Problems and Solutions for Section 4.1 (4.1 through 4.16)

4.1  Consider the system of Figure P4.1. For ¢ =c, =c, =0, derive the equation of motion

and calculate the mass and stiffness matrices. Note that setting ks = 0 in your solution
should result in the stiffness matrix given by Eq. (4.9).
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Solution:
For mass 1:

mlxl = _lel + kz (Xz - X1)

= m +(k +k, )% —k,x, =0
For mass 2:

m,x, = _ksxz - kz (Xz - Xl)

So, MX+Kx =0

Thus:



Calculate the characteristic equation from problem 4.1 for the case
m=9kg m,=1kg k =24N/m k,=3N/m k,=3N/m

and solve for the system's natural frequencies.

Solution: Characteristic equation is found from Eq. (4.9):

det(—a)ZM + K) =0

_wzml +k t+k, -k, _ -9’ + 27 -3 ~0
-k, —o’m +k, +k, -3 —0° +6
9w’ —81lw* +153=0
Solving for w:
w, =1.642
rad/s
w, =2.511

Calculate the vectors u; and u, for problem 4.2.

Solution: Calculate uy:

oz = T

This yields
2.727u, —3u,, =0
—3u,, +3.303u,, =0  or, u, =0.909u,
1
u, =
[0.909}
Calculate u,:

Lol = T



4.4

—29.727u,, - 3u,, =0
~3u,=0.303u,,=0  or,u,=-0.101u,,

12
_ -0.101
U2 = 1

For initial conditions x(0) = [1 0]" and x (0) = [0 0]" calculate the free response of the
system of Problem 4.2. Plot the response x; and Xx,.

This yields

Solution: Given x(0) = [1 0], x(O) = [0 0]T , The solution is
x(t) = Alsin(a)lt +q)l)u1 + Azsin(wzt +</)2)u2

[xl(t)} ) [ Asin(@t+9,)-0.101A,sin(w,t +,)

X, (t) ) 0.909Alsin(a)lt + ¢1) +A sin(wzt + (/)2)

Using initial conditions,

1= Asing, —0.101A sing, [

0=0.909A sing, + A sing, [2

0=1.642A cos¢, —0.2536A, cosg, |
[

0=6.033A cos¢, +2.511A, coso, 4
From [3] and [4], o =0,=m/2
From [1] and [2], A =0.916, and A =-0.833
So,

x,(t) = 0.9165in(1.642t + 7 / 2) +0.0841sin(2.511t + 7/ 2)
x, () = 0.833sin(L.642t + 7 / 2) - 0.833sin(2.511t + 7 / 2)

x, () = 0.916cos1.642t +0.0841c0s 2,511t
X, (t) = 0.833(cos1.642t - cos 2.5111



x1 (1) 1= 0.916-coa (1.642-t) + 0.0841-cos (2.511-1)

X2 (1) 1= 0,833 (cos (1.642-1) — cos (2.511-1))
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Calculate the response of the system of Example 4.1.7 to the initial condition x(0) = 0, x
(0) =[1 0]", plot the response and compare the result to Figure 4.3.

Solution: Given: x(0) =0, x(O) = [1 0]T

From Eq. (4.27) and example 4.1.7,

[Xl(t)} _ %Alsin(\/5+¢1)—%Azsin(2t +¢2)
Alsin(\/2—t+¢l) + Azsin(Zt +¢2)

Using initial conditions:
0= Asing, — A sing,
0=Asing + A sing,
3:\/EAlcosq’)l—2AZ<:os<;>2

0= x/EAlcos¢>1 +2A, coso,
From [1] and [2]:

¢1:¢2 :0
From [3] and [4]:
Al :¥’ and Az e

The solution is



x,(t) = 0.25(\/5 sin/2t +sin Zt)
X, (t) = 0.75(\/Esin J2t —sin 2t)

As in Fig. 4.3, the second mass has a larger displacement than the first mass.

x1(1) 1= 0.25 {2 sinfaZ 1) +amiz ) x2(0) =075 (WZsinlaZ 1) — sz )

xl[t] . "ll !

. i, .’I/A;:\\~ /TL'"\.:
=2 [t) T NV




4.6 Repeat Problem 4.1 for the case thatk =k, =0.
Solution:
The equations of motion are

m1).(.1 + kle - kzxz =0

m,X, — kle + k2x2 =0

So, MX+Kx=0

4.7  Calculate and solve the characteristic equation for Problem 4.6 withm; =9, m, =1, k; =
10.

Solution:

The characteristic equation is found from Eq. (4.19):

det(—sz + K) =0

—9w? + —
0 +10 10 |46 10002 =0
-10 —w* +10
®;,=0,11.111
o =0

®, =3.333



4.8  Compute the natural frequencies of the following system:

6 2] [3 1] o
{2 4}x(t) [_1 1}x(t)— .

Solution:

2 4] |-1 1
,, =0.316, 1 rad/s

6 2] [3 -1
det(-w*M +K) = det(—af[ }—[ D = 200*-2200*+2=0, ®* = 0.1, 1

4.9  Calculate the solution to the problem of Example 4.1.7, to the initial conditions

x(O) =

%(0)=0

P Wl

Plot the response and compare it to that of Fig. 4.3.
Solution: Given: x(O) =[1/3 1]T, x(O) =0
From Eq. (4.27) and example 4.1.7,

[xl(t)}_ %Alsin(\/zt+¢1)—%Azsin(2t+¢2)
(1) Alsin(\/zt +¢1)+ Asin(2t+9,)
Using initial conditions:
1= Asing, — A ssing, [
1= Asing, + A sing, [2
0=+/2A cosg, — 2A cos, [
0=1/2A cosg, +2A,cosg, [

From [3] and [4]: ¢, =9, :g

From[1]and [2]: A =1, andA =0

The solution is



x,(t)= %COS\/E'[
x,(t) = cos/2t

In this problem, both masses oscillate at only one frequency.



4.10 Calculate the solution to Example 4.1.7 for the initial condition
x(0)= {_:_3] x(0)=0
Solution:

Given: x(0) =[-1/3 1]", x(0) =0
From Eq. (4.27) and example 4.1.7,

[Xl(t)} _ %Alsin(\/zt +¢1)—%A2(2t +¢2)
X, (t) Alsin(\/it +¢1) + Azsin(Zt +¢2)

Using initial conditions:

1]

2]
3]
]

4

1= Asing, — A sing,

1= Asing + A sing,

0= \/§A1c03¢>1 —2A, cosg,
0= x/EAlcos¢>1 +2A, coso,

[
[
[
[

From [3] and [4]

¢1:¢2:_

From [1] and [2]:

The solution is

X (t) = —%cosZt

X, (t) =Cos2t



In this problem, both masses oscillate at only one frequency (not the same frequency as in
Problem 4.9, though.)



4.11 Determine the equation of motion in matrix form, then calculate the natural frequencies
and mode shapes of the torsional system of Figure P4.11. Assume that the torsional

stiffness values provided by the shaft are equal (kl = k2) and that disk 1 has three times
the inertia as that of disk2(J, =3J,).
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Solution: Letk =k =k, and J, =3J,. The equations of motion are
J,6, +2k6,— k6, =0
J,0,-k0, +k6,=0

3 0], 2 -1
J, 0+k 0=0
0 1 -1 1
Calculate the natural frequencies:

) _|-3w?J, + 2k —k
—k —0°J, +k

So,

det(—wZJ +K

= 0.482\/E
J2
o, :1.198\/E
JZ

Calculate the mode shapes: mode shape 1:

[—3(0.2324)k +2K —k ][Un} “o

—k ~(0.2324)k +k || u,,
u, =0.7676u,

767
So, ulz[o 166}

mode shape 2:
~3(1.434)k + 2k —k w2,
—k ~(1.434)k +k {uzj )

Uy, = —O.434u22




So. Uy = [—0.;134}



4.12 Two subway cars of Fig. P4.12 have 2000 kg mass each and are connected by a coupler.

The coupler can be modeled as a spring of stiffness k = 280,000 N/m. Write the equation
of motion and calculate the natural frequencies and (normalized) mode shapes.
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Solution: Given: m =m, =m = 2000 kg

k = 280,000 N/m
The equations of motion are:

mX_ +kx —kx, =0

mX, —kx, +kx, =0
In matrix form this becomes:

m 0], k -k
X+ x=0
0 m -k k
2000 0 <+ 280,000 -280,000
0 2000 —280,000 280,000

Natural frequencies:

det(—sz + K) =0

—280,000 —2000w° + 280,000

—20000? + 280,000 —280,000 ‘
4x10%°w0* -1.12x10°w* =0

w”=0,280 = w, =0 rad/sec and ®, =16.73 rad/sec
Mode shapes:

Mode 1, w? =0

280,000 -280,000|fu, | |0
—280,000 280,000 || u, 0
su,=u,
|1
u = 1

Mode 2, w? =280



—-280,000 -280,000 || u, | |0
—280,000 -280,000 || u,, 0

Su, =,

+=l)

Normalizing the mode shapes yields

=l

1|-1]. . .
Note that u, = T[ . } is also acceptable because a mode shape times a constant (-1 in
2

this case) is still a mode shape.



