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Problems and Solutions Section 5.1 (5.1 through 5.5) 
 

5.1 Using the nomograph of Figure 5.1, determine the frequency range of vibration for which 

a machine oscillation remains at a satisfactory level under rms acceleration of 1g. 

 

 Solution: 
 

 An rms acceleration of 1 g is about 9.81 m/s
2
.  From Figure 5.1, a satisfactory level 

would occur at frequencies above 650 Hz. 

 

 

5.2 Using the nomograph of Figure 5.1, determine the frequency range of vibration for which 

a structure's rms acceleration will not cause wall damage if vibrating with an rms 

displacement of 1 mm or less. 

 

 Solution: 
 

 From Figure 5.1, an rms displacement of 1 mm (1000 µm) would not cause wall damage 

at frequencies below 3.2 Hz. 

 

 

5.3 What natural frequency must a hand drill have if its vibration must be limited to a 

minimum rms displacement of 10 µm and rms acceleration of 0.1 m/s
2
?  What rms 

velocity will the drill have? 

 

 Solution: 
 

 From Figure 5.1, the natural frequency would be about 15.8 Hz or 99.6 rad/s.  The rms 

velocity would be 1 mm/s. 

 

 

5.4 A machine of mass 500 kg is mounted on a support of stiffness 197,392,000 N/m.  Is the 

vibration of this machine acceptable (Figure 5.1) for an rms amplitude of 10 µm?  If not, 

suggest a way to make it acceptable. 

 

 Solution: 
 

 The frequency is 

 

!
n

=
k

m
=  628.3 rad/s = 100 Hz. 

 For an rms displacement of 10 µm the vibration is unsatisfactory.  To make the vibration 

satisfactory, the frequency should be reduced to 31.6 Hz.  This can be accomplished by 

reducing the stiffness and/or increasing the mass of the machine. 
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5.5 Using the expression for the amplitude of the displacement, velocity and acceleration of 

an undamped single-degree-of-freedom system, calculate the velocity and acceleration 

amplitude of a system with a maximum displacement of 10 cm and a natural frequency of 

10 Hz.  If this corresponds to the vibration of the wall of a building under a wind load, is 

it an acceptable level? 

 

 Solution: 
 

 The velocity amplitude is 

 

  

  

v(t) = A!
n

= 0.1 m( )
10

2"
#
$%

&
'(

= 0.159 m /s 

 

 The acceleration amplitude is 

 

  

  

a t( ) = A!
n

2
= 0.1 m( )

10

2"
#
$%

&
'(

2

= 0.253 m /s
2
 

 

 The rms displacement is 

  

A

2

=
0.1

2

= 0.0707 m = 70,700 µm (from equation (1.21)).  At 

10 Hz and 70,700 µm , this could be destructive to a building. 
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Problems and Solutions Section 5.1 (5.6 through 5.26) 
 

5.6 A 100-kg machine is supported on an isolator of stiffness 700 × 10
3
 N/m.  The machine 

causes a vertical disturbance force of 350 N at a revolution of 3000 rpm.  The damping 

ratio of the isolator is ζ = 0.2.  Calculate (a) the amplitude of motion caused by the 

unbalanced force, (b) the transmissibility ratio, and (c) the magnitude of the force 

transmitted to ground through the isolator. 

 

 Solution: 
 

 (a) From Window 5.2, the amplitude at steady-state is 

 

  

  

X =
F

o
/ m

!
n

2 "! 2

( )
2

+ 2#!
n
!( )

2$
%&

'
()

1/ 2
 

 

 Since 

 

!
n

=
k

m
 = 83.67 rad/s and 

 

! = 3000
2"
60

#
$%

&
'(

= 314.2 rad/s, 

 

 (b) From equation (5.7), the transmissibility ratio is 

 

  

  

F
T

F
0

=
1+ 2!r( )

2

1" r
2

( )
2

+ 2!r( )
2

 

 

 Since 

 

r =
!

!
n

 = 3.755, this becomes 

 

  

  

F
T

F
0

= 0.1368  

 

 (c) The magnitude is 

 

  

  

F
T

=
F

T

F
0

!

"#
$

%&
F

0
= 0.1368( ) 350( ) = 47.9( )  
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5.7 Plot the T.R. of Problem 5.6 for the cases ζ = 0.001, ζ = 0.025, and ζ = 1.1. 

 

 Solution: 
 

  T.R.=

  

1+ 2!r( )
2

1" r
2

( )
2

+ 2!r( )
2

  

 

 A plot of this is given for ζ = 0.001, ζ = 0.025, and ζ = 1.1. The plot is given here from 

Mathcad: 

 

 

 

 

 
 

 

 



5- 5 

5.8 A simplified model of a washing machine is illustrated in Figure P5.8.  A bundle of wet 

clothes forms a mass of 10 kg (mb) in the machine and causes a rotating unbalance.  The 

rotating mass is 20 kg (including mb) and the diameter of the washer basket (2e) is 50 

cm.  Assume that the spin cycle rotates at 300 rpm.  Let k be 1000 N/m and ζ = 0.01.  

Calculate the force transmitted to the sides of the washing machine.  Discuss the 

assumptions made in your analysis in view of what you might know about washing 

machines. 

 

 Solution: The transmitted force is given by 
  
F

T
= k

2
+ c

2
!

r

2
 where 

  

c = 2!"
n
,   "

n
=

k

m
= 7.071  rad/s, "

r
= 300

2#

60
=31.42 rad/s,  

 and X is given by equation (2.84) as 

  

X =
m

0
e

m

r
2

1! r
2

( )
2

+ 2"r( )
2

 

 Since

  

r =
!

r

!
n

= 4.443 , then X = 0.1317 m and 

  
F

T
= (0.1317) (1000)

2
+ [2(0.01)(20)(7.071)]

2
(31.42)

2
= 132.2 N  

 Two important assumptions have been made: 

i) The out-of-balance mass is concentrated at a point and 

ii) The mass is constant and distributed evenly (keep in mind that water enters and 

leaves) so that the mass actually changes. 
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5.9 Referring to Problem 5.8, let the spring constant and damping rate become variable.  The 

quantities m, mb, e and ω are all fixed by the previous design of the washing machine.  

Design the isolation system (i.e., decide on which value of k and c to use) so that the 

force transmitted to the side of the washing machine (considered as ground) is less than 

100N. 

 

 Solution: 
 

 The force produced by the unbalance is Fr = mba where a is given by the magnitude of 

equation (2.81): 

 

  

   

F
r

= m
0
!!x

r
= em

0
!

r

2
= 0.25( ) 10( ) 300

2"
60

#
$%

&
'(

)

*
+

,

-
.

2

= 2467.4 N  

 

 Since FT < 100 N, 

 

  

  

T.R. =
F

T

F
r

=
100

2467.4
= 0.0405  

 

 If the damping ratio is kept at 0.01, this becomes 

 

  

  

T.R. = 0.0405 =

1+ 2 0.01( )r!
"

#
$

2

1% r
2

( )
2

+ 2 0.01( )r!
"

#
$

2
 

 

 Solving for r yields r = 5.079. 

 

 Since 

  

r =
!

r

k / m
,  

 

  

  

k =
m!

r

2

r
2

=

20( ) 300
2"
60

#
$%

&
'(

)

*
+

,

-
.

2

5.079
2

= 765 N/m  

 and 

  
  
c = 2! km = 2 0.01( ) 765( ) 20( ) = 2.47  kg/s  
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5.10 A harmonic force of maximum value of 25 N and frequency of 180 cycles/min acts on a 

machine of 25 kg mass.  Design a support system for the machine (i.e., choose c, k) so 

that only 10% of the force applied to the machine is transmitted to the base supporting the 

machine. 

 

 Solution: From equation (5.7), 

 

  T.R.

  

= 0.1 =
1+ 2!r( )

2

1" r
2

( )
2

+ 2!r( )
2

  (1) 

 If we choose ζ = 0.1, then solving the equation (1) numerically yields r = 3.656.  Since r 

=

  

!

k / m
 then: 

 

  

  

k =
m! 2

r
2

=

25( ) 180
2"
60

#
$%

&
'(

)

*
+

,

-
.

2

3.656
2

= 665 N/m  

 and 

  
  
c = 2! km = 2 0.1( ) 665( ) 25( ) = 25.8 kg/s  
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5.11 Consider a machine of mass 70 kg mounted to ground through an isolation system of 

total stiffness 30,000 N/m, with a measured damping ratio of 0.2.  The machine produces 

a harmonic force of 450 N at 13 rad/s during steady-state operating conditions.  

Determine (a) the amplitude of motion of the machine, (b) the phase shift of the motion 

(with respect to a zero phase exciting force), (c) the transmissibility ratio, (d) the 

maximum dynamic force transmitted to the floor, and (e) the maximum velocity of the 

machine. 

 

 Solution: 
 

 (a) The amplitude of motion can be found from Window 5.2: 

 

  

  

X =
F

0
/ m

!
n

2 "! 2

( )
2

+ 2#!
n
!( )

2$
%&

'
()

1/ 2
 

 

 where 

 

!
n

=
k

m
 = 20.7 rad/s.  So, 

 

    X = 0.0229 m  

 

 (b) The phase can also be found from Window 5.2: 

 

  

   

! = tan
"1

2#$
n
$

$
n

2 "$ 2
= 22.5

!

= 0.393 rad  

 

 (c) From Eq. 5.7, with r = 

 

!

!
n

=0.628 

 

  

  

T.R. =
1+ 2!r( )

2

1" r
2

( )
2

+ 2!r( )
2

= 1.57  

 

 (d) The magnitude of the force transmitted to the ground is 

 

  
  
F

T
= T.R.( ) F

0
= 450( ) 1.57( ) = 707.6 N  

 

 (e) The maximum velocity would be 

 

  
  
! A

0
= 13( ) 0.0229( ) = 0.298 m/s  
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5.12 A small compressor weighs about 70 lb and runs at 900 rpm.  The compressor is mounted 

on four supports made of metal with negligible damping. 

 (a) Design the stiffness of these supports so that only 15% of the harmonic force 

produced by the compressor is transmitted to the foundation. 

 (b) Design a metal spring that provides the appropriate stiffness using Section 1.5 (refer 

to Table 1.2 for material properties). 

 

 Solution: 
 

 (a)  From Figure 5.9, the lines of 85% reduction and 900 rpm meet at a static deflection 

of 0.35 in.  The spring stiffness is then 

 

  

  

k =
mg

!
s

=
70 lb

0.35 in
= 200 lb/in  

 

 The stiffness of each support should be k/4 = 50 lb/in. 

 

 (b) Try a helical spring given by equation (1.67): 

 

  

  
k = 50 lb/in = 8756 N/m =

Gd
4

64nR
3

 

 

 Using R = 0.1 m, n = 10, and G = 8.0 × 10
10

 N/m
2
 (for steel) yields 

 

  

  

d =
64 8756( ) 10( ) 0.1( )

3

8.0 !10
10

"

#

$
$

%

&

'
'

1/ 4

= 0.0163 m =  1.63 cm  
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5.13 Typically, in designing an isolation system, one cannot choose any continuous value of k 

and c but rather, works from a parts catalog wherein manufacturers list isolators available 

and their properties (and costs, details of which are ignored here).  Table 5.3 lists several 

made up examples of available parts.  Using this table, design an isolator for a 500-kg 

compressor running in steady state at 1500 rev/min.  Keep in mind that as a rule of thumb 

compressors usually require a frequency ratio of r =3. 

 

 Solution: 
 

 Since 

  

r =
!

k / m
,  then 

 

  

  
k =

m! 2

r
2

=

500 1500
2"
60

#
$%

&
'(

)

*
+

,

-
.

2#

$
%
%

&

'
(
(

3
2

= 1371/10
3
 N/m  

 

 Choose isolator R-3 from Table 5.3.  So, k = 1000 × 10
3
 N/m and c = 1500 N⋅s/m. 

 

 Check the value of r: 

 

  

  

r =

1500
2!
60

"
#$

%
&'

1000 (10
3

/ 500

= 3.51  

 

 This is reasonably close to r = 3. 

 



5- 11 

5.14 An electric motor of mass 10 kg is mounted on four identical springs as indicated in 

Figure P5.14.  The motor operates at a steady-state speed of 1750 rpm.  The radius of 

gyration (see Example 1.4.6 for a definition) is 100 mm.  Assume that the springs are 

undamped and choose a design (i.e., pick k) such that the transmissibility ratio in the 

vertical direction is 0.0194.  With this value of k, determine the transmissibility ratio for 

the torsional vibration (i.e., using θ rather than x as the displacement coordinates). 

