6.153). 

 

 Solution:  The units are found from 

 

  

 

mg

m
3

m
2 m

s
2
 

m

s

kg

s
2

s

m
 

 
kg

m  s
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6.58 Assume that E, I, and  are constant in equations (6.153) and (6.154) and 

calculate the form of the modal damping ratio n. 

 

 Solution: 
 
 If E, I, and  are constant in equation 6.153 and 6.154.  Then separation of 

variables works and the mode shapes become those given in table 6.4, which can 

be normalized so that
  

X n X m dx  nm
0

l

 .  Substitution of w(x,t) = an(t)Xn(x) into 

equation (6.153) multiplying by Xm(x) and integrating over x yield the mth modal 

equation: 

 

  

  
A&&an(t)   &an(t)   I

 n
2

c2









 &an(t)  EI

 n
2

c2
an(t)  0  

 

 where equation (6.93) has been used to evaluate  X  and
  c

2  EI / A .  Dividing 

by A yields 

 

  

  
&&an (t)  

A


E
 n

2






&an(t)  n
2an(t)  0  

 

 which is the sdof form of windows 6.4.  Thus the coefficients of   must be   

and hence 

 

  

  
2n n 


A



E
 n

2
 

 

 and 

 

  

  

 n  n
2

EI
A

n 


2A n



E
 n

 

 

 where n are given in table 6.4. 
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6.59 Calculate the form of the solution w(x,t) for the system of Problem 6.58. 

 

 Solution: 
 
 The form of the solution of the m time equation is just 

 

  
  Ane

nn t
sin  dnt  n  

 

 where n and n are as given in problem 6.58, 
   dn  n 1 n

2
, and An and n are 

constants determined by initial conditions.  The total solution is of the form 

 

  

  
w(x,t)  Ane

nn t
sin  dnt  n 

n1



 X n(x)  

 

 where Xn(t) are the eigenfunctions given in table 6.4. 
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6.60 For a given cantilevered composite beam, the following values have been 

measured for bending vibration: 

 

   E = 2.71x10
10

 N/m
2
   = 1710 kg/m

3
 

   A = 0.597x10
-3

 m
2
  l = 1 m 

   I = 1.64x10
-9

 m
4
   = 1.75 N s/m

2
 

    = 20,500 Ns/m
2 

 

 Calculate the solution for the beam to an initial displacement of wt(x,0) = 0 and 

w(x,0) = 3sin x. 

 

 Solution: 
 
 Using the values given and the formulas for an(t) from problem 6.58 the temporal 

equation becomes 

 

  
  
&&an  1.714  .00000075G n

2 &an  n
2an  0  

 

 from problem 6.59, 

 

  
  
wt (x,t)

t0
 0  An  n n sinn  dn cosn

  X n(x)  

 

 and 

 

  
  w(x,0)  3sin x  An sinn Xn(x)  

 

 Multiplying by Xn(x) and integrating yields that 

 

  

  
 n n sinn  dn cosn   or  tann 

 dn

 n n

 

 

 and 
  
3 sinxX n (x)dx  An sinn

0

l

 so that 

  
An 

3 sin xX n(x)dx
0

l


sinn

  


3

1n
2

sin xX n(x)dx
0

l

   

where Xn(x) is given in table 6.4. 

 



6- 62

6.61 Plot the solution of Example 6.7.2 for the case wt(x,0) = 0, w(x,0)=sin(nx/), =10 

Ns/m
2
, =10

4
 N, =1 m and  =0.01 kg/m

3
. 