4.13 Suppose that the subway cars of Problem 4.12 are given the initial position of x;o =
0, X0 = 0.1 m and initial velocities of vio = v = 0. Calculate the response of the cars.

Solution:

Given: x(0)=[0 0.1] ,x(0)=0

oy

o, =0 rad/s and o, =16.73 rad/s

From problem 12,

The solution is
x(t) = (cl + czt)ul + Asin(16.73t + q))u2
= x(O) =c,u, +16.73Acos(¢>)u2 and x(O) =cu, + Asin(d))u
Using initial the conditions four equations in four unknowns result:
0=c, +Asing [1]
0.1=c,— Asing [2]
0=c, +16.73Acos¢ [3]
0=c,-16.73Acos¢ [4]

2

From [3] and [4]:c, =0, and ¢ =% rad

From [1] and [2]:c, =0.05 mand A=-0.05m

The solution is

x,(t) = 0.05-0.05c0516.73t
X, (t) = 0.05+0.05¢0516.73t

. 1|-1]. . .

Note that if u, = T[ } is chosen as the second mode shape the answer will remain the
2

same. It might be worth presenting both solutions in class, as students are often skeptical

that the two choices will yield the same result.



4.14 A slightly more sophisticated model of a vehicle suspension system is given in Figure
P4.14. Write the equations of motion in matrix form. Calculate the natural frequencies
for k; =10° N/m, k, = 10* N/m, m, = 50 kg, and m; = 2000 kg.
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Solution: The equations of motion are
2000%, +1000x, —1000x, =0

50X, —1000x, +11,000x, =0
In matrix form this becomes:

2000 O 1000 -1000
X+ Xx=0
{ 0 50} {—1000 11, OOO}

u*ﬁ*ﬁ‘<|

i...

LR

Natural frequencies:
det(~0*M +K) =0

‘—20000)2 +1000 ~1000

=100,0000" — 2.205x 10" w* +10" =0
—-1000 ~50w° +11,000

w;, =0.454, 220.046 = o, =0.674rad/s and w, =14.8 rad/s



4.15

Examine the effect of the initial condition of the system of Figure 4.1(a) on the responses
X1 and X by repeating the solution of Example 4.1.7, first for xi0 = 0,x0 = 1 with

X, =X,, =0 and then for x, =x,, =%,=0 andx,, =1. Plot the time response in each

case and compare your results against Figure 4.3.
Solution: From Eq. (4.27) and example 4.1.7,
[xl(t)} _ %Alsin(\/gt +¢1)—%Azsin(2t +9,)
XZ(t) Alsin(x/zt+¢1)+ Azsin(2t+¢2)

(a)x(O) = [0 1]T , x(O) =0. Using the initial conditions:
0=Asing,—Asing,  [1]
1= Asing, + A sing, [2]
0=2A cosg, ~2A,cosg, [3]
0=12A cosg, +2A,cosg, [4]

From [3] and [4] ¢, =9, :g

From [1] and [2] A=A-=

N |~

The solution is
1 1
X [t :—COS\/EI——COSZt
1() 6 6

X, (t) = %cos\/gt +%c032t

This is similar to the response of Fig. 4.3



x1 (1) = é |{n:n:ns |{n.|"£ t]| — o3 [E-tﬂ X2 (1) 1= é (cns |{n.|'5 t]| + o3 [2-t]|]|
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(b)x(O) =0, x(O) = [0 1]T . Using these initial conditions:
0= Asing, — A sing, [1]
0= Asing, + A sing, [2]
0=+/2A cosg, — 2A cos, (3]
1=+2A cosg, +2A,cosg, [4]
From [1] and [2] ¢, =¢, =0

2

From [3] and [4] A = 7 and A, :%

The solution is

V2

X, (t) = Esin Jat- ésin 2t
X, (t) = gsin Jat+ %sin 2t

This is also similar to the response of Fig. 4.3






4.16 Refer to the system of Figure 4.1(a). Using the initial conditions of Example 4.1.7,
resolve and plot x,(t) for the cases that k, takes on the values 0.3, 30, and 300. In each
case compare the plots of x; and x, to those obtained in Figure 4.3. What can you
conclude?

Solution: Let k; = 0.3, 30, 300 for the example(s) in Section 4.1. Given
x(0)=[1 0] mm,x(0)=[0 o]
m =9,m, =1k =24
Equation of motion becomes:
o et e

(@) k.= 0.3

=9w* - 27w*+7.2=0

de't(—co2 M + K) = ‘_9(02 +243 0.3 ‘

-0.3 -w°+0.3
w’ =0.2598,2.7042
o, =0.5439
w, =1.6444

Mode shapes:

Mode 1, @’ =0.2958

216374 -03 [u,] [o
[ 0.3 0.004159}{%}{0}
21.6374u,-0.3u, =0

u,, =0.01386u,,

[0.01386}
u =
! 1

—-0.03744 0.3 ||U, |_|0
-03 24042 |u, | [O

—0.3u,, = 2.4042u,,

u,, =-0.1248u,,

1
U2 =
[—0.1248}

The solution is x(t) = Alsin(a)lt + q)l)u1 + Azsin(a)zt + (;f)z)u2

Mode 2, w? =2.7042



Using initial conditions

1= A (0.01386)sing, + A,sing, [1]
0= Asing, + A, (~0.1248)sing, [2]
0= A (0.01386)(0.5439)cosg, + A, (1.6444)cosg, [3]
0= A (0.5439)cosg, + A, (1.6444)(~0.1248)cosg, [4]

From [3] and [4],
¢ =¢,=ml2

From [1] and [2],
A =0.1246

A, =0.9983
So,

,(t) = 0.001727 cos(0.5439t) + 0.9983cos(1.6444t) mm
X, (t) = 0.1246[ cos(0.5439t) - cos(1.6444t) | mm

x1 (1) = 0.001727- cos (0.5439-1) + 0.9983 coz (1.644-1)

X2 (1) = 0.1246- (cos (0.5439-1) — cos (1.644-1))

@1'\/\/\/\[}/\
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(b) k» = 30
90*+54  -30

det(_szJrK):‘ 30 -’ +30

‘:9w4—32w2+720:0

»* =2.3795,33.6205
o, =1.5426

®, =5.7983



Mode shapes:
Mode 1, w? = 2.3795

325845 30 |[u,] [0
[ 30 27.6205}{%}{0}
30u,, = 27.6205u,,

u, =0.9207u,

[0.9207}
U1 =
1

Mode 2, (022 =33.6205

—2485845 30 |lu, | [0
[ 30 —3.6205}{%2}{0}
30u,, =—3/6205U,,

u, =-0.1207u,,

[—0.1207}
U2 =
1

The solution is

x(t) = Alsin(a)lt + q)l)u1 + Azsin(a)zt + (;f)z)u2
Using initial conditions,

1= A (0.9207)sing, + A,(-0.1207sing, 1]
0= Asing, + A sing, [2]
0= A(0.9207)(1.5426)cos¢, + A, (~0.1207)(5.7983)cosg, [3]
0= A (L5426)cosg, + A, (5.7983)cosg, [4]