 

 Solution: 
 TABLE 5.3  Catalog values of stiffness and damping properties of various off-the-shelf 

isolators 

  

Part No.
a
 R-1 R-2 R-3 R-4 R-5 M-1 M-2 M-3 M-4 M-5 

k(10
3
N/m) 250 500 1000 1800 2500 75 150 250 500 750 

c(N⋅s/m) 2000 1800 1500 1000 500 110 115 140 160 200 

 

 
a
The "R" in the part number designates that the isolator is made of rubber, and the "M" 

designates metal.  In general, metal isolators are more expensive than rubber isolators. 

 

 With no damping, the transmissibility ratio is 

 

  

  
T.R. =  

1

r
2
!1

 

 

 where 

 

  

  

r =
!

4k / m
=

1750
2"
60

#
$%

&
'(

4k / 10

=
579.5

4k

0.0194 =
1

579.5( )
2

4k
)1

4k = 6391 N/m

 

 

 For each spring, k = 1598 N/m. 

 

 For torsional vibration, the equation of motion is 
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I !!! = "
mg

2
+ 2kr!

#

$
%

&

'
(r " 2kr! "

mg

2

#

$
%

&

'
(r  

 

 where 

  
r =

0.250 m

2
 = 0.125 m and from the definition of the radius of gyration and the 

center of percussion (see Example 1.4.6): 

 

  
  
I = mk

0

2
= 10( ) 0.1( )

2

= 0.1kg⋅m2
 

 

 So, 

  

  

0.1!!! + 4 1598( ) 0.125( )
2

! = 0

!!! + 998.6! = 0

 

 

 The frequency ratio, r, is now 

 

  

  

r =

1750
2!
60

"
#$

%
&'

998.6

= 5.80

T.R. =
1

r
2 (1

= 0.0306
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5.15 A large industrial exhaust fan is mounted on a steel frame in a factory.  The plant 

manager has decided to mount a storage bin on the same platform.  Adding mass to a 

system can change its dynamics substantially and the plant manager wants to know if this 

is a safe change to make.  The original design of the fan support system is not available.  

Hence measurements of the floor amplitude (horizontal motion) are made at several 

different motor speeds in an attempt to measure the system dynamics.  No resonance is 

observed in running the fan from zero to 500 rpm.  Deflection measurements are made 

and it is found that the amplitude is 10 mm at 500 rpm and 4.5 mm at 400 rpm.  The mass 

of the fan is 50 kg and the plant manager would like to store up to 50 kg on the same 

platform.  The best operating speed for the exhaust fan is between 400 and 500 rpm 

depending on environmental conditions in the plant. 

 

 Solution: 
 

 A steel frame would be very lightly damped, so 

 

 

  

X

Y
=

1

1! r
2

 

Since no resonance is observed between 0 and 500 rpm, r < 1. 

When 

 

! = 500
2"
60

#
$%

&
'(

= 52.36  rad/s, X = 10 mm, so 

 

 

  

10 =
Y

1!
52.36

"
n

#

$%
&

'(

2
 

 

Also, at 

 

! = 400
2"
60

#
$%

&
'(

= 41.89  rad/s, X = 4.5 mm, so 

 

 

  

4.5 =
Y

1!
41.89

"
n

#

$%
&

'(

2
 

 

Solving for ωn  and Y yields 

 

ωn = 59.57 rad/s 

Y = 2.275 mm 

The stiffness is k = mωn
2
 = (50)(59.57)

2
 = 177,453 N/m. If an additional 50 kg is added 

so that m = 100 kg, the natural frequency becomes 

 

  

!
n

=
177,453

100
= 42.13 rad/s = 402.3 rpm 
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This would not be advisable because the normal operating range is 400 rpm to 

500 rpm, and resonance would occur at 402.3 rpm. 
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5.16  A 350-kg rotating machine operates at 800 cycles/min.  It is desired to reduce the 

transmissibility ratio by one-fourth of its current value by adding a rubber vibration 

isolation pad.  How much static deflection must the pad be able to withstand? 

 

 Solution: 
 

 From equation (5.12), with R = 0.25: 

 

  

  

r =
2 ! 0.25

1! 0.25
= 1.528 =

"

k / m
=

800
2#
60

$
%&

'
()

k / 350

k = 1.053*10
6
 N/m

 

 

 The static deflection is 

 

  

  

!
s

=
mg

k
=

350( ) 9.81( )

1.053"10
6

= 3.26 mm  

 

5.17 A 68-kg electric motor is mounted on an isolator of mass 1200 kg.  The natural frequency 

of the entire system is 160 cycles/min and has a measured damping ratio of ζ = 1.  

Determine the amplitude of vibration and the force transmitted to the floor if the out-of-

balance force produced by the motor is F(t) = 100 sin (31.4t) in newtons. 

 

 Solution: 
 

 The amplitude of vibration is given in Window 5.2 as 

 

  

  

A
0

=
F

0
/ m

!
n

2 "! 2

( )
2

+ 2#!
n
!( )

2$
%&

'
()

1/ 2
 

 

 where F0 = 100 N, m = 1268 kg, ω = 31.4 rad/s, and 

  

!
n

= 160
2"
60

#
$%

&
'(

= 16.76  rad/s.  So, 

 

    X = 6.226 !10
"5

 m  

 

 The transmitted force is given by Eq. (5.6), with 

  
r =

31.4

16.76
= 1.874  
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F
T

= F
0

1+ 2!r( )
2

1" r
2

( )
2

+ 2!r( )
2

= 85.97 N  
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5.18 The force exerted by an eccentric (e = 0.22 mm) flywheel of 1000 kg, is 600 cos(52.4t) in 

newtons.  Design a mounting to reduce the amplitude of the force exerted on the floor to 

1% of the force generated.  Use this choice of damping to ensure that the maximum force 

transmitted is never greater than twice the generated force. 

 

 Solution: 
 

 Two conditions are given.  The first is that T.R. = 2 at resonance (r = 1), and the second 

is that T.R. = 0.01 at the driving frequency.  Use the first condition to solve for ζ.  From 

equation (5.7), 

  

  

T .R. = 2 =
1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

! = 0.2887

 

 

 At the frequency, 

  

r =
52.4

k / 1000

, so 

 

  

  

T .R. = 0.01 =

1+ 2 0.2887( )r!
"

#
$

2

1% r
2

( )
2

+ 2 0.2887( )r!
"

#
$

2

!

"

&
&
&

#

$

'
'
'

r = 57.78 =
52.4

k / 1000

k = 822.6 N/m

 

 

 Also, 

 

  
  c = 2! km = 523.6 kg/s  
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5.19 A rotating machine weighing 4000 lb has an operating speed of 2000 rpm.  It is desired to 

reduce the amplitude of the transmitted force by 80% using isolation pads.  Calculate the 

stiffness required of the isolation pads to accomplish this design goal. 

 

 Solution: 
 

 Using Figure 5.9, the lines of 2000 rpm and 80% reduction meet at 
 
!

s
= 0.053 in.  The 

spring stiffness should be 

 

  

  

k =
mg

!
s

=
4000 lb

0.053 in
= 75,472 lb/in  
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5.20 The mass of a system may be changed to improve the vibration isolation characteristics.  

Such isolation systems often occur when mounting heavy compressors on factory floors.  

This is illustrated in Figure P5.20.  In this case the soil provides the stiffness of the 

isolation system (damping is neglected) and the design problem becomes that of choosing 

the value of the mass of the concrete block/compressor system.  Assume that the stiffness 

of the soil is about k = 2.0 × 10
7
 N/m and design the size of the concrete block (i.e., 

choose m) such that the isolation system reduces the transmitted force by 75%.  Assume 

that the density of concrete is ρ = 23,000 N/m
3
.  The surface area of the cement block is 4 

m
2
.  The steady-state operating speed of the compressor is 1800 rpm. 

 

 Solution: 
 

 Using Figure 5.9, the lines of 75% reduction and 1800 rpm cross at δs = 0.053 in = 

0.1346 cm.  Thus the weight of the block should be 

 

  
  
W

T
= m + M( )g = k!

s
= 2.0 "10

7
0.1346 "10

#2

( ) = 26,924 N  

 

 The compressor weights mg = (2000 lb)(4.448222 N/lb) = 8896.4 N. The concrete block 

should weight W = WT – 8896.4 = 18,028 N.  The volume of the block needs to be 

 

  

  

V =
W

!
=

18,028

23,000
= 0.7838 m

2
 

 

 Assume the surface area is part exposed to the surface.  Let the top be a meters on each 

side (square) and b meters deep.  The volume and surface area equations are 

 

  

  

A = 4m
2

= a
2

V = 0.7838 m
3

= a
2
b

 

 

 Solving for a and b yields 

 

  

  

a = 2 m

b = 0.196 m

 



5- 20 

5.21 The instrument board of an aircraft is mounted on an isolation pad to protect the panel 

from vibration of the aircraft frame.  The dominant vibration in the aircraft is measured to 

be at 2000 rpm.  Because of size limitation in the aircraft's cabin, the isolators are only 

allowed to deflect 1/8 in.  Find the percent of motion transmitted to the instrument pane if 

it weights 50 lb. 

 

 Solution: 
 

 From equation (2.71), with negligible damping, 

 

  

  

X

Y
=

1

1! r
2

( )
2

 

 

 This is the same as the equation that yields Figure 5.9.  The lines of 2000 rpm and δs = 

0.125 in meet at 93%.  So only 7% of the plane's motion is transmitted to the instrument 

panel. 

 

 

5.22 Design a base isolation system for an electronic module of mass 5 kg so that only 10% of 

the displacement of the base is transmitted into displacement of the module at 50 Hz.  

What will the transmissibility be if the frequency of the base motion changes to 100 Hz?  

What if it reduces to 25 Hz? 

 

 Solution: Using Figure 5.9, the lines of 90% reduction and ω = (50 Hz)(60) = 3000 rpm 

meet at δs = 0.042 in = 0.1067 cm.  The spring stiffness is then 

 

  

  

k =
mg

!
s

=
5( ) 9.81( )

0.001067
= 45,979 N/m  

 

 The natural frequency is   ! = k / m  = 95.89 rad/s. 

 At ω = 100 Hz, 

  
r =

100 2!( )

95.89
= 6.552, so the transmissibility ratio is 

 

  

  
T .R. =

1

r
2
!1

= 0.0238  

 

 At ω = 25 Hz, 

  
r =

100 2!( )

95.89
= 1.638, so the transmissibility ratio is 

 

  

  
T .R. =

1

r
2
!1

= 0.594  
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5.23 Redesign the system of Problem 5.22 such that the smallest transmissibility ratio possible 

is obtained over the range 50 to 75 Hz. 

 

 Solution: 
 

 If the deflection is limited, say 0.1 in, then the smallest transmissibility ratio in the 

frequency range of 50 to 75 Hz (3000 to 4500 rpm) would be 0.04 (96% reduction).  The 

stiffness would be 

 

  

  

k =
mg

!
s

=
5( ) 9.81( )

0.1( ) 2.54( ) 0.01( )
= 19,311 N/m  

 

 

 

 

5.24 A 2-kg printed circuit board for a computer is to be isolated from external vibration of 

frequency 3 rad/s at a maximum amplitude of 1 mm, as illustrated in Figure P5.24.  

Design an undamped isolator such that the transmitted displacement is 10% of the base 

motion.  Also calculate the range of transmitted force. 

 

 Solution: 
 

 Using Figure 5.9, the lines of 90% reduction and ω = 3(2π)(60)=1131 rpm meet at δs = 

0.3 in = 0.762 cm.  The stiffness is 

 

  

  

k =
mg

!
s

=
(2)(9.81)

0.00762
= 2574.8 N/m  

 

 From Window 5.1, the transmitted force would be 

 

  

  

F
T

= kYr
2

1

1! r
2

"
#$

%
&'

 

 

 Since Y = 0.001 m and r = 

 

3

2574.8 / 2

= 0.08361 

 

  
  
F

T
= 0.0181 N  
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5.25 Change the design of the isolator of Problem 5.24 by using a damping material with 

damping value ζ chosen such that the maximum T.R. at resonance is 2. 

 

 Solution: 
 

 At resonance, r = 1 and T.R. = 2, so 

 

  

 

2 =
1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

 

 

 Solving for ζ yields ζ = 0.2887.  Also T.R. = 0.01 at ω = 3 rad/s, so 

 

  

  

0.01 =
1+ 0.3333r

2

1! r
2

( )
2

+ 0.3333r
2

"

#

$
$
$

%

&

'
'
'

r = 6.134

 

 

 Solving for k, 

 

  

  

k =
m!