 

Solution: From equation (6.156) and the values given, 1 =0.159/n or nn = 500 

and
   dn  1 0.159

2
, so that: 

  
w(x,t)  Ane

500t

n1



 sin( dnt n )sin nx  

Applying the initial conditions yields 

  
sin n xsin mx

0

l

 dx  An
n1



 sin(n ) sin m x
0

l

 sin n xdx  

So that Ansinn =0 for all n except n = 1, and A1sin1 = 1. So either n =0 or An = 0 

for n not zero. The other initial condition yields that 

  
n  tan

1
(
 1 n

2

 n

)  so that 

An = 0 for n not zero. Thus the system is only  excited in the first mode.  Then  

  

w(x,t)  A
1
e500t

sin(
1

1 n
2 t  n )sinx

            1.001e500t
sin(3137.7t 1.50)sinx

 

This is plotted in Mathcad below: 
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6.62 Calculate the orthogonality condition for the system of Example 6.7.2.  Then 

calculate the form of the temporal solution. 

 

 Solution: Problem is to fill in the details of example 6.7.2 by checking the 

coefficients.  Equation (6.155) by performing the integration. 

 
6.63 Calculate the form of modal damping for the longitudinal vibration of the beam of 

Figure 6.14 with boundary conditions specified by equation (6.157). 

 

 Solution: This is a discussion problem.  The boundary condition given in 

equation (6.157) 

  

  

AEwx (0,t)  kw(0,t)  c w(0,t)
t

AEwx (l,t)  kw(l,t)  c w(l,t)
t

 

 Do not conform readily to separation of variables and lead to time dependent 

boundary conditions.  However one approach is to treat the damper as applied 

forces of the bar cwt(0,t) and –cwt(l,t).  Following this approach the boundary 

conditions become 

  
  AE X (0)  kX (0) and AE X (l)  kX (l)  

 The general solution of the spatial equation of a bar has the form 

  
  X (x)  asin( x  b)  

 Where  is the usual separation constant and a and b are constants.  The first 

boundary condition yields that
    tan

1
( AE / k) .  The second boundary condition 

yields the characteristic equation 

  
  ( AE / k) n  tan( nl  )  

 Which can be solved for n numerically.  Note that n are distinct so that from 

problem 6.39 the eigenfunctions are orthogonal, i.e. an can be calculated such that 

  
  X n(x)  an sin( nx )  

 Are orthonormal.  Following the procedure of example 6.8.11, the temporal 

solution for the forced response is 

  

  

&&Tn(t)  n
2  cwt (0,t)  cw(l,t)  X r (x)dx

0

l


                cX n(0)  cX n(l)  X n(x)dx

0

l

 &Tn(t)
 

 Bring the  
&Tn  term to the left side and comparing its coefficient to 

  2n n yields 

  

  
2n n  c X n(l)  X n(0)  X n(x)

0

l

 dx  

 The form of the modal damping ratio is thus 

  

  
n 

can
2

2 n n

cos  nl   cos   
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Where 
  an

2
 is the normalization factor, n are the eigenvalues 

   n
2  c2 n

2
 

and
  tan

1
( AE / k) . 
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Problems and Solutions Section 6.8 (6.64 through 6.68) 
 

6.64 Calculate the response of the damped string of Example 6.8.1 to a disturbance 

force of f(x,t) = (sin x/l) sin10t. 
 

 Solution: 
 

 

  
f (x,t)  sin

 x
l







sin10t.Assume a solution of the form: 

 

  
  wn(x,t)  Tn (t)X n(x)  

 

 where 

 

  

  
X n(x)  sin

n x
l

 

 

 Substitute into (6.158) 

 

  

  

&&Tn   &Tn   
n
l







2










Tn












sin

n x
l

 sin
x
l







sin10t  

 

 Multiply by 

  
sin

nx
l

 and integrate over the length of the string: 

 

  

  
&&Tn   &Tn  

n
l







2

Tn













l
2


  0     for n =1

   sin10t     for n  1





 

 

 Only the particular solution is of interest since we are looking for the response to 

the disturbance force.  Therefore, dropping the subscripts: 

 

  

  

&&T   &T  

l








2

T  sin10t

&&T 









&T 
c
l







2

T 
sin10t


 where c  


 

 

 Solution is 

 

  
  T  Asin(20t )  
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 where 

  

  