From [3] and [4]

0,=¢,=712

From [1] and [2]



A =0.9602
A, =-0.9602

So,

,(t) = 0.8841c0s(1.5426t) +0.1159 cos(5.7983t) mm
x, (t) = 0.9602[ cos(1.5426t) - cos(5.7983t) | mm

¥l (1) '= 0.8841 cos (1.5426-1) + 0.1152- cos (5.7983-1)

X2 (1) 1= 0.9602- (cos (1.5426-1) — cos (5.7953-1))
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det(-0?M +K)= [0 T3 0 o g0i 300407 + 720020
300 —w°+300

»® =2.3981,333.6019
», =1.5486
», =18.2648

Mode shapes:

Mode 1, @’ = 2.3981



302.4174  -300 |(u, ]| [0
[ 300 297.6019}{%}_{0}
302.4174u,, =300u,,

u, =0.9920u,

[0.9920}
U1 =
1

Mode 2, coi =333.6019

—2678.4174  —300 |[u, | [0
[ ~300 —33.6019}{%2}_[0}
300u,, =33.6019u,,

u, =-0.1120u,,

[—0.1120}
U2 =
1

x(t) = Alsin(a)lt +q>l)u1 + Azsin(a)zt +(;b2)u2

The solution is

Using initial conditions

1= A (0.9920)sing, + A, (~0.1120)sing, [1]
0= Asing, + A sing, [2]
0= A (0.9920)(1.5486)cosg, + A, (~0.1120)(18.2648) [3]
0= A (1.5486)cosg, + A, (18.2648)cos, (4]

From [3] and [4] o =0,=m/2

From [1] and [2], A; =0.9058 and A, = -0.9058.

So,

x,(t) = 0.8986cos(1.5486t) + 0.1014c0s(18.2648t) mm
X, (t) = 0.9058[ cos(1.5486t) - cos(18.2648t) | mm



x1(t) '= 0.8986-coz (1.5486-1) + 0.1014-cos (18.2648- 1)
X2 (1) '= 0.9052- (cos (1.54586-1) — coz (15.2645-1) )
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As the value of k, increases the effect on mass 1 is small, but mass 2 oscillates similar to

mass 1 with a superimposed higher frequency oscillation.



4.17 Consider the system of Figure 4.1(a) described in matrix form by Egs. (4.11), (4.9), and
(4.6). Determine the natural frequencies in terms of the parameters m;, my, ki and k.

How do these compare to the two single-degree-of-freedom frequencies o, = \/k / m,
andw, =/k,/m, ?
Solution:

The equation of motion is

MX + Kx =0
m 0 - k +k, -k, L= 0
0 m, -k, k
The characteristic equation is found from Eq. (4.19):
det(~0*M + K) =0

—mo’® +k +k, —k

2

2
-k, -mw” +k,

mm,o* — (k1m2 +k, (m1 + mz))co2 +kk, =0

km, +k, (m1 + mz) + \/[klmz +K, (ml + mz)]2 —4mmk K,
2mm,

So,

km, +k, (ml + mz) + \/[klmz +k, (m1 + mz)]2 —4mm.k k,
2mm,

o, =

In two-degree-of-freedom systems, each natural frequency depends on all four
parameters (my, my, K1, ko), while a single-degree-of-freedom system's natural frequency
depends only on one mass and one stiffness.



4.18 Consider the problem of Example 4.1.7 and use a trig identity to show the x;(t)
experiences a beat. Plot the response to show the beat phenomena in the response.

Solution Applying the trig identity of Example 2.2.2 to x; yields

+
x,(t) = (COS\/—'[+COSZ'[) cos(\f 2 s(\/E2 2t):cosO.586tcos3.414t

Plotting x; and cos(0.586t) yields the clear beat:
X []:_] = cos [ SR l:_] |_|_|x[_ 414 - I:_:I
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Problems and Solutions for Section 4.2 (4.19 through 4.33)

4.19 Calculate the square root of the matrix
M = 13 -10
-10 8

. —b
{Hlnt: Let M*2 :{ ab }; calculate (M”Z)2 and compare to M}
-b ¢

Solution: Given:

M = 13 -10
-10 8

M Y2 :|: ab —b] then
— C
M - Ml/ZMl/Z — a _b a _b — a2 +b2 —ab—bC — 13 _10
-b c||-b c —ab—-bc b*+c? -10 8

This yields the 3 nonlinear algebraic equations:

a’+b?=13
ab+bc =10
b>+c*=8

There are several possible solutions but only one that makes M*? positive definite which
is a=3, b=c=2 as determined below in Mathcad. Choosing these values results in

|\/|l/2= 3 2
-2 2



SVEL a® + he=13

a-h + b-c=10

b+ pf=g

find (a,b,c) =



4.20 Normalize the vectors
1(]0({-01
-2[15/]] 0.1
first with respect to unity (i.e., x" x =1) and then again with respect to the matrix M

(i.e.,x" Mx =1), where
vo| 3 01
-01 2

Solution:

(a) Normalize the vectors

1
o = = —
' X" X \/E
Normalized:
(= 1104472
5| -2| |-0.8944
« = 0
2 |5
1 1
o, = - —g
X' X
Normalized:

1 1
o. = =
*Ux'x +0.02

Normalized:



01| _ 1|-1|_[-0.7071
X, =+/50 =— =
: [0.1} 2[1} [0.7071}

(b) Mass normalize the vectors

o

_ 1 1
IXTMx V114

Mass normalized:

11

* IxMx V50

& %m ) %m ) {0.7?)71}
<~ o1)

o = 1 _ 1
P UdXTMx +/0.052

(04

Mass normalized:

_ —0.4385}

1 -0.1
X = =
. J0.052 { 0.1 } { 0.4385



4.21  For the example illustrated in Figure P4.1 withc, =c, = ¢, =0, calculate the matrix K .

Solution:

From Figure 4.1,
m 0 - k +k, =k, N
0 m, -k, k, +k,

K - M—l/Z KM -1/2 = mJTllz 0 kl + k2 _k2 mJTllz 0
0 mY| -k, k+k| 0 m*

2
- ~1/2 -1
‘- mll(kl+k2) —m**m; %k,
_ml—1/2m2—1/2k2 ml_l(kz + k3)

Since K" = K, K is symmetric.

Using the numbers given in problem 4.2 yields

This is obviously symmetric.



4.22 Repeat Example 4.2.5 using eight decimal places. Does P'P =1, and does
PTKP = A = diag [a)f a)j] exactly?

Solution: From Example 4.2.5,

K =[12 _l}édet(lz—ll)=/12—151+35=0
1 3

= A, =2.89022777, and A, =12.10977223

Calculate eigenvectors and normalize them:

A, =2.89022777

— V
9.10977223 L |0 =9.10977223v,, =V,
-1 0.10977223 0

v = V2 +v2 = \/v + 910977223)
—v,, =0.10911677 and v,, =0.99402894

v, =[0.10911677 0.99402894]
A, =12.10977223

_, [-010077223 -1 v, | [o
-1 -9.10977223]|v,, | |0

= v,, =9.10977223v,,

v, | = V2 +v2 = \/ (~9.10077223) V2 +v2 =1
v,, =—9.10911677, and v,, =—-0.99402894

=[0.99402894 0.10911677 ]

0.10911677 —0.99402894
Now, P = [ 2] =
0.99402894 0.10911677
Check P'P=I
TP = 1.00000000 0
0 1.00000000

Check PTRP = A =diag(4,,4,)

} = | (to 8 decimal places)



A=PTRP = 2.89022778 0.00000002
0.00000002 12.10977227

2.89022777 0 }

diag(4,,4, ) =
g( . 2) [ 0 12.10977223

This is accurate to 7 decimal places.