2

r
2

=
2( ) 3( )

2

6.134
2

= 0478 N/m  

 

 The damping constant is 

 

  
  c = 2! km = 0.565 kg/s  

 

 

5.26 Calculate the damping ratio required to limit the displacement transmissibility to 4 at 

resonance for any damped isolation system. 

 

 Solution: 
 

 At resonance r = 1, so 

 

  

  

T .R. = 4 =
1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

! = 0.129
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Problems and Solutions Section 5.3 (5.27 through 5.36) 
 
5.27 A motor is mounted on a platform that is observed to vibrate excessively at an operating 

speed of 6000 rpm producing a 250-N force.  Design a vibration absorber (undamped) to 

add to the platform.  Note that in this case the absorber mass will only be allowed to 

move 2 mm because of geometric and size constraints. 

 

 Solution: 
 

 The amplitude of the absorber mass can be found from equation (5.22) and used to solve 

for ka: 

 

  

  

X
a

= 0.002 m =
F

0

k
a

=
250

k
a

k
a

= 125,000 N/m

 

 

 From equation (5.21), 

 

  

  

! 2
=

k
a

m
a

m
a

=
k

a

! 2
=

125,000

6000
2"
60

#
$%

&
'(

)

*
+

,

-
.

2
= 0.317 kg
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5.28 Consider an undamped vibration absorber with β = 1 and µ = 0.2.  Determine the 

operating range of frequencies for which 
  
Xk / F

0
! 0.5. 

 

 Solution: 
 

 From equation (5.24), with β = 

  

!
a

!
p

= 1(i.e., !
a

= !
p
) and µ = 0.2,  

 

  

  

Xk

F
0

=

1!
"
"

a

#

$%
&

'(

1+ 0.2 1( )
2

!
"
"

a

#

$%
&

'(

2)

*

+
+

,

-

.

.
1!

"
"

a

#

$%
&

'(

2)

*

+
+

,

-

.

.
! 0.2 1( )

2

=

1!
"
"

a

#

$%
&

'(

2

"
"

a

#

$%
&

'(

4

! 2.2
"
"

a

#

$%
&

'(

2

+ 1

 

 

 For 

  

Xk

F
0

 = 0.5, this yields 

 

  

  

0.5
!
!

a

"

#$
%

&'

4

( 0.1
!
!

a

"

#$
%

&'

2

( 0.5 = 0  

 

 Solving for the physical solution gives 

 

  

  

!
!

a

"

#$
%

&'
= 1.051  

 

 Solving for 

 

!
!

a

"

#$
%

&'
 gives 

 

  

  

!
!

a

"

#$
%

&'
= 0.955,  1.813  
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 Comparing this to the sketch in Figure 5.15, the values for which 

  

Xk

F
0

! 5 are 

  
  
0.955!

a
"! " 1.051!

a
  and  ! # 1.813!

a
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5.29 Consider an internal combustion engine that is modeled as a lumped inertia attached to 

ground through a spring.  Assuming that the system has a measured resonance of 100 

rad/s, design an absorber so that the amplitude is 0.01 m for a (measured) force input of 

10
2 
N. 

 

 Solution: 
 

 The amplitude of the absorber mass can be found from equation (5.22) and used to solve 

for ka: 

 

  

  

X
a

= 0.01m =
F

0

k
a

=
100

k
a

k
a

= 10,000 N/m

 

 

 Choose ω = 2ωn = 200 rad/s.  From equation (5.21), 

 

  

  

m
a

=
k

a

!
2

=
10,000

200
2

= 0.25 kg  

 

 

5.30 A small rotating machine weighing 50 lb runs at a constant speed of 6000 rpm.  The 

machine was installed in a building and it was discovered that the system was operating 

at resonance.  Design a retrofit undamped absorber such that the nearest resonance is at 

least 20% away from the driving frequency. 

 

 Solution: 
 

 By observing Figure 5.15, the values of µ = 0.25 and β = 1 result in the combined 

system's natural frequencies being 28.1% above the driving frequency and 21.8% below 

the driving frequency (since 

 

! =
"

a

"
p

 = 1 and ω = ωp).  So the absorber should weigh 

 

  
  
m

a
= µm = 0.25( ) 50 lb( ) = 12.5 lb  

 

 and have stiffness 

 

  

  

k
a

= m
a
!

a

2
= m

a
! 2

= 12.5 lb( ) 4.448222 N/lb( )
1

9.81

"
#$

%
&'

6000( )
2 2(

60

"
#$

%
&'

2

k
a

= 2.24 )10
6
 N/m = 12,800 lb/in
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5.31  A 3000-kg machine tool exhibits a large resonance at 120 Hz.  The plant manager 

attaches an absorber to the machine of 600 kg tuned to 120 Hz.  Calculate the range of 

frequencies at which the amplitude of the machine vibration is less with the absorber 

fitted than without the absorber. 

 

 Solution: 
 

 For 

  

Xk

F
0

 = 1, equation (5.24) yields 

 

  

  

1+ µ
!

a

!
p

"

#
$

%

&
'

2

(
!
!

a

"

#$
%

&'

2)

*

+
+

,

-

.

.
1(

!
!

a

"

#$
%

&'

2)

*

+
+

,

-

.

.
( µ

!
a

!
p

"

#
$

%

&
'

2

= 1(
!
!

a

"

#$
%

&'

2

 

 

 Since 

  
µ =

m
a

m
=

600

3000
= 0.2,  this becomes 

  

!
!

a

"

#$
%

&'
= 0,  1.0954. 

 

 For 

  

Xk

F
0

 = -1, equation (5.24) yields 

 

  

  

1+ µ
!

a

!
p

"

#
$

%

&
'

2

(
!
!

p

"

#
$

%

&
'

2)

*

+
+

,

-

.

.
1(

!
!

a

"

#$
%

&'

2)

*

+
+

,

-

.

.
( µ

!
a

!
p

"

#
$

%

&
'

2

=
!
!

a

"

#$
%

&'

2

(1

!
a

!
p

"

#
$

%

&
'

2

!
!

a

"

#$
%

&'

4

( 2 + µ + 1( )
!

a

!
p

"

#
$

%

&
'

2)

*

+
+

,

-

.

.
!
!

a

"

#$
%

&'

2

+ 2 = 0

 

 

 Since 
  
!

a
= !

p
,  

  

  

!
!

a

"

#$
%

&'

4

( 3.2
!
!

a

"

#$
%

&'

2

+ 2 = 0

!
!

a

"

#$
%

&'
= 0.9229,1.5324

 

 

 The range of frequencies at which 

  

Xk

F
0

 > 1 is 

  
  
0 <! < 0.9229!

a
 and 1.0954!

a
<! < 1.5324!

a
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 Since ωa = ωp, 

  0 < ω < 695.8 rad/s and 825.9 < ω < 1155.4 rad/s 
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5.32 A motor-generator set is designed with steady-state operating speed between 2000 and 

4000 rpm.  Unfortunately, due to an imbalance in the machine, a large violent vibration 

occurs at around 3000 rpm.  An initial absorber design is implemented with a mass of 2 

kg tuned to 3000 rpm.  This, however, causes the combined system natural frequencies 

that occur at 2500 and 3000 rpm.  Redesign the absorber so that ω1 < 2000 rpm and ω2 > 

4000 rpm, rendering the system safe for operation. 

 

 Solution: The mass of the primary system can be computed from equation (5.25).  Since 

 

! =
"

a

"
p

 = 1 and 

  

!
1

!
a

"

#$
%

&'

2

=
2500

3000

"
#$

%
&'

2

= 0.6944,  then 

 

  

  

1( )
2

0.6944( )
2

! 1+ 1( )
2

1+ µ( )"
#$

%
&'

0.6944( ) + 1 = 0

µ = 0.1344

m =
m

a

µ
=

2

0.1344
= 14.876 kg

 

 

 By increasing µ to 0.55 and decreasing β to 0.89, the design goal can be achieved.  The 

mass and stiffness of the absorber should be 

 

  

  

m
a

= µm = 0.55( ) 14.876( ) = 8.18 kg

k
a

= m
a
!

a

2
= m

a
" 2!

p

2
= 8.18( ) 0.89( )

2

3000
2#
60

$
%&

'
()

*

+
,

-

.
/

2

= 639,600 N/m

 

 

5.33 A rotating machine is mounted on the floor of a building.  Together, the mass of the 

machines and the floor is 2000 lb.  The machine operates in steady state at 600 rpm and 

causes the floor of the building to shake.  The floor-machine system can be modeled as a 

spring-mass system similar to the optical table of Figure 5.14.  Design an undamped 

absorber system to correct this problem.  Make sure you consider the bandwidth. 

 

 Solution: To minimize the transmitted force, let ωa = ω = 600 rpm.  Also, since the floor 

shakes at 600 rpm, it is assumed that ωp = 600 rpm so that β = 1.  Using equation (5.26) 

with µ = 0.1 yields 

 

  

  

!
n

!
a

= 0.8543,  1.1705  

 

 So the natural frequencies of the combined system are ω1 = 512.6 rpm and ω2 = 702.3 

rpm.  These are sufficiently enough away from 600 rpm to avoid problems.  Therefore 

the mass and stiffness of the absorber are 
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m
a

= µm = 0.1( ) 2000 lbm( ) = 200 lbm

k
a

= m
a
!

a

2
= 200 lbm( )

slug

32.1174 lbm

"
#$

%
&'

600
2(
60

"
#$

%
&'

)

*
+

,

-
.

2

= 25,541 lb/ft
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5.34 A pipe carrying steam through a section of a factory vibrates violently when the driving 

pump hits a speed of 300 rpm (see Figure P5.34).  In an attempt to design an absorber, a 

trial 9-kg absorber tuned to 300 rpm was attached.  By changing the pump speed it was 

found that the pipe-absorber system has a resonance at 207 rpm.  Redesign the absorber 

so that the natural frequencies are 40% away from the driving frequency. 

 

 Solution: 
 

 The driving frequency is 300 rpm.  40% above and below this frequency is 180 rpm and 

420 rpm.  This is the design goal. 

 

 The mass of the primary system can be computed from equation (5.25).  Since 

 

! =
"

a

"
p

= 1 and 

  

!
1

!
a

"

#$
%

&'

2

=
207

300

"
#$

%
&'

2

= 0.4761,  then 

 

  

  

1( )
2

0.4761( )
2

! 1+ 1( )
2

1+ µ( )"
#$

%
&'

0.4761( ) + 1 = 0

µ = 0.5765

m =
m

a

µ
=

9

0.5765
= 15.611 kg

 

 

 By increasing µ to 0.9 and decreasing β to 0.85, the design goal can be achieved.  The 

mass and stiffness of the absorber should be 

 

  

  

m
a

= µm = 0.9( ) 15.611( ) = 14.05 kg

k
a

= m
a
!

a

2
= m

a
" 2!

p

2
= 14.05( ) 0.85( )

2

300
2#
60

$
%&

'
()

*

+
,

-

.
/

2

= 10,020 N/m

 

 

 Note that µ is very large, which means a poor design. 
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5.35 A machine sorts bolts according to their size by moving a screen back and forth using a 

primary system of 2500 kg with a natural frequency of 400 cycle/min.  Design a vibration 

absorber so that the machine-absorber system has natural frequencies below 160 

cycles/min and above 320 rpm.  The machine is illustrated in Figure P5.35. 

 

 Solution: 
 

 Using Equation (5.26), and choose (by trial and error) β = 0.4 and µ = 0.01, the design 

goal of ω1 < 160 rpm and ω2 > 320 rpm can be achieved.  The actual values are ω1 = 

159.8 rpm and ω2 = 400.4 rpm.  The mass and stiffness of the absorber should be 

 

  

  

m
a

= µm = 0.01( ) 2500( ) = 25 kg

k
a

= m
a
!

a

2
= m

a
" 2!

[

2
= 25( ) 0.2( )

2

400
2#
60

$
%&

'
()

*

+
,

-

.
/

2

= 1754.6 N/m
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5.36 A dynamic absorber is designed with µ = 1/4 and ωa = ωp.  Calculate the frequency range 

for which the ratio
  
Xk / F

0
< 1. 

 

 Solution: 
 

 From Equation (5.24), with β = 

 

!
a

!
p

 = 1 and µ = 0.25, 

 

  

  

Xk

F
0

=

1!
"
"

a

#

$%
&

'(

2

1+ 0.25 1
2

( ) !
"
"

a

#

$%
&

'(

2)

*

+
+

,

-

.

.
1!

"
"

a

#

$%
&

'(

2)

*

+
+

,

-

.