A 
1


c2 2

l2
100








2

 100
 2

2


l2

2 c2 2 100l2 2 100 2l4

  tan
1

10



c2 2

l2
 100



















 tan
1

10 l2

c2 2 100l2











w(x,t)  Asin(10t )sin
 x
l

 

 

 where A and  are given above. 
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6.65 Consider the clamped-free bar of Example 6.3.2.  The bar can be used to model a 

truck bed frame.  If the truck hits an object (at the free end) causing an impulsive 

force of 100 N, calculate the resulting vibration of the frame.  Note here that the 

truck cab is so massive compared to the bed frame that the end with the cab is 

modeled as clamped.  This is illustrated in Figure P6.65. 

 

 Solution: Assume constant area and constant material properties.  Equation of 

motion: 

  
  Awtt  EAwxx  f (x,t)  100 (x  l) (t)  

 Mode shapes (eigenvalues) of a fixed-free bar are (Table 6.1) 

  

  
X n(x)  sin

(2n 1)x
2l

 

 Assume a solution of the form:
  wn(x,t)  X n(x)Tn(t) .  Substitute into the equation 

of motion: 

  

  

&&Tn  
(2n  1)

2l






2











c2Tn












sin

(2n 1) x
2l

 
100

A
 (x  l) (t)dx

&&Tn  n
2Tn sin

(2n 1) x
2l

 
100

A
 (x  l) (t)

 

 where

  
c2 

E


 and  n 
(2n  1)c

2l
.  Multiply by 

  
sin

(2n 1)x
2l

 and integrate 

over the length of the rod: 

  

  

&&Tn  n
2Tn  

2

l
100

A
sin

(2n  1)x
2l






 (x  l

0

l

 ) (t)

                
200

Al
sin

(2n 1)
2







 (t)

 

 which has the solution: 

  

  
Tn(t)  

200

Al n

sin
(2n 1)

2







sin nt  

 The total solution is: 

  

  
wn(x,t)   400

A(2n 1)c








sin

(2n  1)
2











n1



  

  

  
                                           sin

(2n  1)ct
2l







sin
(2n  1)x

2l










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6.66 A rotating machine sits on the second floor of a building just above a support 

column as indicated in Figure P6.66.  Calculate the response of the column in 

terms of E, A, and  of the column modeled as a bar. 

 

 Solution: Referring to equation (6.55) for the equation of a bar and summing 

forces to get the effect of the applied force yields 

  Awtt  EAwxx   (x  l)F
0
sint  

 subject to the boundary conditions 
  w(0,t)  wx (0,t)  0 .  Following the method of 

example 6.8.1, use separation of variables where the spatial function is the 

clamped-free mode shapes used in example 6.3.1: 

  
w(x,t)  X n(x)Tn (t)  (an sin nx)Tn(t),     n 

2n 1

2l
  

 Substitution into the equation of motion yields 

  
  A &&Tn(t)  EA n

2Tn(t) an sin nx   (x  l)F
0
sint  

 (the minus sign in front of EA goes away because of the second derivative of sine 

being negative). Next, let an = 1 (recalling that eigenvectors have arbitrary 

magnitude) and multiply by sin nx and integrate over the length of the beam to 

get: 

  
A &&Tn(t)  EA n

2Tn(t) l
2
 F

0
sint  (x  l)

0

l

 sin nxdx  

 The integral on the right is a bit tricky as the delta function acts at the end of the 

interval. The details are below, however integrating yields 

  
A &&Tn(t)  EA n

2Tn(t) l
2


1

2
F

0
sint

sin nl
2

 (1)
n1

F
0

2
sint  

 Dividing by the appropriate constants this simplifies to  

  
&&Tn(t)  E


 n

2Tn(t) 
(1)

n1 F
0

A
sint  

 

 This has particular solution 

  

  
Tnp (t)  (1)

n1

A
F

0

 n
2  2









 sint   where  n 

E


(2n  1)
2l

 