4.23  Discuss the relationship or difference between a mode shape of equation (4.54) and an
eigenvector of K .

Solution:

The relationship between a mode shape, u, of MX+ Kx =0 and an eigenvector, v, of
K = M™Y2KM ™2 is given by
v.=M"u or u =M,

If v is normalized, then u is mass normalized.

This is shown by the relation

viv, =1=uMu,

4.24  Calculate the units of the elements of matrix K .
Solution:
K = M -1/2 KM -1/2
M ™ has units kg™?

K has units N/m = kg/s?

So, K has units (kg'l’z)(kg/sz)(kg’“z) =57



4.25 Calculate the spectral matrix A and the modal matrix P for the vehicle model of Problem
4.14, Figure P4.14.

Solution: From Problem 4.14:
Mg + Kx = 2000 O “+ 1000 -1000
0 50 —-1000 11,000

Calculate eigenvalues:
det( K — M) =0

g = M_l,zKM_l,zz[ 05 —3.162}

-3.162 220

~3.162 220- A
A,, =0.454,220.05

The spectral matrix is
0.454 0
A =diagl A, | =
o) "5 o)
Calculate eigenvectors and normalize them:

0.5- -3.162
‘ A ‘212—220.51+10020

A, =0.454
0.0455 -3.162 || V.
" 1=0=v, =69.426v,,
—3.162 219.55]|v,,

vl = V2 +v2, = \/(69.426)2 V2 +V2 = 69.434v,, =1

22

=V, =0.0144, and v,, =0.9999

0.9999
= V1 =
0.0144
A, =220.05

—219.55 -3.162 ||V, |_ 0
—-3.162 -0.0455 | v,,
v,, =0.0144v,,

HVZH = Vo Vv, = \/(—0.0144)2 Vo, +v2, =1.0001v,, =1

=V,, =0.9999, and v,, =-0.0144

Ly = -0.0144
21 0.9999

The modal matrix is



p=[v, v,]= 0.9999 —0.0144
1720 10,0144  0.9999



4.26  Calculate the spectral matrix A and the modal matrix P for the subway car system of
Problem 4.12, Figure P4.12.

Solution: From problem 4.12 and Figure P4.12,
2000 O “+ 280,000 —280,000
2000 —280,000 280,000

MX + Kx =

Calculate eigenvalues:
det( K — M) =0

R = M2 KM 2 :[ 140 —140}

-140 140

=21*-280A1=0
-140 140-A7

A, =0,280

0 0
A =diagl( A ) =
o) )
Calculate eigenvectors and normalize them:
A =0

140 140 v, |_o
~140 140 ||v, |
Vll = V12
Hle = \/vfl +v2, = \/vfz +v,, =1414v, =1

v,, =0.7071
v,, =0.7071

_[o.7071
V1 =
0.7071

‘140—), ~140 ‘

The spectral matrix is

A, =280
140 140 v,y | _ ooy =y
~140 140 | v, 20

Sv,| = VA +V2 = V2 2, =1414v, =15 v, =0.7071v,, = -0.7071
~0.7071]
0.7071 |

2




The modal matrix is P = I:Vl v2] _ {8;821 —00.77007711}



4.27 Calculate K for the torsional vibration example of Problem 4.11. What are the units
of K ?

Solution: From Problem 4.11,

Jo+Ko=1, 3 Ogak 2 Ho=o
01 -1 1

K = Jfl/Z KJ -1/2

J 1/2 J21/2
O 1

¢ = g-u2 05774 0 y 2 -1 J-u2 05774 0
2 0 1 |-1 1132 0 1

k [ 0.6667 —0.5774}

R=X
J,|-05774 1

-1/2 -1/2
kg - m? N-m )| kg -m? _ g
rad rad rad

A

The units of K are




4.28 Consider the system in the Figure P4.28 for the case where m; =1 kg, m, = 4 kg, k; = 240
N/m and k,=300 N/m. Write the equations of motion in vector form and compute each of the
following

a) the natural frequencies

b) the mode shapes

c) the eigenvalues

d) the eigenvectors

e) show that the mode shapes are not orthogonal

f) show that the eigenvectors are orthogonal

g) show that the mode shapes and eigenvectors are related by M 2

h) write the equations of motion in modal coordinates
Note the purpose of this problem is to help you see the difference between
these various quantities.

}_’ x,(1) }_’ X,(1)
W m _\/V\/L m,

k, k,

Figure P1.28 A two-degree of freedom system
Solution From a free body diagram, the equations of motion in vector form are

1 0| |[540 -300 0
X+ X =
0 4 -300 300 0
The natural frequencies can be calculated in two ways. The first is using the determinant

following example 4.1.5:
a) det(-o°M +K) = 0= o, = 5.5509,w, = 24.1700 rad/s

The second approach is to compute the eigenvalues of the matrix K = M KM ~ following
example 4.4.4, which yields the same answers. The mode shapes are calculate following the
procedures of example 4.1.6 or numerically using ei g( K, M in Matlab

0.5076 0.9893
b) u, = , Uy, =
0.8616 -0.1457

The eigenvectors are vectors that satisfy Kv = Av, where A are the eigenvalues. These can be

computed following example 4.2.2, or using [ V, Dv] =ei g( Kt ) in Matlab. The eigenvalues
and eigenvectors are
c) A, =30.8120, A, =584.1880,

0.2826 —0.9592
d) v, = , V, =
0.9592 0.2826



To show that the mode shapes are not orthogonal, show thatu,u, # 0

e) u; u, = (0.5076)(0.9893) + (0.8616)(—0.1457) = 0.3767 = O
To show that the eigenvectors are orthogonal, compute the inner product to show thatv;v, = 0:
f) v, Vv, =(0.2826)(-0.9592) + (0.9592)(0.2826) = 0

To solve the next part merely compute M 72v, and show that it is equal to u; (see the discussion
at the top of page 262.

9) M %y, =

0.9592 -0.9893
—0.1413 0.1457
Likewise, M 72v, = u, . Note that if you use Matlab you’ll automatically get normalized vectors.

But the product M 72v,, will not be normalized, so it must be normalized before comparing it to
Us.

}, normalize to get [

u,

h) We can write down the modal equations, just as soon as we know the eigenvalues (squares of
the frequencies). They are:

f;(t) + 30.812r,(t) = 0
f, () + 583.189r,(t) = 0

4.29  Consider the following system:

10 3 -1
X + x=0
o o 7]
where M is in kg and K is in N/m. (a) Calculate the eigenvalues of the system. (b)
Calculate the eigenvectors and normalize them.

Mx + Kx = 1 O>‘<+ 3 _lx:O
0 4 -1 1

Calculate eigenvalues:

Solution: Given:

det( K- M) =0
K — M—1/2 KM -2 _ 3 -0.5
-0.5 0.25

3-1 05
05 0.25-4
A,, =0.162,3.088

‘:/12—3.251+0.5:0



The spectral matrix is
. 0162 0
A =diag (/l) =
' 0 3.088
Calculate eigenvectors and normalize them:

A, =0.162
— V

2838 05V | _ 0=v, =1.762v,,

0.5 0.088]| v,
M ENFR \/(0.1762)2 V2 +V2 =1.015v, =1

0.1735
v,, =0.9848 and v, =0.1735=v, = [0 984318}
A, =3.088
— — V
0088 =05 Vi ooy =1762v,,
05 -2.838 v,

v, = V2 +v2 = \/(—5.676)2 V2 +V2, =5.764v, =1

22
—0.9848}

=V, = 0.1735 and vV, = —0.9848 = Vv, =
0.1735



4.30 The torsional vibration of the wing of an airplane is modeled in Figure P4.30. Write the
equation of motion in matrix form and calculate the natural frequencies in terms of the rotational

inertia and stiffness of the wing (See Figure 1.22).