.
! 0.25 1( )

2

=

1!
"
"

a

#

$%
&

'(

2

"
"

a

#

$%
&

'(

4

! 2.25
"
"

a

#

$%
&

'(

2

+ 1

 

 

 For

  

Xk

F
0

= 1 , this yields 

 

  

  

!
!

a

"

#$
%

&'

4

(1.25
!
!

a

"

#$
%

&'

2

= 0

!
!

a

"

#$
%

&'
= 0,  1.118

 

 

 For 

  

Xk

F
0

 = 1, this yields 

  

  

!
"
"

a

#

$%
&

'(

4

+ 3.25
"
"

a

#

$%
&

'(

2

! 2 = 0

"
"

a

= 0.9081,  1.557
#

$%
&

'(

 

 

 Comparing this to the sketch in Figure 5.15, the values for which 

  

Xk

F
0

< 1  are 
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0.9081!

a
<! < 1.118!

a
 and ! > 1.557!

a
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Problems and Solutions Section 5.4 (5.37 through 5.52) 
 

5.37 A machine, largely made of aluminum, is modeled as a simple mass (of 100 kg) attached 

to ground through a spring of 2000 N/m.  The machine is subjected to a 100-N harmonic 

force at 20 rad/s.  Design an undamped tuned absorber system (i.e., calculate ma and ka) 

so that the machine is stationary at steady state.  Aluminum, of course, is not completely 

undamped and has internal damping that gives rise to a damping ratio of about ζ = 0.001.  

Similarly, the steel spring for the absorber gives rise to internal damping of about ζa = 

0.0015.  Calculate how much this spoils the absorber design by determining the 

magnitude X using equation (5.32). 

 

 Solution: 
 

 From equation (5.21), the steady-state vibration will be zero when 

 

  

  

!
2

=
k

a

m
a

 

 

 Choosing µ = 0.2 yields 

 

  

  

m
a

= µm = 0.2( ) 100( ) = 20 kg

k
a

 
= m

a
!

a

2
= 20( ) 20( )

2

= 8000 N/m

 

 

 With damping of ζ = 0.001 and ζa = 0.0015, the values of c and ca are 

 

  

  

c = 2! km = 2 0.001( ) 2000( ) 100( ) = 0.894 kg/s

c
a

= 2!
a

k
a
m

a
= 2 0.0015( ) 8000( ) 20( ) = 1.2 kg/s

 

 

 From equation (5.32), 

 

  

  

X =

k
a
! m

a
"

2

( ) F
0

+ c
a
"F

0
j

det K !"
2
M +" jC( )

 

 

 Since 

 

  

  

M =
100 0

0 20

!

"
#

$

%
& C =

2.0944 '1.2

'1.2 1.2

!

"
#

$

%
& K =

10,000 '8000

'8000 8000

!

"
#

$

%
&  

 

 the denominator is –6.4×10
7
-1.104×10

6
j, so the value of X is 
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X =

k
a
m

a
!

2

( ) F
0

+ c
a
!F

0
j( )

det K "!
2
M +! jC( )

 

 

 Using Window 5.4, the magnitude is 

 

  
  
X = 3.75!10

"5
 m  

 

 This is a very small displacement, so the addition of internal damping will not affect the 

design very much. 

 

 

 

5.38 Plot the magnitude of the primary system calculated in Problem 5.37 with and without 

the internal damping.  Discuss how the damping affects the bandwidth and performance 

of the absorber designed without knowledge of internal damping. 

 

 Solution: From Problem 5.37, the values are 

 

  

  

m = 100 kg m
a

= 20 kg

c = 0.8944 kg/s c
a

= 1.2 kg/s

k = 2000 N/m k
a

= 8000 N/m

F
0

= 100 N ! = 20 rad/s

 

 

 Using Equation (5.32), the magnitude of X is plotted versus ω with and without the 

internal damping (c).  Note that X is reduced when X < F0/k = 0.05 m and magnified 

when X > 0.05 m. The plots of the two values of X show that there is no observable 

difference when internal damping is added.  In this case, knowledge of internal damping 

is not necessary. 
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5.39 Derive Equation (5.35) for the damped absorber from Eqs. (5.34) and (5.32) along with 

Window 5.4.  Also derive the nondimensional form of Equation (5.37) from Equation 

(5.35).  Note the definition of ζ given in Equation (5.36) is not the same as the ζ values 

used in Problems 5.37 and 5.38. 

 

 Solution: 
 

 Substituting Equation (5.34) into the denominator of Equation (5.32) yields 

 

  

  

X

F
0

=

k
a
! m

a
" 2

( ) + c
a
" j

!m" 2
+ k( ) !m

a
" 2

+ k
a( )#

$
%
& + k ! m + m

a( )"
2

( )c
a
"#

$
%
&

j
 

 

 Referring to Window 5.4, the value of 

  

X

F
0

 can be found by noting that 

 

 

  

A
1

= k
a
! m

a
"

B
1

= c
a
"

A
2

= !m"
2

+ k( ) !m
a
"

2
+ k

a( ) ! m
a
k

a
"

2

B
2

= k ! m + m
a( )"

2

( )c
a
"

 

 

 Since 

 

  

  

X

F
0

=
A

1

2
+ B

1

2

A
2

2
+ B

2

2
 

 

 then 

 

  

  

X
2

F
0

2
=

k
a
! m

a
" 2

( )
2

+ c
a

2" 2

!m" 2
+ k( ) !m

a
" 2

+ k
a( ) ! m

a
k

a
" 2#

$
%
&

2

+ k ! m + m
a( )"

2#
$

%
&

2

c
a

2"2

 

 

 which is Equation (5.35) 

 

 To derive Equation (5.37), substitute 
  
c

a
= 2!m

a
"

p
,k

a
= m

a
"

a

2
,  and m

a
= µm,  then 

multiply by k
2
 to get 
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X
2
k

2

F
0

2
=

k
2 !

a

2 "! 2

( )
2

+ 4# 2!
p

2!
dr

2
k

2

k " m! 2

( ) !
a

2 "! 2

( ) " µm
a

2! 2$
%

&
'

2

+ k " 1" µ( )m! 2$% &'
2

4( )# 2!
p

2! 2

 

 

 Substituting 
  
k = m!

p

2
,! = r!

p
,  and !

a
= "!

p
 yields 

 

  

X
2
k

2

F
0

2
=

m
2!

p

4 " 2!
p

2 # r
2!

p

2( ) + 4$ !
p

2!
dr

2
k

2

!
p

2 # r
2!

p

2( ) " 2!
p

2 # r
2!

p

2( )m # µm" 2
r

2!
p

4%
&

'
(

2

+ m!
p

2 # 1# µ( )mr
2!

p

2%
&

'
(

2

4( )$ 2
r

2!
p

2

 

 

 Canceling m
2
 and 

  
!

p

8
 yields 

 

  

  

X
2
k

2

F
0

2
=

! 2 " r
2

( )
2

+ 2#r( )
2

1" r
2

( ) ! 2 " r
2

( ) " µr
2! 2$

%
&
'

2

+ 2#r( )
2

1" r
2 " µr

2

( )
2

 

 

 Rearranging and taking the square root gives the form of Equation (5.37): 

 

  

  

Xk

F
0

=

2!r( )
2

+ r
2 " # 2

( )
2

2!r( )
2

r
2 "1+ µr

2

( )
2

+ µr
2# 2 " r

2 "1( ) r
2 " # 2

( )$
%

&
'

2
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5.40 (Project)  If you have a three-dimensional graphics routine available, plot Equation (5.37) 

[i.e., plot (X/Δ) versus both r and ζ for 0 < ζ < 1 and 0 < r < 3, and a fixed µ and β.]  

Discuss the nature of your results.  Does this plot indicate any obvious design choices?  

How does it compare to the information obtained by the series of plots given in Figures 

5.19 to 5.21?  (Three-dimensional plots such as these are becoming commonplace and 

have not yet been taken advantage of fully in vibration absorber design.) 

 Solution: To compare to Figure 5.18, the values µ = 0.25 and β = 0.8 in Equation (5.37) 

yield 

 

  

  

X

!
=

2"r( )
2

+ r
2 # 0.64( )

2

2"r( )
2

1.25r
2 #1( )

2

+ 0.16r
2 # r

2 #1( ) r
2 # 0.64( )$

%
&
'

2
 

 

 This is plotted for 0.5 < r < 2 and 0.5 < ζ < 1.  A Mathcad plot is given. 
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 This supplies much more information than two-dimensional plots. 
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5.41 Repeat Problem 5.40 by plotting 
  
X / !  versus r and β for a fixed ζ and µ. 

 

 Solution:  Using Equation (5.37) with µ = 0.25 and ζ 0.1 yields 

 

  

  

X

!
=

0.04r
2

+ r
2 " # 2

( )
2

0.04r
2

1.25r
2 "1( )

2

+ 0.25r
2# 2 " r

2 "1( ) r
2 " # 2

( )$
%

&
'

2
 

 

 This is plotted for 0.5 < r < 1.25 and 0 < β < 3. 
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5.42 (Project) The full damped vibration absorber equations (5.32) and (5.33) have not 

historically been used in absorber design because of the complicated nature of the 

complex arithmetic involved.  However, if you have a symbolic manipulation code 

available to you, calculate an expression for the magnitude X by using the code to 

calculate the magnitude and phase of Equation (5.32).  Apply your results to the absorber 

design indicated in Problem 5.37 by using ma, ka and ζa as design variables (i.e., design 

the absorber). 

 

 Solution: 
 

 Equation (5.32): 

 

  

  

X =

k
a
! m

a
"

2

( ) F
0

+ c
a
"F

0

det K !"
2
M +" jC( )

 

 

 where M, C and K are defined above Equation (5.32). 

 

 Using Equation (5.34) for the denominator, then calculating the magnitude yields 

 

  

X =

k
a
! m

a
" 2

( ) F
0

2
+ c

a

2" 2
F

0

2

k ! m" 2

( ) k
a
! m

a
" 2

( ) ! m
a
k

a
+ c

a
c( )"

2#
$

%
&

2

+ k
a
c + kc

a
! c

a
m + m

a( ) + cm
a( )"

2#
$

%
&

2

" 2

 

 

 The phase is 

  

 

! = tan
"1

Im

Re

#
$%

&
'(

 

 where the imaginary part, denoted Im, is 

  
  
Im = !ck

a

2
l + 2k

a
m

a
! 2k

a
km

a
! k

a

2
m

a( )"
2
 

 and the real part, denoted Re, is 

  

  

Re = k
a

2
k + c

a

2
! k

a

2
m ! 2k

a
km

a
! k

a

2
m

a( )"
2

+ k + k
a( )m

a

2
+ 2k

a
mm

a
! c

a

2
m + m

a( )( )"
4
! mm

a

2
"

6
 

 From Problem 5.37 and its solution, the values are 

m = 100 kg ma = 20 kg 

c = 0.8944 kg/s ca = 1.2 kg/s 

k = 2000 N/m ka = 8000 N/m 

F0 = 100 N ω = 20 rad/s 

 

 Substituting these values into the magnitude equation yields 

  
  
X = 3.75!10

"5
 m  

 

 This is the same result as given in Problem 5.37. 
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5.43 A machine of mass 200 kg is driven harmonically by a 100-N force at 10 rad/s.  The 

stiffness of the machine is 20,000 N/m.  Design a broadband vibration absorber [i.e., 

Equation (5.37)] to limit the machine's motion as much as possible over the frequency 

range 8 to 12 rad/s.  Note that other physical constraints limit the added absorber mass to 

be at most 50 kg. 

 

 Solution: 
 

 Since 

 

!
p

=
k

m
 = 10 rad/s, then r ranges from 

 

  

  

8

10
! r !

12

10

0.8 ! r ! 1.2

 

 

 By observing Figure 5.21, the values of µ = 0.25, β = 0.8, and ζ = 0.27 yield a reasonable 

solution for the required range of r.  So the values of ma, ca, and ka are 

 

 ma = µm = (0.25)(200) = 50 kg 

 ca = 2ζmaωa = 2(0.27)(50)(10) = 270 kg/s 

 ka = ma!a"
2! p

2
= (50)(10)(0.8)

2
(10)

2
= 32000 N/m  

 

 Note that an extensive optimization could have been used to solve for µ, β, and ζ, but this 

is not covered until section 5.5. 
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5.44 Often absorber designs are afterthoughts such as indicated in example 5.3.1.  Add a 

damper to the absorber design of Figure 5.17 to increase the useful bandwidth of 

operation of the absorber system in the event the driving frequency drifts beyond the 

range indicated in Example 5.3.2. 