 Combined with the homogenous solution, the total temporal solution is 

  
Tn(t)  C

1n sin nt C
2n cos nt 

(1)
n1

A
F

0

 n
2  2









 sint  

 So the total solution is 

 

 

 

  
w(x,t)  C

1n sin nt C
2n cos nt 

(1)
n1

A
F

0

 n
2  2









 sint











n1



 sin
(2n 1)x

2l





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The following it the evaluation of the Dirac integral used about (courtesy of Jamil 

Renno) 

Start with the integral at hand 

 

  
 x  l sin mx dx

0

l

  lim
0

d x  l sin mx dx
0

l














 

 

where 

  

d x  l 
1

2
l    x  l  

0 x  l   or x  l  






 is the pulse over the 

interval
  l   , l    . 

 

Hence, the integral can be subdivided over two intervals 

 

  

 x  l sin mx dx
0

l

  lim
0

d x  l sin mx dx
0

l

  d x  l sin mx dx
l

l














 lim
0

0sin mx dx
0

l

 
1

2
sin mx dx

l

l













 lim

0

1

2
sin mx dx

l

l














 lim
0

1

2
1

m

cos mx  l

l







  lim

0

cos m l      cos ml 
2m


L'Hopital's Rule

lim
0

d
d

cos m l      cos ml  
d
d

2m 

 lim
0

1

m







sin m l     

2m


sin ml 

2
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6.67 Recall Example 6.8.2, which models the vibration of a building due to a 

rotating machine imbalance on the second floor.  Suppose that the floor is 

constructed so that the beam is clamped at one end and pinned at the other, and 

recalculate the response (recall Example 6.5.1).  Compare your solution and that 

of Example 6.8.2, and discuss the difference. 

 

 Solution: 
 

 Clamped-pinned beam conditions yield mode shapes (eigenfunctions) of the form: 

 

  
  X n(x)  an coshnx  cosnx  n (sinhnx  sinnx)   

 

 where 
  tannl  tanhnl and 

 

  

  
 n 

1.0008   for n  1

1            for n  1





 

 

 Normalize the mode shape as follows: 

 

  

  

X n
2dx  1

0

l

 

an
2

[coshnx  cosnx  n (sinhnx  sinnx)]
2

0

l

 dx  1

 

 

 From Mathematica 

 

  
  an

2  4n / 4 nl  2 n cos 2nl  2 n cosh 2nl  4cosh nl sin nl  

  

  

       4 n
2
cosh nl sin nl  sin 2nl   n

2
sin 2nl 

       4cos nl sinh nl  4 n
2
cos nl sinh nl 

       8 n sin nl sinh nl  sinh 2nl  n
2
sinh 2nl 

 

 

 The equation of motion for the system is: (constant properties) 

 

  

  
Awtt  EIwxxxx  f (x,t)  100sin3t x  l

2







 

 

 Assume a solution of the form: 
  wn(x,t)  X n(x)Tn(t)  

 

  

  
&&Tn X n 

EI
A

Tn X n 
100

A
sin3t x  l

2






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 Using the mode shapes given above: 

 

  

  
X n  n

4 X n 
 n

2

c2
X n  

 

 where 

 

  

  
n

4 
A
EI

 n
2
,   c2 

EI
A

 

 

 The equation of motion reduces to: 

 

  

  
&&Tn  n

2 X n 
100

A
sin3t x  l

2







 

 

 Multiply by Xn and integrate over the length of the beam: 

 

  

  

&&Tn  n
2Tn 

100

A
sin3t X n(x) x  l

2







dx
0

l



              
100

A
sin3tX n

l
2







 

 

  

  
               

100an

A
sin3t cosh

nl
2

 cos
nl
2

 n sinh
nl
2

 sin
nl
2



















 

 

 or: 

 

  

  

Tn(t) 
100X n

l
2







A  n
2  9 



















sin3t  

 

 The solution is then: 

 

  

  
w(x,t)  an coshnx  cosnx  n sinhnx  sinnx  

n1



  

  

  

                  
100

A  n
2  9 













X n

l
2












sin3t  
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 where an, n, and n are given above.  The free time response is stiffer for the 

clamped case as the frequencies are higher (See Table 6.4). 