Abrpluee wing wilh cogmes Wing sodeled as o shalis aed fwo

Solution: From Figure 1.22,

Equation of motion:

0y, [tk _k2:|920
0 J,| | -k Kk
i ~GJ
o GJDLLA] :
, 0 b+ L, L 1, 0=0
0 3, ~GJ, GJ
L . p
L |2 I2 _
Natural frequencies:
GJ [1 1) -GJ
_ Pl 4=
K= MY2KM Y2 = ! Il |2 I JJ,
-GJ GJ
p p
L Iz\/‘]l‘]z I, i
%(;g]_l ~0J,
i VEUER 1/J,J
det(R-at)=| =~ 2N
-GJ, GJ,
— =1
L Iz ‘]1‘]2 JZIZ ]

Solving for A yields

2
A _%[1£1+1)+i]+% Hzg} 1 ] 4
22 L)L 2 oL L)L 3L

The natural frequencies are




w, =, and cozz\/)T2



4.31 Calculate the value of the scalar asuch thatx; =[a -1 1]"andx,=[1 0 1]  are
orthogonal.

Solution: To be orthogonal, xIx2 =0

1
So,x;x,=[a -1 1] 0{=a+1=0. Therefore, a=-1.
1

4.32  Normalize the vectors of Problem 4.31. Are they still orthogonal?

Solution: From Problem 4.31, witha =-1,

-1 1
X, =|-1| and x,=|0
1 1
(ocxl)T (ocxl) =1
-1
Normalize Xi: a’[-1 -1 1]|-1]|=3"=1
1
o =05774
-1
So, X, =0.5774| -1
1
Normalize X;:
(ozxz)T (axz) =1
1
a’[1 0 1) 0|=2a"=1
1
a=0.7071
1
So, x, =0.7071 0
1
Check orthogonality:
1

xIx, =(0.5774)(0.7072)[-1 -1 1]/0|=0 Still orthogonal
1






4.33  Which of the following vectors are normal? Orthogonal?

0.1 0.3
1 X, = 0.2 X, = 04
0.3 0.3

<
I
&‘n—\ o %“H

Solution:

Check vectors to see if they are normal:

Hxluzx/1/2+0+1/2 :x/i:1 Normal
HXZH =12 +.22+.3 =14 =03742 Not normal
[x,| =3 +.4% +.3 =/34 =0.5831 Not normal

Check vectors to see if they are orthogonal:

i
xIxzz[llx/E 0 1/&} .2 |=.2828 Not orthogonal
3
3
x;x,=[.1 2 3].4|=02 Not orthogonal
3

172

x;x,=[.3 4 3]| 0 |=04243 Notorthogonal

1142

.. Only x; is normal, and none are orthogonal.



Problems and Solutions for Section 4.3 (4.34 through 4.43)

4.34  Solve Problem 4.11 by modal analysis for the case where the rods have equal stiffness
(i.e., k =k,), J, =3J,,and the initial conditions are x(0) = [0 l]T and x(O) =0.

Solution: From Problem 4.11 and Figure P4.11, with k =k =k, and J, =3J,:

o[22 -
3,12 gk 6=0
0 1 -1 1

Calculate eigenvalues and eigenvectors:

I
J—l/Z - J2—1/2 \/5
0 1]
(2 -1
- 3 5 2
R =3y =X E édet(K—Al)zlz—i +k_2:
A 31, 3J
V3
(S—Jﬁ)k (5+\/E)k
l:—i a):/l,and—zm):l
' 6J, LN 6J, .=\,
(5+Jﬁ)k )
(S—x/E)k 6J, 33,
)«1:—:) 11 =0
6J, _Kk (5+\/E)k 12
3J, 6J,
0.7992
=V, = 1.3205v12 =V, = [0.6011}



_(—l—\/ﬁ)k i
(5+\/E)k 6J, 3] {vz }

=i ’

’ 6J, _k (1—\/E)k

-0.6011
0.7992

=V, = —0.7522v22 =V, = {

Now. P:[Vl V2]: 0.7992 -0.6011
0.6011 0.7992
Calculate S and S
o jup L [04614 -03470
0.6011 0.7992

.

Sfl - PTJl/Z - \];L/2|:

1.3842 0.6011
-1.0411 0.7992

Modal initial conditions:

r(0)=5s"(0)= s-lm =} [gsgéﬂ

r(0)=5"6(0)=0
Modal solution:
n (t) = MSM[CG{[ +tan™ a)l_l’m:|

1 10

SHER

2,2 2
wr,. +r-. w.r,
r (t):usm ot +tan"t 21
wZ 20

r,(t) =0.60112 sin[a)lt + %} =0.6011J2%cos @t

r, (t) =0.7992322 sin[a)zt ¥ %} =0.6011J2 cos,t

r(t) | 0.6011J;*cosayt
0.7992J.% cosm,t



Convert to physical coordinates:

o(t) = srt) = o[ 04614 03470 0.60113%2 cosa,t
0.6011 0.7992 ]| 0.7992J; 12 cosat

O(t) _10.2774cosm,t —0.2774cos w,t
| 0.3613cos @t +0.6387 cos

where w, =0.4821 /Jﬁ and w, =1.1976 /JL
2 2



4.35 Consider the system of Example 4.3.1. Calculate a value of x(0) and X(O) such that both
masses of the system oscillate with a single frequency of 2 rad/s.

Solution:

From Example 4.3.1,

Ll 4

g 1 {1/3 1/3}

* s

From Equations (4.67) and (4.68),

2.2 2
i+l ofr
r, (t) = Msm[a)lt + tanll—lo}
wl 10
2,2 2
rZ+rl o,r
rz(t)zusm ot +tan"t 22
wZ 20

Choose x(0) and x (0) so that ry(t) = 0. This will cause the frequency \/E to drop out.
For ry(t) = 0, its coefficient must be zero.

2,2 2

O’k +r

=8 2=0 or @ri+ri=0
0]

1

Chooser,, =r, =0.

Let rp = 3/+/2 and r,, =0 as calculated in Example 4.3.1.
So, r(O) :[0 SI\ET and r(o) =0.

Solve for x(0) and X(O) ;



o)=st9= 5[0 7], 05 L%
x(0) = st(0) =

o



4.36  Consider the system of Figure P4.36 consisting of two pendulums coupled by a spring.
Determine the natural frequency and mode shapes. Plot the mode shapes as well as the
solution to an initial condition consisting of the first mode shape for k =20 N/m, | =0.5
m and m; = m, = 10 kg, a = 0.1 m along the pendulum.

|

i
i
|

hoook
1
| |
L
1

T
b
Solution: Given:
k=20 N/m m =m, =10 kg
a=01m =05m
For gravity use g =9.81 m/s®>. For a mass on a pendulum, the inertia is: 1 = ml?
Calculate mass and stiffness matrices (for small ). The equations of motion are:

1.6, = ka*(6, - 6,) - mgle, Lo O [ [mat ket —ka® 16| _[o
It92:—ka2(¢92—6?1)—ngle2 6, —ka®  mgl+ka’]|6,| |0

2..
Substitution of the given values yields:
2. .. . —0.
5 0 b+ 49.05 -0.2 0=0
0 25 -0.2 49.05
19.7 -0.08
-0.08 19.7

= A,=19.54 and A, =19.7 = o, =4.42 rad/s and w, = 4.438 rad/s
Eigenvectors:

Natural frequencies:

K = Mfl/ZKMfl/Z :|:

A, =19.54
{0.08 —0.08}{%} H 1 H
= = V1:_
~0.08 0.08 ||v,| [0 V2|1
A, =19.7

{—0.08 —o.oswn} m 1
= |= v,=—F
—0.08 -0.08]|v,, | [0 J2

Now, P =[v, Vz]:%[i —11}



U = M :[0.4472
! Y 10.4472
Mode shapes: 0.4475
u,=M*?, =~
—0.4472

u 1 u,
m, —» m, —
: | | :
-0.447 0.447 10447 0.447
> <« m,
n,

This shows the first mode vibrates in phase and in the second mode the masses vibrate
out of phase.