 

 Solution: 
 

 From Examples 5.3.1 and 5.3.2, 

 

  

  

m = 73.16 kg m
a

= 18.29 kg

k = 2600 N/m k
a

= 6500 N/m

7.4059 <! < 21.0821 rad/s

 

 

 The values µ and β are 

 

  

  

µ =
m

a

m
= 0.25

! =
"

a

"
p

=
k

a
/ m

a

k / m
= 3.1623

 

 

 Choosing ζ = 0.2 (by trial and error) will allow ω to go beyond 21.0821 rad/s without 

  

X
k

F
0

 going above 1.  However, it will not prevent 

  

Xk

F
0

 from going above 1 when ω < 

7.4089 rad/s.  The value of ca is 

 

  

  

c
a

= 2!m
a
"

p
= 2(0.2)(18.29)

2600

73.16
= 43.61 kg/s  
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5.45 Again consider the absorber design of Example 5.3.1.  If the absorber spring is made of 

aluminum and introduces a damping ratio of ζ = 0.001, calculate the effect of this on the 

deflection of the saw (primary system) with the design given in Example 5.3.1. 

 

 Solution: 
 

 From Examples 5.3.1 and 5.3.2, 

 

  

  

X =

k
a
! m

a
"

2

( ) F
0

+ c
a
"F

0
j

det K !"
2
M +" jC( )

 

 

 where 
  
c

a
= 2! k

a
m

a
= 2 0.001( ) 6500( ) 18.29( ) = 0.6896 kg/s  

 

 Since 

 

 

  

M =
73.16 0

0 18.29

!

"
#

$

%
& C =

0.6896 '0.6896

'0.6896 0.6896

!

"
#

$

%
& K =

9100 '6500

'6500 6500

!

"
#

$

%
&  

 

 The denominator is -1.4131×10
7
-12,363j when ω = 7.4089 rad/s, 

 

  
  
X

1
= 0.00499 m  

 

 and when ω = 21.0821 rad/s, 

 

  
  
X

2
= 0.00512 m  

 

 The nondimensional values become 

 

  

  

X
j
k

F
0

= 0.999

X
2
k

F
0

= 1.023

 

 

 There is very little effect on the saw deflection since the values of 

  

Xk

F
0

 are still 

approximately 1 at the endpoints of the driving frequency range. 
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5.46 Consider the undamped primary system with a viscous absorber as modeled in Figure 

5.22 and the rotational counterpart of Figure 5.23.  Calculate the magnification factor 

  
Xk / M

O
 for a 400 kg compressor having a natural frequency of 16.2 Hz if driven at 

resonance, for an absorber system defined by µ = 0.133 and ζ = 0.025. 

 

 Solution: 
 

 From Eqs. (5.39), with µ = 0.133, ζ = 0.025, and r = 1: 

 

  

  

Xk

M
0

=
4! 2

+ r
2

4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2
= 150.6  

 

 The design with ζ = 0.1 produces the smallest displacement. 

 

 

 

 

 

 

5.47 Recalculate the magnification factor 
  
Xk / M

O
 for the compressor of Problem 5.46 if the 

damping factor is changed to ζ = 0.1.  Which absorber design produces the smallest 

displacement of the primary system ζ = 0.025 or ζ = 0.1? 

 

 Solution: 
 

 From Equation (5.39), with µ = 0.133, ζ = 0.1, and r = 1: 

 

  

  

Xk

M
0

=
4! 2

+ r
2

4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2
= 38.34  

 

 The design with ζ = 0.1 produces the smallest displacement. 
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5.48 Consider a one-degree-of-freedom model of the nose of an aircraft (A-10) as illustrated in 

Figure P5.48.  The nose cracked under fatigue during battle conditions.  This problem has 

been fixed by adding a viscoelastic material to the inside of the skin to act as a damped 

vibration absorber as illustrated in Figure P5.48.  This fixed the problem and the vibration 

fatigue cracking disappeared in the A-10's after they were retrofitted with viscoelastic 

damping treatments.  While the actual values remain classified, use the following data to 

calculate the required damping ratio given M = 100 kg, fa = 3 Hz, and k = 3.533 × 10
6
 

N/m, such that the maximum response is less than 0.25 mm.  Note that since mass always 

needs to be limited in an aircraft, use µ = 0.1 in your design. 

 

 Solution: 
 

 From Equation (5.39), with µ = 0.1, and r = 

  

30(2! )

k / m
 = 1.885, and M0 replaced by F0, 

 

  

  

Xk

F
0

=
4! 2

+ 1.885( )
2

4! 2
1.1( ) 1.885( )

2

"1
#
$%

&
'(

2

1.885( )
2

"1
#
$%

&
'(

2

1.885( )
2

=
4! 2

+ 3.553

33.834! + 23.159

 

 

 With no damping

  

Xk

F
0

= 0.392 .  This value must be reduced.  Choose a "high" damping 

ratio of ζ = 0.7 so that 

 

  

  

Xk

F
0

= 0.372  

 The value of ca is 

 

  

  

c
a

= 2!µm
k

m
= 2 0.7( ) 0.1( ) 100( )

10
6

100
= 1400 kg/s  
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5.49 Plot an amplification curve such as Figure 5.24 by using Equation (5.39) for ζ = 0.02 

after several values of µ (µ = 0.1, 0.25, 0.5, and 1).  Can you form any conclusions about 

the effect of the mass ratio on the response of the primary system?  Note that as µ gets 

large 
  
Xk / M

O
 gets very small.  What is wrong with using very large µ in absorber 

design? 

 

 Solution: 
 

 From Equation (5.39), with ζ = 0.1: 

 

  

  

Xk

M
0

=
0.0016 + r

2

0.0016 r
2

+ µr
2
!1( )

2

+ r
2
!1( )

2

r
2

 

 

 The following plot shows amplitude curves for µ = 0.1, 0.25, 0.5, and 1. 

 

 Note that as the mass ratio, µ, increases, the response of the primary system decreases, 

particularly in the region near resonance.  A higher mass ratio, however, indicates a poor 

design (and can be quite expensive). 
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5.50 A Houdaille damper is to be designed for an automobile engine.  Choose a value for ζ 

and µ if the magnification 
  
Xk / M

O
 is to be limited to 4 at resonance.  (One solution is 

µ = 1, ζ = 0.129.) 

 

 Solution: 
 

 From Equation (5.39), with r = 1: 

 

  

  

Xk

M
0

=
4! 2

+ 1

4! 2
µ

2
 

 

 For 

  

Xk

M
0

 = 4, 

 

 

  
 
64! 2

µ
2

= 4! 2
+ 1 

 

 If µ is limited to 0.3, then the value of ζ is 

  

 

64! 2
0.3( )

2

= 4! 2
+ 1

! = 0.754

 

 

 

 

5.51 Determine the amplitude of vibration for the various dampers of Problem 5.46 if ζ = 0.1, 

and F0 = 100 N. 

 

 Solution: 
 

 From Problem 5.46, 

 

  
  
k = m!

n

2
= 400( ) 16.2( ) 2"( )#

$
%
&

2

= 4.144 '10
6
N/m  

 

 Also, µ = 0.1, r = 1, and F0 = 100 N.  So, from Equation (5.39), with M0 replaced by F0, 

 

  

  

X =
F

0

k

4! 2
+ r

2

4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2

r
2

= 0.00123 m  
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5.52 (Project) Use your knowledge of absorbers and isolation to design a device that will 

protect a mass from both shock inputs and harmonic inputs.  It may help to have a 

particular device in mind such as the module discussed in Figure 5.6. 

 

 Solution: 
 

 One way to approach this problem would be to design an isolator to protect the mass 

from shock inputs, and an absorber to protect the mass from harmonic disturbances.  An 

absorber would be particularly useful if the frequency of the harmonic disturbance(s) is 

well known. 

 

 This is a very general approach to such a problem, and solutions will vary greatly 

depending on the particular parameters involved in an actual system. 
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Problems and Solutions Section 5.5 (5.53 through 5.66) 
 

5.53 Design a Houdaille damper for an engine modeled as having an inertia of 1.5 kg
.
m

2
 and a 

natural frequency of 33 Hz.  Choose a design such that the maximum dynamic 

magnification is less than 6: 

 

  

  

Xk

M
0

< 6  

 

 The design consists of choosing J2 and ca, the required optimal damping. 

 

 Solution: 
 

 From Equation (5.50), 

 

  

  

Xk

M
0

!

"#
$

%&
max

= 1+
2

µ
 

 

 Since 

  

Xk

M
0

< 6,  then 

  

 

6 > 1+
2

µ

µ > 0.4

 

 

 Choose µ = 0.4.  From Equation (5.49), the optimal damping is 

 

  

  

!
op

=
1

2 µ + 1( ) µ + 2( )
= 0.3858  

 

 The values of J2 and ca are 

 

  

  

J
2

= µJ
1

= 0.4( ) 1.5 kg !m2
/ rad( ) = 0.6 kg !m2

/ rad

c
a

= 2"
op

J
2
#

p
= 2 0.3858( ) 0.6( ) 33( ) 2$( )  = 95.98 N !m ! s/rad
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5.54 Consider the damped vibration absorber of equation (5.37) with β fixed at β = 1/2 and µ 

fixed at µ = 0.25.  Calculate the value of !  that minimizes
  
X / ! .  Plot this function for 

several values of 0 < !  < 1 to check your design.  If you cannot solve this analytically, 

consider using a three-dimensional plot of 
  
X / !  versus r and !  to determine your 

design. 

 

 Solution: 
 

 From equation (5.37), with β = 0.5 and µ = 0.25, let 

 

  

  

f r,!( ) =
X

"

4! 2
r

2
+ r

2 # 0.25( )
2

4! 2
r

2
1.25r

2 #1( )
2

+ 0.065r
2 # r

2 #1( ) r
2 # 0.25( )$

%
&
'

2
 

 

 From equataions (5.44) and (5.45), with 

  
f =

A
1/ 2

B
1/ 2

,  

 

  

  

!f

!"
= 0  

 becomes 

   BdA! AdB  

 

 Since 
  
B = 4! 2

r
2

1.25r "1( )
2

+ 0.0625r
2 " r

2 "1( ) r
2 " 0.25( )#

$
%
&

2

 and 

  
A = 4! 2

r
2

+ r
2 " 0.25( )

2

,  then 

 

  

  

dA =
!A

!"
= 8"r

2

dB =
!B

!"
= 8"r

2
1.25r

2 #1( )
2

 

 

 So, 

 

  

  

4! 2
r

2
1.25r

2 "1( )
2

+ 0.0625r
2 " 4

2 "1( ) r
2 " 0.25( )#

$
%
&

2

{ } 8!r
2

( )

= 4! 2
r

2
+ r

2 " 0.25( )
2

{ } 8!r
2

( ) 1.25r
2 "1( )

2

0.0625r
2 " r

2 "1( ) r
2 " 0.25( )

2#
$'

%
&(

= r
2 " 0.25( )

2

1.25r
2 "1( )

2
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 Taking the square root yields 

 

  
  
0.625r

2
! r

2
!1( ) r

2
! 0.25( ) = ± r

2
! 0.25( ) 1.25r

2
!1( )  

 

 Solving for r yields 

 

    r = 0.4896,  0.9628  

 

 Now take the derivative 

 

  

  

!f

!r
= 0  

 

 becomes 

 

   BdA = AdB  

 

 Since 
  
B = 4! 2

r
2

1.25r
2 "1( )

2

+ 0.0625r
2 " r

2 "1( ) r
2 " 0.25( )#

$
%
&

2

 and 

  
A = 4! 2

r
2

+ r
2 " 0.25( )

2

,  then 

 

  

  

dA !
"A

"#
= 8# 2

r + 2 r
2 $ 0.25( ) 2r( )

dB !
"B

"#
= 8# 2

r 1.25r
2 $1( )

2

+ 8# 2
r

2
1.25r

2 $ 2r( )( ) 2.5r( )

+2 0.0625r
2 $ 4

2 $1( ) r
2 $ 0.25( )%

&
'
( 0.125r $ 2r( ) r

2 $ 0.25( ) $ r
2 $1( ) 2r( )%

&
'
(

 

 

 Solving B dA = A dB for ζ yields 

 

  

  

r = 0.4896!" = 0.1145!
X

#
st

= 1.4279

r = 0.9628!" = 0.3197 !
X

#
st

= 6.3029

 

 

 To determine the optimal damping ratio, make a plot of
  
X / !   versus r for ζ = 0.01, 

0.1145, 0.3197, and 0.7. 
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 The value of ζ = 0.3197 yields the best overall response (i.e., the lowest maximum). 
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5.55 For a Houdaille damper with mass ratio µ = 0.25, calculate the optimum damping ratio 

and the frequency at which the damper is most effective at reducing the amplitude of 

vibration of the primary system. 