 

The comparison of the solution between the two models (one with a pinned end 

and one with a fixed or clamped end) had two purposes: design and modeling.   

From the design point of view it is important to know how to construct the floor 

for a minimum value of response.  From the modeling point of view it is 

important to know how much the solution is effected by the choice of boundary 

conditions as part of the modeling. 

 

Here the comparison can be made by calculating the response and then evaluating 

it and plotting it using a truncated solution (say 3 modes, as given in Equation 

6.181) at a given point of interest (i.e. for a particular value of x).  This gives an 

accurate comparison. 

 

Next you can compare the differences in the details.  For instance the clamped-

pinned natural frequencies are lower then the clamped-clamped frequencies (just 

look at Table 6.4) because the clamped-clamped system is stiffer.  Next, one of 

these sets of frequencies is going to have a natural frequency that is closer to the 

driving frequency, and hence produce a larger response.  To make such 

comparisons, pick a value for the physical parameters (let omega = beta squared 

for instance) and check.  In this case the clamped-pinned frequency is about 3.9 

rad/s, which is much closer to the driving frequency of 3 rad/s then the clamped-

clamped first natural frequency of 4.7 rad/s.  Thus the first term in the series 

solution for the example will be larger then the corresponding term in the series 

solution for the clamped-clamped case. 
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6.68 Use the modal analysis procedure suggested at the end of Section 6.8 to calculate 

the response of a clamped free beam with a sinusoidal loading F0sint at its free 

end. 

 

 Solution: 
 
 The equation of motion is: 

 

  
  Awtt  EIwxxxx  f (x,t)  F

0
 (x  l)sint  

 

 Assume a solution of the form 
  wn(x,t)  X n(x)Tn(t)  

 

  

  
&&Tn X n 

EI
A

Tn X n 
F

0

A
 (x,l)sint  

 

 The mode shapes are given in Table 6.4 for a fixed-free beam: 

 

  
  
X n(x)  an coshnx  cosnx  n sinhnx  sinnx    

 

 Where 

 

  

  

 n 
sinhnl  sinnl
coshnl  cosnl

n
4 

A
EI

 n
2

 

 

 And 

 

  
  cosnl coshnl  1  

 

 From the unforced vibration problem: 

 

  

  

&&Tn X n 
EI
A

Tn X n  0

&&Tn

Tn

 
EI
A







X n

X n

  n
2

 

 

 Therefore 
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X n 

A
EI

 n
2 X n  n

4 X n  

 

 Substitute into the equation of motion and rearrange: 

  

  
&&Tn  n

2Tn X n 
F

0

A
 (x  l)sint  

 

 Normalize the mode shapes as follows: 

 

  

  

X n
2dx  1

0

l


an

2
coshnx  cosnx  n sinhnx  sinnx  

2

dx  1
0

l


an

2  4n / 4 nl  2 n cos 2nl  2 n cosh 2nl  4cosh nl sin nl 
 

  

  

       4 n
2
cosh nl  sin 2nl   n

2
sin 2nl 

       4cos nl sinh nl  4 n
2
cos nl sinh nl 

       8 n sin nl sinh nl  sinh 2nl  n
2
sinh 2nl 

 

 

 Multiply the equation of motion Xn(x) and integrate over the length of the beam: 

 

  

  

&&Tn  n
2Tn 

F
0

A
X n(x) (x  l)dx sint

0

l




F

0

A
X n(l)sint

 

 

 Solving: 

 

  

  
Tn(t) 

F
0

A






X n(l)

 n
2  2









 sint  

 

 The total solution is: 

 

  

  

w(x,t)  an coshnx  cosnx  n sinhnx  sinnx  
n1





                    
F

0

A






X n(l)

 n
2  2


















sint

 

 

 Where n, wn are given above and cos nl cosh nl = -1. 