9(0) = paare 9(0) =0, S=M¥?p= 0.4472 0.4472
0.4472 0.4472 -0.4472

. 1.118 1.118 . 1]
ST =PTME :[1.118 —1.118} r(o): > 19(0):{0} r(o):o

From Eq. (4.67) and (4.68): 1, (t) = sin[4.42t + %) = cos4.45t, 1,(t)=0

. . A4472c0s4.42
Convert to physical coordinates: 9(t) = Sr(t) = [O c0s t}rad

0.4472co0s4.42t
Bt) = 0.4472-coz (4.429-1)

0.3 A

-5t

t
4.37 Resolve Example 4.3.2 with m, changed to 10 kg. Plot the response and compare the
plots to those of Figure 4.6.

Solution: From examples 4.3.2 and 4.2.5, with m, = 10 kg,



MX+Kx=[é O}H[lz _2}x=0

10 -2 12
Calculate eigenvalues and eigenvectors:

1 0
M -1/2 —

0 L

J10
R = M-Y2KM-Y2 = 12 —0.6325
—0.6325 1.2

det(K —A1)=21*-13.24+14=0
A, =1.163 ®,=1.078 rad/s
A,=12.04 o, =3.469 rad/s

P_[V y ]_ 0.0583 -0.9983
v 0.9983 0.0583

Calculate S and S

S = M2p = [0.0583 —0.9983}
0.9983 0.0583
1= pT Y2 :[ 0.0583 3.1569}
~0.9983 0.1842

Modal initial conditions:

0)=sx(0)=5 | ey

t(0)=57x(0) =0
Modal solution (from Egs. (4.67) and (4.68):
r(t)= 3.2152sin[1.078t + ﬂ = 3.2152¢0s1.078t

r, (t) = -0.8141c0s3.460t
Covert to physical coordinates:

0.0583 -0.9983|| 3.2152co0s1.078t
x(t):Sr(t):
0.3157 0.0184 || —0.8141c0s3.469t
x(t) _ 0.1873c0s1.078t +0.8127 cos 3.469t
1.015¢0s1.078t — 0.0150c0s 3.469t



B1 {1} ;= 0.1673 cos (1.078-1) + 0.5127 cos (3.469-1)

Bz (1) := 1.015 coz (1.078-t) — 0.0150- coz (3 469-1)

These figures are similar to those of Figure 4.6, except the responses are reversed (6,
looks like x; in Figure 4.6, and 6; looks like x; in Figure 4.6)



4.38 Use modal analysis to calculate the solution of Problem 4.29 for the initial conditions
x(O) =[0 1]T (mm) and x(O) = [0 O]T (mm/s)

Solution: From Problem 4.29,

¢

o, = /A, =0.4024 rad/s
, = [, =1.7573 rad/s

P_[V V]_ 0.1735 -0.9848
toe 0.9848 0.1735

Calculate S and S

S = M2p = [0.1735 —0.9848}

0.4924 0.0868
or 2 < | 01735 1.9697
~0.9848 0.3470

st=

Modal initial conditions:

0)=5(0)=51 = e

r(0)=57x(0)=0
Modal solution (from Egs. (4.67) and (4.68):

r,(t) =1.9697 cos0.4024t
r,(t) =—.3470cos1.7573t

Convert to physical coordinates:
0.1735 —-0.9848 || 1.9697 c0s0.4024t
x(t):Sr(t):
0.4924 0.0868 || 0.3470c0s1.7573t
0.3417c0s0.4024t — 0.3417 cos1.7573t
x(t): mm
0.9699¢0s0.4024t + 0.0301cos1.7573t



4.39

For the matrices
1

— 0 1 1

M2 =| o and P:i[ }
0

calculate M 2P, (M ‘1’2P)T , and P M ™2 and hence verify that the computations in
Eg. (4.70) make sense.

Solution:
Given
1
— 0 111 1
M2 = and P = —
o s
Now
05 05 |
M—l/ZP:
{—26 22
So

)T |05 22
(7p) _[0.5 —2V2 |
0.5 —zﬁ]
05 242

Thus, (M2P)" = P M2 [Equation (4.71)]

PT M—l/z :[



4.40 Consider the 2-degree-of-freedom system defined by:

M:90,andK:27 -3
0 1 -3 3

Calculate the response of the system to the initial condition

What is unique about your solution compared to the solution of Example 4.3.1.

Solution: Following the calculations made for this system in Example 4.3.1,
w, = \/Z =1414radls, w,= \//’TZ =2 rad/s

1 1
11 -z 1
P:i{ }:S:M‘“ZP:L3 3 |and S*=P'M"?= [3 }

1 -1 J2 L1
Next compute the modal initial conditions
1
r(0)=S"x(0)=| |, and r(0)=S"%(0)=0
(9)=5%(0)=| 3|, a0 ¢(o)=5x(o)
Modal solution (from Egs. (4.67) and (4.68)):

(1) = [cosl(.)414t}

Note that the second coordinate modal coordinate has zero initial conditions and is hence
not vibrating. Convert this solution back into physical coordinates:

-

1 1
X(t) = Sr(t) = % f 51 |:COSl(.)414ti|
x(t) = 0.236c0s1.414t
0.707 cos1.414t

The unique feature about the solution is that both masses are vibrating at only one
frequency. That is the frequency of the first mode shape. This is because the system is
excited with a position vector equal to the first mode of vibration.



4.41 Consider the 2-degree-of-freedom system defined by:

M:90,andK:27 -3
0 1 -3 3

Calculate the response of the system to the initial condition
1

x,=0, and >'<0:i 3

a5

What is unique about your solution compared to the solution of Example 4.3.1
and to Problem 4.40, if you also worked that?

Solution: From example 4.3.1,

111 1
wlz\/Z:lAl‘]- rad/s, wzz\/Z:Zfad/S, P:$|:1 _1:|

1 1
~S=M"P=—|3 3| adst=pPM¥= 1{3 1}

V20, ) 2|3 -1

Modal initial conditions:

s en 0550

| I—|

Modal solution (from Egs. (4.67) and (4.68)):
0

e B 0
r()— icosZt | 0.5c0s2t

(1)2
Convert to physical coordinates:
1 11 0 0.118cos 2t
x(t):Sr(t):— 3 3 =
J2 L _p|L05cos2t| | -0.354c0s2t

Compared to Example 4.3.1, only the second mode is excited, because the initial velocity
is proportional to the second mode shape, and the displacement is zero. Compared to the
previous problem, here it is the second mode rather then the first mode that is excited.



4.42 Consider the system of Problem 4.1. Let k; = 10,000 N/m, k; = 15,000 N/m, and k; =
10,000 N/m. Assume that both masses are 100 kg. Solve for the free response of this
system using modal analysis and the initial conditions

x(0)=[x o] x(o)=0

Solution: Given:
k, =10,000 N/m m =m, =100 kg

2
k, =15,000 N/m  x(0)=[1 0]
k,=10,000 N/m  %(0)=0
Equation of motion:

MX +Kx =0
100 O - 25,000 -15, 000
0 100 —-15,000 25,000

Calculate eigenvalues and eigenvectors:

T O
0 01

K - Mfl/Z KM -1/2 =|: 250 _150:|

~150 250
det(K A ) = 12 —5001 + 40,000 = 0

A, =100 @, =10 rad/s
A, =400 @, =20 rad/s

2, =100
150 -150][ vy, |_[0
~150 150 ||v, | [0

3



2, = 400

~150 -150 v, | _[o0
~150 -150]|v,, | |0

_ 11
2 \/E 1
1 1
Now, P:[vl vzjzi
211 -1
Calculate S and S
S = M—lfzp:i 01 01
J2101 -01
S—l_ PT Ml/Z :i 10 10
J2110 -10

Modal initial conditions:

Modal solutions:

.2
w’r _ o,r
s (t) :#sm{wlt +tan‘1ﬂ}

10

I

2,2 2
r,tr. ,r.
r (t) =122 % sm[a)zt +tan™ 22
20

So
r,(t) = 7.071sin (10t + 7 / 2) = 7.071cos10t

r, (t) = 7.071sin(20t + 7 / 2) = 7.071cos 20t

2

7.071cos10t
r(t)=
7.071cos 20t

Convert to physical coordinates:



_ 1101 0.1 7.071cos10t
(1) =sr(t)= ﬁ[o.l 0.1}[7.7071c0320t}
()_ 0.5(coslot+c0520t)
= 0.5(colet—cosZOt)



4.43 Consider the model of a vehicle given in Problem 4.14 and illustrated in Figure P4.14.
Suppose that the tire hits a bump which corresponds to an initial condition of

x(0) = {O%J %(0)=0

Use modal analysis to calculate the response of the car x;(t). Plot the response for three
cycles.