 

 Solution: 
 

 From equation (5.49), with µ = 0.25, 

 

  

  

!
op

=
1

2 µ + 1( ) µ + 2( )
= 0.422  

 

 From equation (5.48), 

 

  

  

r =
2

2 + µ
= 0.943 

 

 The damper would be most effective at
  
! = r!

n
= 0.943!

n
, i.e., where the amplitude is 

greatest: 
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5.56 Consider again the system of Problem 5.53.  If the damping ratio is changed to ζ = 0.1, 

what happens to
  
Xk / M

0
? 

 

 Solution: 
 

 If ζop = 0.1, the value of µ becomes 

 

  

 

0.1 =
1

2 µ + 1( ) µ + 2( )

0.02µ
2

+ 0.06µ = 0.96 = 0

µ = !8.589,  5.589

 

 

 Clearly µ = 5.589 is the physical solution.  The maximum value of 

  

Xk

M
0

 would be 

 

  

  

Xk

M
0

!

"#
$

%&
max

= 1+
2

µ
= 1.358  

 

 which is less than 6 (the requirement of Problem 5.53).  Note that the value of µ is 

extremely large. 
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5.57 Derive Equation (5.42) from Equation (5.35) and derive Equation (5.49) for the optimal 

damping ratio. 

 

 Solution: 
 

 Equation (5.37) is derived from Equation (5.35) in Problem 5.39. 

 

 Start with Equation (5.37): 

 

  

  

Xk

F
0

=

2!r( )
2

+ r
2 " # 2

( )
2

2!r( )
2

r
2 "1+ µr

2

( )
2

+ µr
2# 2 " r

2 "1( ) r
2 " # 2

( )$
%

&
'

2
 

 

 To derive Equation (5.42), which is the same as Equation (5.39), note that 

  
c = k

a
= !

a
= 0,  which also means β = 0.  Since this is a moment equation, F0 is replaced 

by M0.  Therefore, 

 

  

  

Xk

F
0

=
2!r( )

2

+ r
4

2!r( )
2

r
2 "1+ µr

2

( )
2

+ r
2 "1( )

2

r
4

=
4! 2

+ r
4

4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2

r
2

 

 

 which is Equation (5.42) after canceling r
2
. 

 

 To derive Equation (5.49), first let Equation (5.42) be f(r,ζ).  Since

  
f =

A
1/ 2

B
1/ 2

, where 

  A = 4! 2
+ r

2
 and 

  
B = 4! 2

r
2

+ µr
2 "1( )

2

+ r
2 "1( )

2

r
2
,  then 

 

  

  

!f

!"
= 0  

 

 becomes 

   BdA = AdB  

 

 where 

  

  

dA !
"A

"#
= 8#

dB !
"B

"#
= 8# r

2
+ µr

2 $1( )
2

 

 So, 
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4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2

r
2{ } 8!( ) = 4! 2

+ r
2

{ } 8!( ) r
2

+ µr
2 "1( )

2

r
2 "1( )

2

= r
2

+ µr
2 "1( )

2

r
2 "1( ) = ± r

2
+ µr

2 "1( )

 

 

 Taking the minus sign (the plus sign yields r = 0). 

 

  

  

2 + µ( )r
2
! 2 = 0

r =
2

2 + µ( )

 

 

 Now take the other partial derivative

  

!f

!r
= 0 , which becomes 

 

  

  

BdA = AdB

dA !
"A

"r
= 2r

dB !
"B

"r
= 16# 2

r 1+ µ( ) r
2

+ µr
2 $1( ) + 4r

3
r

2 $1( ) + 2r r
2 $1( )

2

 

 

 So, 

  

  

4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2

r
2{ } 2r( )

= 4! 2
+ r

2

{ } 16! 2
r 1+ µ( ) r

2
+ µr

2 "1( ) + 4r
3
(r

2 "1) + 2r r
2 "1( )

2#
$%

&
'(

 

 

 Substituting 

  

r =
2

2 + µ( )
 yields, after rearranging 

 

 

 

4! 2
2

2 + µ
+

2µ

2 + µ
"1

#

$
%

&

'
(

2

+
2

2 + µ
"1

#

$
%

&

'
(

2

2

2 + µ

)
*+

,
-.

= 4! 2
+

2

2 + µ

#

$
%

&

'
( 8! 2

1" µ( )
2

2 + µ
+

2µ

2 + µ
"1

)
*+

,
-.

+ 2
2

2 + µ

)
*+

,
-.

2

2 + µ
"1

)
*+

,
-.

+
2

2 + µ
"1

)
*+

,
-.

2#

$
%
%

&

'
(
(

 

 

 Expanding and canceling terms yields 
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4! 4
1+ µ( ) 2 + µ( ) + 2! 2

µ "
2

2 + µ
= 0  

 

 The physical solution for ζ is 

 

  

 

! =
1

2 1+ µ( ) 2 + µ( )
 

 which is Equation (5.49). 
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5.58 Consider the design suggested in Example 5.5.1.  Calculate the percent change in the 

maximum deflection if the damping constant changes 10% from an optimal value.  If the 

optimal damping is fixed but the mass of the absorber changes by 10%, what percent 

change in 
  
Xk / M

0 max
 results?  Is the optimal absorber design more sensitive to changes 

in ca or ma? 

 

 Solution: 
 

 From Problems 5.51 and 5.46, F0 = 100 N, k = 4.144 × 10
6
 N/m, and µ = 0.133.  The 

optimal damping is 

 

  

  

!
op

=
1

2 1+ µ( ) 2 + µ( )
= 0.4549  

 

 The deflection is given by Equation (5.42), and M0 replaced by F0, 

 

  

  

X =
F

0

k

4! 2
+ r

2

4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2

r
2

 

 

 Also, the maximum displacement will occur at 

  

r =
2

2 + µ( )
 = 0.9683.  If the damping 

constant changes by 10%, ζ will also change by 10% since

  

! =
c

a

2m"
p

.  The value of X 

for 0.9 
  
!

op
,!

op
,  and 1.1 !

op
 is  

 

  

  

! = 0.9!
op

" X = 3.870 #10
$4

 m

! = !
op

" X = 3.870 #10
$4

 m

! = 1.1!
op

" X = 3.870 #10
$4

 m

 

 

 There  is no change in X with a 10% change in ζop. 

 

 If ma changes by 10%, µ will also change by 10% since

 
µ =

m
a

m
.  The value of 

  

Xk

F
0

!

"#
$

%&
max

 

for 0.9µ, µ, and 1.1µ is 
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0.9µ ! r = 0.9714 !
Xk

F
0

"

#$
%

&'
max

= 17.708(+10.4%)

µ ! r = 0.9683 !
Xk

F
0

"

#$
%

&'
max

= 16.038

1.1µ ! r = 0.9318 !
Xk

F
0

"

#$
%

&'
max

= 14.671 (8.5%( )

 

 

 The displacement is more sensitive to changes in ma than ca. 
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5.59 Consider the elastic isolation problem described in Figure 5.26.  Derive equations (5.57) 

and (5.58) from equation (5.53). 

 

 Solution: 
 

 Rewrite equation (5.53) in matrix form as 

 

  

  

k
1
! m" 2

+ jc" ! jc"

! jc" ! k
2

+ jc"( )

#

$
%
%

&

'
(
(

X
1

X
2

#

$
%
%

&

'
(
(

=
F

0

0

#

$
%

&

'
(  

 

 The inverse of the matrix on the left is 

 

  

  

1

!k
2

k
1
! m" 2

( ) ! jc" k
1
+ k

2
m" 2

( )

! k
2

+ jc"( ) jc"

jc" k
1
m" 2

+ jc"

#

$
%
%

&

'
(
(

 

 

 Solving for X1 and X2 yields 

 

  

  

X
1

=
k

2
+ jc!( ) F

0

k
2

k
1
" m!

2

( ) + jc! k
1
+ k

2
" m!

dr

2

( )

X
2

=
c!

dr
F

0
j

k
2

k
1
" m!

2

( ) + jc! k
1
+ k

2
" m!

dr

2

( )

 

 

 which are equations (5.54) and (5.55). 
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5.60 Use the derivative calculation for finding maximum and minimum to derive equations 

(5.57) and (5.58) for the elastic damper system. 

 

 Solution: 
 

 From equation (5.56) 

 

  

  

T .R. =

1+ 4 1+ !( )
2

" 2
r

2

1# r
2

( )
2

+ 4" 2
r

2
1+ ! # r

2!( )
2

 

 

 Equation (5.45) is applicable here, so that 

 

   BdA = AdB  

 

 where 
  
A = 1+ 4 1+ !( )

2

" 2
r

2
 and 

  
B = 1! r

2

( )
2

+ 4" 2
r

2
1+ # ! r

2#( )
2

 differentiating with 

respect to ζ yields 

 

  

  

dA !
"A

"#
= 8 1+ $( )

2

#r
2

dB !
"B

"#
= 8#r

2
1+ $ % r

2$( )
2

 

 

 So, 

 

  

  

1! r
2

( )
2

+ 4" 2
r

2
1+ # ! r

2#( )
2

{ } 8( ) 1+ #( )
2

"r
2

= 1+ 4 1+ #( )
2

" 2
r

2{ } 8"r
2

( ) 1+ # ! r
2#( )

2

1! r
2

( )
2

1+ #( )
2

= 1+ # ! r
2#( )

2

1! r
2

( ) 1+ #( ) = ± 1+ # ! r
2#( )

 

 

 The minus sign yields the physical result 

 

  

  

r
2

2! + 1( ) = 2 1+ !( )

r =
2 1+ !( )

1+ 2!

 

 

 which is equation (5.57) 
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 Differentiating with respect to r yields 

 

  

  

dA !
"A

"r
= 8 1+ #( )

2

$ 2
r

dB !
"B

"r
= 2 1% r

2

( ) %2r( ) + 8$ 2
r 1+ # % r

2#( )
2

+ 8$ 2
r

2
1+ # % r

2#( ) %2r#( )

 

 

 So, 

  

  

1! r
2

( )
2

+ 4" 2
r

2
1+ # ! r

2#( )
2

{ } 8" 2
r( ) 1+ #( )

2

= 1+ 4 1+ #( )
2

" 2
r

2{ } !4r 1! r
2

( ) + 8" 2
r 1+ # ! r

2#( )
2

!16#" 2
r

3
1+ # ! r

2#( )$
%&

'
()

 

 

 Substituting for r and manipulating yields 

 

 

 

64! 1+ !( )
5 1

1+ 2!
"
#$

%
&'

(

)
*

+

,
-.

4
+ 8 ! 1+ !( )

2

+ 1+ !( )
3

1+ 2!( ) / 2 1+ !( )
4(

)*
+
,-
. 2 / 1+ 2!( ) = 0  

 

 Solving for ζ yields the physical result 

 

  

 

! =

2 1+ 2"( ) / "

4 1+ "( )
 

 

 which is Equation (5.58). 
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5.61 A 1000-kg mass is suspended from ground by a 40,000-N/m spring.  A viscoelastic 

damper is added, as indicated in Figure 5.26.  Design the isolator (choose k2 and c) such 

that when a 70-N sinusoidal force is applied to the mass, no more than 100 N is 

transmitted to ground. 

 

 Solution: 
 

 From equation (5.59), 

 

  

  

T .R.( )
max

= 1+ 2!

F
T

F
0

=
100

70
= 1.429 = 1+ 2!

! = 0.2143

 

 

 The isolator stiffness should be 

 

  
  
k

2
= ! k

1
= 0.2143( ) 40,000( ) = 8571N/m  

 

 From equation (5.58), 

 

  

  

!
op

=

2 1+ 2"( ) / "

4 1+ "( )
= 0.7518  

 

 The isolator damping should be 

 

  

  

c = 2!
op

k
1

m
= 2 0.7518( )

40,000

1000
= 9.51kg/s  
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5.62 Consider the isolation design of Example 5.5.2.  If the value of the damping coefficient 

changes 10% from the optimal value (of 188.56 kg/s), what percent change occurs in 

(T.R.)max?  If c remains at its optimal value and k2 changes by 10%, what percent change 

occurs in (T.R.)max?  Is the design of this type of isolation more sensitive to changes in 

damping or stiffness? 

 

 Solution: 
 

 From Example 5.5.2, c = 188.56 kg/s and k2 = 200 N/m.  If the value of c changes by 

10%, the value of T.R. becomes (with r = 5 and γ = 0.5), 

 

  

  

0.9c ! "
op

= 0.4243 ! T .R. = 0.1228(#1.78%)

c ! "
op

= 0.4714 ! T .R. = 0.1250

1.1c ! "
op

= 0.5185 ! T .R. = 0.1267 +1.39%( )

 

 

 If the value of k2 changes by 10%, the value of T.R. becomes (with r = 5 and ζ = 0.4714), 

 

  

  

0.9k
2

! " = 0.45 ! T .R. = 0.1327 +6.17%( )

k
2

! " = 0.5 ! T .R. = 0.1250

1.1k
2

! " = 0.55 ! T .R. = 0.1183 #5.31%( )

 

 

 This design is more sensitive to changes in stiffness. 
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5.63 A 3000-kg machine is mounted on an isolator with an elastically coupled viscous damper 

such as indicated in Figure 5.26.  The machine stiffness (k1) is 2.943 × 10
6
 N/m, γ = 0.5, 

and c = 56.4 × 10
3
 N⋅s/m.  The machine, a large compressor, develops a harmonic force 

of 1000 N at 7 Hz.  Determine the amplitude of vibration of the machine. 

 

 Solution: 
 

 The amplitude of vibration is given by Equation (5.54) as 

 

  

  

X
1

=
k

2
+ jc!( ) F

0

k
2

k
1
" m!

2

( ) + jc! k
1
+ k

2
" m!

dr

2

( )
 

 

 Since F0 = 1000 N, ω = 7(2π) = 43.98 rad/s, m = 3000 kg, c = 56.4 × 10
3
 N⋅s/m, k1 = 

2.943 × 10
6
 N/m, and k2 = γk1 = 1.4715× 10

6
 N/m, then 

 

  
  
X

1
= !4.982 "10

!4
!1.816 "10

!4
j  

 

 The magnitude is 

 

  
  
X

1
= 5.303!10

"4
 m  
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5.64 Again consider the compressor isolation design given in Problem 5.63.  If the isolation 

material is changed so that the damping in the isolator is changed to ζ = 0.15, what is the 

force transmitted?  Next determine the optimal value for the damping ratio and calculate 

the resulting transmitted force. 

 

 Solution: 
 

 From Problem 5.63, γ = 0.5, F0 = 1000 N, and 

  

r =
!

k
1

/ m
=

7 2"( )

2.943#10
6

/ 3000

 = 

1.404.  Since ζ = 0.15, the transmitted force is [from Equation (5.56)], 

 

  

  

F
T

= F
0

1+ 4 1+ !( )
2

" 2
r

2

1# r
2

( )
2

+ 4" 2
r

2
1+ ! # r

2!( )
2

= 1188 N  

 

 The optimal value for the damping ratio is found from equation (5.58): 

 

  

  

!
op

=

2 1+ 2"( ) / "

4 1+ "( )
= 0.4714  

 

 The transmitted force is then 

 

  
  
F

T
= 1874 N  
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5.65 Consider the optimal vibration isolation design of Problem 5.64.  Calculate the optimal 

design if the compressor's steady-state driving frequency changes to 24.7 Hz.  If the 

wrong optimal point is used (i.e., if the optimal damping for the 7-Hz driving frequency 

is used), what happens to the transmissibility ratio? 

 

 Solution: 
 

 From Problems 5.63 and 5.64, γ = 0.5, F0 = 1000 N, k1 = 2.943 × 10
6
 N, and m = 3000 

kg. 

 

 The optimal damping is 

 

  

  

!
op

=

2 1+ 2"( ) / "

4 1+ "( )
= 0.4714  

 

 The value of c and k2 would be 

 

  

  

c = 2!
op

k
1
m = 88.589 kg/s

k
2

= " k
1

= 1.472 #10
6
 N/m

 

 

 The isolation design is independent of the driving frequency in this problem, so the 

transmissibility ratio would not change. 
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5.66 Recall the optimal vibration absorber of Problem 5.53.  This design is based on a steady-

state response.  Calculate the response of the primary system to an impulse of magnitude 

M0 applied to the primary inertia J1.  How does the maximum amplitude of the transient 

compare to that in steady state? 

 

 Solution: 
 

 The response of the system given in Problem 5.53 cannot be solved by the means of 

modal analysis given in Chapter 4 because the system is not proportionally damped.  

However, the steady-state response of a damped system to an impulse is simply zero.  

Therefore, the maximum amplitude of the transient will be of interest.  For a sinusoidal 

input, a numerical simulation might be necessary to determine the effects of the transient 

response. 
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Problems and Solutions Section 5.6 (5.67 through 5.73) 
 
5.67 Compare the resonant amplitude at steady state (assume a driving frequency of 100 Hz) 

of a piece of nitrite rubber at 50°F versus the value at 75°F.  Use the values for η from 

Table 5.2. 

 

 Solution: 
 

 From equation (5.63), 

 

  

  

X =
F

0

k 1+! j( ) " m#
2

 

 

 At resonance 

 

! =
k

m
 so 

 

  

  

X =
F

0

k 1!" j( ) !1
=

F
0

k" j
 

 

 The magnitude is 

 

  

  

X =
1

!
F

0

k

"

#$
%

&'
 

 

 At 50°, η = 0.5 and at 75°, η = 0.28, so 

 

  

   

X
50
!

=
2F

0

k

X
75
!

=
3.57F

0

k
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5.68 Using Equation (5.67), calculate the new modulus of a 0.05 × 0.01 × 1, piece of pinned-

pinned aluminum covered with a 1-cm-thick piece of nitrite rubber at 75°F driven at 100 

Hz. 

 

 Solution: 
 

 From Table 1.2, E1 = 7.1 × 10
10

 N/m
2
 for aluminum.  From Table 5.2, 

  
E

2
= 2.758 !10

7
N/m

2
for nitrate rubber, Also, 

 

  

  

I = I
1

=
1

3
0.05( ) 1( )

3

= 0.01667 m
4

e
2

=
E

2

E
1

=
2.758 !10

7

7.1!10
10

= 3.885!10
"4

h
2

=
H

2

H
1

=
0.01

0.01
= 1

 

 

 From Equation (5.67), 

 

  

  

E =
E

1
I

1

I
1+ e

2
h

2

2
+ 3 1+ h

2
( )

2 e
2
h

2

1+ e
2

j
2

!

"
#

$

%
& = 7.136 '10

10
 N/m

2
 

 

5.69 Calculate Problem 5.68 again at 50°F.  What percent effect does this change in 

temperature have on the modulus of the layered material? 

 

 Solution: 
 

 From Problem 5.68, with 
  
E

2
= 4.137 !10

7
 N/m

2
, 

 

  

  

I = I
1

= 0.01667 m
4

e
2

=
E

2

E
1

=
4.137 !10

7

7.1!10
10

= 5.827 !10
"4

h
2

=
H

2

H
1

=
0.01

0.01
= 1

 

 

 From Equation (5.67), 
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E =
E

1
I

1

I
1+ e

2
h

2

2
+ 3 1+ h

2
( )

2 e
2
h

2

1+ e
2
h

2

!

"
#

$

%
& = 7.154 '10

10
 N/m

2
 

 

 This is an increase of 0.25% of the layered material's modulus. 
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5.70 Repeat the design of Example 5.6.1 by 

 (a)  changing the operating frequency to 1000 Hz, and 

 (b)  changing the operating temperature to 50°F. 

 Discuss which of these designs yields the most favorable system. 

 

 Solution: 
 

 From Ex. 5.6.1, 
  
E

1
= 7.1!10

10
N/m

2
 and h2 = 1. 

 

 (a)  75°, 1000 Hz 

 

  

  

!
2

= 0.55

E
2

= 4.826 "10
7
N/m

2

e
2

=
E

2

E
1

= 6.797 "10
#4

 

 

 From Equation (5.68), 

 

  

  

! =

e
2
h

2
3+ 6h

2
+ 4h

2

2
+ 2e

2
h

2

2
+ e

2

2
h

2

4

( )

1+ e
2
h

2
( ) 1+ 4e

2
h

2
+ 6e

2
h

2

2
+ 4e

2
h

2

3
+ e

2

2
h

2

4

( )
!

2
= 0.00481 

 

 (b)  50°, 1000 Hz 

 

  

  

!
2

= 0.5

E
2

= 4.137 "10
7
 N/m

2

e
2

=
E

2

E
1

=
4.137 "10

7

7.1"10
10

= 5.827 "10
#4

 

 

 From Equation (5.68), 

 

  
 
! = 0.00375  

 

 Increasing the driving frequency results in a higher loss factor compared to the effects of 

lowering the temperature. 
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5.71 Reconsider Example 5.6.2.  Make a plot of thickness of the damping treatment versus 

loss factor. 

 

 Solution: 
 

 From Ex. 5.6.2, η2 = 0.261, e2 = 0.01, and H1 = 1 cm.  So, from Equation (5.69), 

 

  

  

! = 14e
2

H
2

2

H
1

2
!

2
= 0.03654H

2

2
H

2
 in cm( )  

 

 
A plot of η versus H2 in centimeters 
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5.72 Calculate the maximum transmissibility coefficient of the center of the shelf of Example 

5.6.1.  Make a plot of the maximum transmissibility ratio for this system frequency, using 

Table 5.2 for each temperature. 

 

 Solution: If the system is modeled as shown in Figure 5.18, then the maximum 

transmissibility occurs at (from Equation (5.50)), 

  

  

Xk

F
0

!

"#
$

%&
max

= 1+
2

µ
 

 where µ is found from Equation (5.49) as the solution to 

  

 

! =
1

2 µ + 1( ) µ + 2( )
 

 The value of ζ is 

 

!

2
 at resonance.  So, at 75° and 100 Hz, 

  

  

! =
"

2
=

0.00151

2
= 0.000755 =

1

2 µ + 1( ) µ + 2( )

                             # µ = 935

Xk

F
0

= 1+
2

935
= 1.002

 

 For 50° and 100 Hz, η = 0.00375 (from Problem 5.70), so 

  

  

! =
"

2
=

0.00375

2
= 0.001875 =

1

2 µ + 1( ) µ + 2( )

µ = 375.6

Xk

F
0

= 1+
2

375.6
= 1.005
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This gives some idea of  the 

relationship, but not a very 

good one as it includes only 

two points 
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5.73 The damping ratio associated with steel is about ζ = 0.001.  Does it make any difference 

whether the shelf in Example 5.6.1 is made out of aluminum or steel?  What percent 

improvement in damping ratio at resonance does the rubber layer provide the steel shelf? 

 

 Solution: 
 

 If the shelf in Ex. 5.6.1 is made out of steel, E1 = 2.0 × 10
11

 N/m
2
.  Therefore, 

 

  

  

e
2

=
E

2

E
1

=
2.758 !10

7

2.0 !10
11

= 0.0001379  

 

 Also, η2 = 0.55 and h2 = 1.  From Equation (5.68), 

 

  

  

! =

e
2
h

2
3+ 6h

2
+ 4h

2

2
+ 2e

2
h

2

2
+ e

2

2
H

2

4

( )

1+ e
2
h

2
( ) 1+ 4e

2
h

2
+ 6e

2
h

2

3
+ 4e

2
h

2

3
+ e

2
h

2

4

( )
!

2
= 0.0005  

 

 At resonance, 

 

! =
"

2
= 0.00025. The rubber actually reduced the damping of the steel 

shelf by 75%. 
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Problems and Solution Section 5.7 (5.74 through 5.80) 
 
5.74 A 100-kg compressor rotor has a shaft stiffness of 1.4 × 10

7
 N/m.  The compressor is 

designed to operate at a speed of 6000 rpm.  The internal damping of the rotor shaft 

system is measured to be ζ = 0.01. 

 (a)  If the rotor has an eccentric radius of 1 cm, what is the rotor system's critical speed? 

 (b) Calculate the whirl amplitude at critical speed.  Compare your results to those of 

Example 5.7.1. 

 

 Solution: 
 (a)  The critical speed is the rotor's natural frequency, so 

 

  

  

!
c

=
k

m
=

1.4 "10
7

100
= 374.2 rad/s =  3573 rpm  

 

 (b)  At critical speed, r = 1, so from Equation (5.81), 

 

  

  

X =
!

2"
=

0.01

2 0.01( )
= 0.5 m  

 

 So a system with higher eccentricity and lower damping has a greater whirl amplitude 

(see Example 5.7.1). 

 

 
5.75 Redesign the rotor system of Problem 5.74 such that the whirl amplitude at critical speed 

is less than 1 cm by changing the mass of the rotor. 