Solution: From Problem 4.14,
Mg + Kx = 2000 O “+ 1000 -1000 “ =
0 50 —1000 11,000
Calculate the eigenvalues and eigenvectors:
M Y2 = 0.0224 0 R = MY2KM-Y2 = 0.5 -3.1623
0 0.1414 | -3.1623 0.1414
A, =0.4545 @, =0.6741rad/s

:>det(K —M) =12 —220.051+100=0 =
lz =220.05 w,=14.834 rad/s

p=[v, v,]= 0.9999 —0.0144
1720 10,0144 0.9999

Calculate S and S

S=M"pP=
0.0020 0.1414 —0.6441 7.0703

Modal initial conditions:

) 4o 0.001018] o
r(0)=57x(0)=s 1[0.01} = [ 007070 } r(0)=57x(0)=0
0.0010180030.67411
0.07070c0s14.834t

0.0224 —0.003} S‘l—PTM”Z—{M'?lG? 0.1018}

Modal solution (from equations (4.67) and (4.68)): r(t) :[

Convert to physical coordinates:



0.0020 0.1414 || 0.07070c0s14.834t | | 2.074x107°c0s0.6741t +9.998 x 10~ cos14.834f
x1 (1) = 2.277- 1077 cos (0.674-1) — 2.277- 107" coa (14.834-1)

(t)= se(t)= [0.0224 —0.0003}{0.0010180050.6741t} _ [2.277 x107°c0s0.6741t — 2.277 x 10° c0s14.8341




Problems and Solutionsfor Section 4.4 (4.44 through 4.55)

4.44 A vibration model of the drive train of avehicleisillustrated as the three-degree-
of-freedom system of Figure P4.44. Calculate the undamped free response [i.e.
M(t) = F(t) =0, ¢, = ¢, = Q] for theinitial condition x(0) =0, x(0)=[0 0 1]
Assume that the hub stiffness is 10,000 N/m and that the axle/suspension is
20,000 N/m. Assume the rotational element J is modeled as a trand ational mass

of 75 kg.
Fotatios Tire demping
) A,
| Hal I l
! S Fd " ............

_I|'|.'_. : Totmue coavertor [ e 4 e [ e ) ". I|I :..|;;_"I I H
Chaich = '-'i imertia e i -. e ﬁ.‘"l,‘_.'-w - I I-I;: _,, ....... Wimd el
B | J= 75 ku- orf md P R — p ._" _;l-u-i.:r i roardd krad

L T . = o BTE i
e R 5%
Huab will s Aale amd v oo

Sraoalelsnsl

Solution: Let k; = hub stiffness and k, = axle and suspension stiffness.
The equation of motionis

75 0 0 1 -1 0
0 100 O ([x+10,000-1 3 -2|x=0
0 0 3000 0 -2 2

x(0)=0andx(0)=[0 0 1] mis
Cdlculate eigenvalues and eigenvectors:
0.1155 0 0
MY= 0 01 O
0 0 0.0183

133.33 -115.47 0
K=M7Y2KM™Y2=|-11547 300 -36.515
0 -36.515 6.6667



0.1537 -0.8803 0.4488
v, =|0.1775|, v, =|-0.4222], v, = —0.8890

1 2

0.9721 0.2163 0.0913

Use the mode summation method to find the solution.
Transform the initial conditions:

a(0)=Mx(0)=0, ¢(0)=Mm"*%(0)=[0 0 54.7723]
The solution is given by:

q(t) = (cl + c4t)vl +C, sin(wzt + ¢2)v2 + casin(cost + </)3)v3

where
;
) =tan™* w i=23
2 q(O)
T .
C = viq(O) 1=2,3
' ®,cos¢
Thus,
¢, =¢,=0,c,—1.3417, and c, = 0.2629
o,
q(O) =cVv, + ici sing.v,
i=2
CI(O) = C4\/1 + iwici COS¢iVi
i=2
Premultiply byv. ;
qu(O) =0=c
vIg(0)=53.2414 =,
o,

q(t) =53.2414tv, +1.34175in(8.8290t )v,, +0.2629sin (19.028t v,
Changeto q(t):
x(t)= M aqft)
1] [ -0.1364 0.01363
x(t) = 0.9449t| 1|+ ~0.05665 |sin8.8290t +| ~0.02337 |sin19.028t m
1| |0.005298 0.0004385



4.45 Cdculate the natural frequencies and normalized mode shapes of

4 0 0 4 -1 O
0 2 O[x+|-1 2 -1|x=0
0 01 0 -1 1

Solution: Given the indicated mass and stiffness matrix, calcul ate eigenvalues:

05 0 0 1 -03536 0
MY2=] 0 07071 0|=K=M"KM™*=/-03536 1  -0.7071
0o 0 1 0 -07071 1

det(K—/1|):/13—3;LZ+2.375/1—o.375:0
A, =02094, 2, =1, 2 =1.7906

The natural frequencies are:
o, =0.4576 rad/s

o, =1rad/s

o, =1.3381 rad/s
The corresponding eigenvectors are:

—0.3162 0.8944 0.3162
v, =-07071| v, = 0 v, =|-0.7071
—0.6325 —-0.4472 0.6325
The relationship between eigenvectors and mode shapesis
u=M*?y
The mode shapes are:
—0.1581 0.4472 0.1581]
u=| -05 |, u,= 0 |, u=| -05
—0.6325 —0.4472 0.6325

The normalized mode shapes are

0.192 0.707 0.192 |
u
0. =—2-=[0609|, G 0 |, G,=|-0.609].

1 3
T
ul

U | o077 ~0.707 0.77 |




4.46 The vibration is the vertical direction of an airplane and its wings can be
modeled as a three-degree-of-freedom system with one mass corresponding to the
right wing, one mass for the left wing, and one mass for the fuselage. The
stiffness connecting the three masses corresponds to that of thewing and isa
function of the modulus E of thewing. The equation of motion is

1 0 0 X - 3 =3 0 (X 0
mo0 4 0 X, |+ — -3 6 -3 X, | = 0
0 0 1 %, 0 -3 3 X, 0

The model is given in Figure P4.46. Calculate the natural frequencies and mode
shapes. Plot the mode shapes and interpret them according to the airplane's
deflection.

Solution: Given the equation of motion indicated above, the mass-normalized
stiffness matrix is calculated to be

. 1 0 0 o 3 -15 0
M%:T 0 05 0| K= l\/r%Klvr%:7 15 15 -15
Mo o 1 M0 15 3

Computing the matrix eigenvalue by factoring out the constant % yields
m

- El El
det(K—/ll)=O:>ll=0, 2,2=3w, 13=45W
and eigenvectors:
0.4082 -0.7071 0.5774

v, =| 0.8165 Vv, = 0 v, =|-0.5774

1 2 3

0.4082 0.7071 0.5774



The natural frequenciesare ,= 0, m, = 1.7321, /E—Ia rad/s, and m, =

m/¢
2.1213, /E—Ia rad/s.
m/¢

The relationship between the mode shapes and eigenvectors u isjust u = M2y,
The fist mode shape is the rigid body mode. The second mode shape corresponds
to one wing up and one down the third mode shape corresponds to the wings
moving up and down together with the body moving opposite. Normalizing the
mode shapes yields (calculations in Mathcad):

1 o0 i =3 1
Mh=(3 2 0 K o=-3 & -3
ool 0 -3 3 15 3
ha = cigenvals [Kh) |:.:|__-7.] Kb = l_l"‘ 13 _I"‘]
1 -15 3
i

Kh =Mh"" -K-Mh™

. ) 2 1= rigenveo [Kh, ks 07
vl 1= cigenvec (Kh .f...,]l (halks N Rt |{K J ]| =707
o= =]

&G
0404 3707
1577
v3 1= eigenvec (Kh "'“'I.-J 1= | 21577
b57

ul [(L5377 ] —1.707
uln j= —— - 4 B T
ul] uln 0377 a2 g=Mh™ w2 w2 =11

0,577 ] 42 -.707
. -1 4 . , an = - —
ud ;= MhET 43 w3 = | H289 I [42 | uln = | 0
.577 0.707
u 0667
Hainm = = S
|l| | uin = | L35
h 66T
These are plotted:
u | u, ll;
”I — ”I —> ¢
.'Nl
m, m, B i, o}
my —» > —
”3 .'”3
| | | | |

0557 0577 0907 0707 0907 0707



4.47  Solve for the free response of the system of Problem 4.46. Where E = 6.9 x 10°
N/m? 1 =2 m, m = 3000 kg, and | = 5.2 x 10°m*. Let the initial displacement

correspond to a gust of wind that causes an initial condition of X(O) =0, x(0) =
[0.2 0 0]" m. Discuss your solution.