 

 Solution: From Problem 5.74, k = 1.4 × 10
7
 N/m, m = 100 kg, ζ = 0.01, and α = 0.01m.  

Since the whirl amplitude at critical speed must be less than 0.01 m, the value of ζ that 

would satisfy this is, from equation (5.81), 

  

X =
!

2"

" =
!

2X
=

0.01

2 0.01( )
= 0.5

 

 The original damping ratio was 0.01, so the value of c is 

  

  

c = 2!m" = 2 0.01( ) 100( )
1.4 #10

7

100
= 784.33 kg/s  

 So, the new mass should be, with ζ = 0.5, 
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748.33 = 2 0.5( )m
k

m
= km = 1.4 !10

7
m

                                  " m = 0.04 kg

 

 This is not practical. 
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5.76 Determine the effect of the rotor system's damping ratio on the design of the whirl 

amplitude at critical speed for the system of Example 5.7.1 by plotting X at r = 1 for ζ 

between 0 < ζ < 1. 

 

 Solution: 
 

 From Example 5.7.1, with r = 1 and α = 0.001 m, 

 

  

  

X =
0.001

2!
=

0.0005

!
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5.77 The flywheel of an automobile engine has a mass of about 50 kg and an eccentricity of 

about 1 cm.  The operating speed ranges from 1200 rpm (idle) to 5000 rpm (red line).  

Choose the remaining parameters so that whirling amplitude is never more than 1 mm. 

 

 Solution: 
 

 From Equation (5.81), 

 

  

  

X = 0.001 =
0.01r

2

1! r
2

( )
2

+ 2"r( )
2

 

 

 Choosing ζ = 0.1, the physical solution is 

 

    r = 0.3018  

 

 By observing Figure 5.34, r = 0.3018 is the maximum value of r.  So at 
  
!

r( )
max

 = 500 

rpm, the stiffness must be 

 

  

  

r = 0.3018 =

5000
2!
60

"
#$

%
&'

k / 50

k = 1.505(10
8
 N/m
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5.78 Consider the design of the compressor rotor system of Example 5.7.1.  The amplitude of 

the whirling motion depends on the parameters α, ζ, m, k and the driving frequency.  

Which parameter has the greatest effect on the amplitude?  Discuss your results. 

 

 Solution: 
 

 From Example 5.7.1, α = 0.001 m, ζ = 0.05, m = 55 kg, ωr = 6000 rpm, and k = 1.4 × 10
7
 

N/m.  To find out what effect each parameter has on this system, each value will be 

varied by 10%. 

 

 The original system has r = 1.2454 and X = 0.002746 m. 

 

  

  

0.9a = 0.009m ! r = 1.2454 ! X = 0.002471 m (-10.0%)

1.1a = 0.0011 m ! r = 1.2454 ! X = 0.003020 m +10.0%( )

1.9" = 0.045 ! r = 1.2454 ! X = 0.002759 m +0.465%( )

1.1" = 0.055 ! r = 1.2454 ! X = 0.002732 m -0.507%( )

0.9m = 49.5 kg ! r = 1.1815 ! X = 0.003379 m +23.1%( )

1.1m = 60.5 kg ! r = 1.3062 ! X = 0.002376 m -13.5%( )

0.9k = 1.26 #10
7
 N/m ! r = 1.3127 ! X = 0.002344 m -14.6%( )

1.1k = 1.54 #10
7
 N/m ! r = 1.1874 ! X = 0.003304 m +20.3%( )

 

 

 The mass and stiffness values have the greatest effect on the amplitude, while the 

damping ratio has the smallest effect. 
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5.79 At critical speed the amplitude is determined entirely by the damping ratio and the 

eccentricity.  If a rotor has an eccentricity of 1 cm, what value of damping ratio is 

required to limit the deflection to 1 cm? 

 

 Solution: 
 

 Since X = 0.01 m, a = 0.01 m, and at critical speed r = 1, then from Equation (5.81), 

 

  

  

X = 0.01 m =
a

2!
=

0.01

2!

! = 0.5

 

 

  

 

 

 

5.80 A rotor system has damping limited by ζ < 0.05.  What is the maximum value of 

eccentricity allowable in the rotor design if the maximum amplitude at critical speed must 

be less than 1 cm? 

 

 Solution: 
 

 Since X = 0.01 m, ζ < 0.05, and at critical speed r = 1, then from Equation (5.81), 

 

  

  

X = 0.01 m =
a

2!
=

a

2 0.05( )

a = 0.001 m =  1 mm
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Problems and Solutions Section 5.8 (5.81 through 5.85) 
 
5.81 Recall the definitions of settling time, time to peak, and overshoot given in Example 3.2.1 

and illustrated in Figure 3.6.  Consider a single-degree-of-freedom system with mass m = 

2 kg, damping coefficient c = 0.8 N⋅s/m, and stiffness 8 N/m.  Design a PD controller 

such that the settling time of the closed-loop system is less than 10 s. 

 

 Solution: The settling time is 

  

  

t
s

=
3

!"
 

 Since ts = 10 s, 

  
 
!" = 0.3 

 

 The equation of motion with a PD controller is 

 

  
   
m!!x + c + g

2
( ) !x + k + g

1
( )x = 0  

 

 So, 

 

  

  

! =
k + g

1

m
=

8 + g
1

2

" =
c + g

2

2m!
=

0.8 + g
2

2 2( )!

 

 

 Therefore, 

 

  

  

!" =
0.8 + g

2

4"
#

$%
&

'(
" = 0.3

g
2

= 0.4 N ) s/m

 

 

 The gain g1 can take on any value (including 0). 

 

 
5.82 Redesign the control system given in Example 5.8.1 if the available internal damping is 

reduced to 50 N⋅s/m. 

 

 Solution:  If the value of c is limited to 50 N⋅s/m, then g2 becomes 

 

  
  
g

2
= 180 ! c = 180 ! 50 = 130 N " s/m  
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5.83 Consider the compressor rotor-shaft system discussed in Problem 5.74.  Modern 

designers have considered using electromagnetic bearings in such rotor systems to 

improve their design.  Use a derivative feedback control law on the design of this 

compressor to increase the effective damping ratio to ζ = 0.5.  Calculate the required 

gain.  How does this affect the answer to parts (a) and (b) of Problem 5.74? 

 

 Solution: From Problem 5.74, m = 100 kg, k = 1.4 × 10
7
 N/m, a = 0.01, ζold = 0.01.  The 

value of c is 

  
  
c = 2!

old
km = 2 0.01( ) 1.4 "10

7

( ) 100( ) = 748.3 kg/s  

 With derivative feedback, the coefficient of   !x  in the equation of motion is c + g2.  For ζ 

= 0.5, 

  

  

c + g
2

= 748.3+ g
2

= 2 0.5( ) 1.4 !10
7

( ) 100( ) = 37,416.6

g
2

= 36,668.2 kg/s

 

 (a)  The rotor's critical speed remains the same because it is only dependent upon the 

mass stiffness. 

 (b)  The whirl amplitude becomes 

  

  

X =
a

2!
=

0.01

2 0.5( )
= 0.01 m  

 It is reduced by 80% because of the increased damping. 

 

 

5.84 Calculate the magnitude of the force required of the actuator used in the feedback control 

system of Example 5.8.1.  See if you can find a device that provides this much force. 

 

 Solution: The magnitude of the actuator force would be 

 

  
   
F = g

2
!x = g

2
!

n
X  

 

 where X is, from Equation (2.26), at steady-state, 

 

  

  

X =
F

0
/ m

!
n

2 "! 2

( )
2

+ 2#!
n
!( )

2

 

 

 A large value of X would occur at resonance, for example, where ω = ωdr = 10 rad/s, so 

 

  

  

F = 80( ) 10( )
F

0
/ 10

2 0.9( ) 10( ) 10( )
= 0.444F

0
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5.85 In some cases the force actuator used in a control system also introduces dynamics.  In 

this case a system of the form given in Equation (5.27) may result where ma, ca and ka are 

values associated with the actuator (rather than an absorber).  In this case the absorber 

system indicated in Figure 5.18 can be considered as the control system and the motion of 

the mass m is the object of the control system.  Let m = 10 kg, k = 100 N/m, and c = 0.  

Choose the feedback control law to be 

 

  
   
u = !g

1
x ! g

2
!x  

 

 and assume that ca = 20 N⋅s/m, ka = 100 N/m and ma = 1 kg.  Calculate g1 and g2 so that x 

is as small as possible for a driving frequency of 5 rad/s.  [Hint:  Replace k with k + g, 

and c with c + g in Equation (5.27)] 

 

 Solution: 
 

 Let the control law be called position feedback, applied to the mass m.  The equation of 

motion then becomes Equation (5.27) with k replaced by k + g1.  Then the amplitude X 

can be expressed as Equation (5.35) with k replaced by k + g1 and given values of m, ma, 

ka and ca.  This yields 

 

  

  

X
2

F
0

2
=

100 ! 25( )
2

+ 25( ) 400( )

100 + g
1
! 10( ) 25( )"

#
$
% 100 ! 25"# $% ! 2500{ }

2

+ 100 ! 11( ) 25( )"
#

$
%

2

25( ) 400( )

X
2

F
0

2
=

2.78

g
1

2 ! 366.7g
1
+ 88,055.6

 

 

 Clearly X is a minimum if 
  
g

1

2
 -366.7g1 + 88,055.6 is a minimum.  Thus consider the 

derivatives of the quadratic form with respect to g1 to find the max value per the 

discussion on the top of page 265. 

 

  

  

d

dg
1

g
1
! 366.7g

1
+ 88,055.6( ) = 2g

1
! 366.7 = 0  

 

 so that 
  
g

1
= 183.35  

 

 Note that 
  
d

2
/ dg

1

2
= 2 > 0  so that this is a maximum and X is a minimum for this gain. 
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Problems Section 5.9 (5.86 through 5.88) 

 

5.86 Reconsider Example 5.2.1, which describes the design of a vibration isolator to 

protect an electronic module.  Recalculate the solution to this example using 

equation (5.92). 

 

Solution:  If data sheets are not available use G’ω =G’/2.  One of many possible 

designs is given. From the example we have T.R. = 0.5, m = 3 kg and ω = 35 rad/s 

= 5.57 Hz.  From equation (5.92): 

T.R. =
1 +!2

1" r2 # G 

# G $

% 

& 

' 
( 

) 

* 

2

+ !2

 = 0.5 

From Table 5.2 for 75°F and frequency of 10 Hz (the closest value listed), the 

value of E and η are: 

E = 2.068 x 10
7
 N/m

2
  and η = 0.21 

Thus G’ = E/3 = 6.89 x 10
9 
N/m

2
 using the approximation suggested after 

equation (5.86).   They dynamic shear modulus is estimated from plots such as 

Figure 5.38 to be G’ω =G’/2.  Thus equation 5.92 becomes 

0.5
2

=
1 + (0.21)

2

1 ! r 2
" G 

" G 
2

# 

$ 

% 

& 

' 

( 

2

+ (0.21)
2

 

 This is solved numerically in the following Mathcad session: 
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From the plot, any value of r greater then about 2.5 will do the trick.  Choosing r 

=  2.5 yields !n =
!

3.5
=

35

3.5
"

k

m
=10 " k =100(3) = 300 N/m
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5.87 A machine part is driven at 40 Hz at room temperature.  The machine has a mass 

of 100 kg.  Use Figure 5.42 to determine an appropriate isolator so that the 

transmissibility is less than 1. 

 

Solution: Given f = 40 Hz, m = 100 kg or about 220 lbs. and T.R. <1.  The 

maximum static load per mount is 3 lbs.  Therefore the system would require a 

minimum of 73 mounts.  Assume then that 75 mounts are used.  Thus 

220#

75
= 2.9#  per mount  

For the isolator, fn <0.5 f = 0.5(40) = 20 Hz.  Therefore the fn of the isolator must 

be less then 20 Hz.  Referring to the performance characteristics of the table in 

Figure 5.42 yields 4 possible isolator choices: 

AM 001-2,3,17,18 

 

5.88 Make a comparison between the transmissibility ratio of Window 5.1 and that of 

equation (5.92). 

 

Solution: Comparing equation (5.92) with Window 5.1 yields: 

 

Window 5.1:  T.R. =
1+ (2!r)2

(1 " r2
)

2
+ (2!r)

2
 

Equation (5.92): T.R. =
1 +!2

1" r2 # G 

# G $

% 

& 

' 
( 

) 

* 

2

+!2

 

Comparing the two equations yields 

! = 2"r   and    
# G 

# G $
%1  

 