Solution: From problem 4.43 and the given data

3000 0 0 1.346 -1.346 0
0 12,000 0 |x+[-1346 2691 -1.346|x10'x=0
0 0 3,000 0 -1.346 1.346

x(0)=[02 0 0] m
%(0)=0

Convertto q:

4485 -2242 0
I§+|-2.242 2242 -2.242|q=0
0  —2242 4.485

Calculate eigenvalues and eigenvectors:

det(K - A1)=0=
A, =0 o, =0 rad/s
A, =4.485 w,=2.118 rad/s
A,=6.727 w, =2.594 rad/s

0.4082 —0.7071 0.5774
v, = 0.8165 Vv, = 0 v, = —0.5774
0.4082 0.7071 0.5774

The solution is given by
q(t) = (cl + c4t)vl +C, sin(wzt + ¢2)v2 + casin(cost + </)3)v3

where



0. = tanl(m] i=2,3

viTq(O)

wal0) _pg
sing, ’

C =

Thus, ¢, =, = g,cz = —7.7459, and c, =6.3251
So,

q(O) =cVv, + ici sing.v,
i=2

q(O) =cV, + icoici Coso.V,
Premultiply by v : h
vIq(0)=4.4716=c,
vig(0)=0=c,
So, q(t) = 4.4716v, - 7.7459cos(2.118t v, +6.3251cos(2.594t v,
Convert to physical coordinates:

x(t) = M‘l’zq(t) =

0.0333] [ 0.1 0.0667
x(t): 0.0333|+| 0 [c0s2.118t+|—0.0333 |cos2.594t m
0.0333| |-0.1 0.0667

The first term is a rigid body mode, which represents (in this case) a fixed
displacement around which the three masses oscillate. Mode two has the highest
amplitude (0.1 m).



4.48 Consider the two-mass system of Figure P4.48. This system is free to move in the
X, — X, plane. Hence each mass has two degrees of freedom. Derive the linear

equations of motion, write them in matrix form, and calculate the eigenvalues and
eigenvectors for m = 10 kg and k = 100 N/m.
- >

1N 5- : 1 $ F

{ »

e
Rantey

_ _ T
Solution: Given: m=10kg,k =100 N/m

Mass 1
x, —direction: mX =-4kx + k(x3 - xl) = —5kx, +kx,
X, —direction: mX, = —3kx, — kx, = —4kx,
Mass 2
X, —direction: mX, = —4kx, — k(x3 - xl) = —kx, —5Kkx,
X, —direction: mX, =—4kx, —2kx, = —6kx,
In matrix form with the values given:

10 0 0 O 500 0 -100 O
0 10 0 O 0 400 0 0
X+ Xx=0
0 0 10 O -100 O 500 0
0O 0 0 10 0 0 0 600

50 0 -10 O
0O 40 0 O
-10 0 50 O
0O 0 0 60
det(K — A1) = A* -~ 2004° +14,8004% — 480,000 +5,760,000 = 0
= A, =40, A,=40, 1,=60, 4, =60
The corresponding eigenvectors are found from solving (K —A)v. =0 for each
value of the index and normalizing:

K - M—l/ZKM—1/2 -

0 0.7071 0.7071 0
3 0 _| 0 _|0
o] * |o7o71| ® |-0.7071| ¢ |O
0 0 0 1

These are not unique.



4.49 Consider again the system discussed in Problem 4.48. Use modal analysis to
calculate the solution if the mass on the left is raised along the x, direction exactly 0.01 m
and let go.

Solution: From Problem 4.48:

10 0 0 O 500 0 -100 O
0 10 0 O 0 400 O 0
X + Xx=0
0 0 10 O -100 0 500 O
0 0 0 10 0 0 0 600
1000
0100
M™% =0.3162
0010
000 1

50 0 -10 O

K = Mfl/ZKM71/2 = O 40 O O
-10 0 50 O
0O 0 0 60

A =40 o, =6.3246 rad/s
A, =40 w, =6.3246 rad/s
A, =60 ,=7.7460 rad/s
A, =60 w,=7.7460 rad/s

0 0.7071 0.7071 0

1 0 0 0
Vl - V2 = V3 = V4 =

0 0.7071 —-0.7071 0

0 0 0 1

Also, x(0)=[0 0.01 0 0]" mand %(0)=0

Use the mode summation method to find the solution.
Transform the initial conditions:



a(0)=Mm¥*x(0)=[0 0003162 0 0]
g(0)= M¥*%(0)=0

The solution is given by Eq. (4.103),

() Ed sm(a)t+¢)

where

¢ =tan” [ '\T/ ] 1=12,34 (Eq.(4.97))

_ Sm¢ i=12,34 (Eq. (498))
u =My

Substituting known values yields

¢ =0,=0,=9¢,= rad

d, =0.003162
d,=d,=d, =0
0 0.2236 0.2236 0
0.3162 0 0 0
ul - u2 = u3 = u4 =
0 0.2236 —-0.2236 0
0 0 0 0.3162
The solution is
0
0.001co0s6.3246t
x(t)=
0

0



4,50 The vibration of a floor in a building containing heavy machine parts is modeled
in Figure P4.50. Each mass is assumed to be evenly spaced and significantly
larger than the mass of the floor. The equation of motion then becomes

(mlsz:mS:m).

9 1 13]
64 6 192y
1
EI| 1 1 1
mx+—1_ — -  — |IX =0
I°| 6 3 6
13 1 9 %
1192 6 64 |

Calculate the natural frequencies and mode shapes. Assume that in placing box
m, on the floor (slowly) the resulting vibration is calculated by assuming that the
initial displacement at m, is 0.05 m. If 1 =2 m, m = 200 kg, E = 0.6 x 10° N/m?, |
=4.17 x 10°m*. Calculate the response and plot your results.

g Ha b} (|
i

ot

) P v ———_

! i ! !

Solution:
The equations of motion can be written as

9 1 13

1 0 0% 646192)(1
m010X2+E—:l11x2:0

0 0 1|y I636X

3 13 1 9 2

192 6 64 |

or mIXx + Kx =0 where | isthe 3x3 identity matrix.

The natural frequencies of the system are obtained using the characteristic equation
‘ K-w’M ‘ =0

Using the given mass and stiffness matrices yields the following characteristic equation



.. B9EIM 41(EI)2m i 7(EI)3
me’ —————"+ 0 — 5
961 768l 6912l

Substituting for E, I, m, and | yields the following answers for the natural frequency

=+\/(13—\/13_7)5 :+\/E =+\/(13+\/13—7)EI

! ml® 2 "NoemI® " 48ml°

The plus minus sign shown above will cause the exponential terms to change to
trigonometric terms using Euler’s formula. Hence, the natura frequencies of the system
are 0.65 rad/sec, 1.068 rad/sec and 2.837 rad/sec.

L et the mode shapes of the system be u,, u, and u,. The mode shapes should satisfy the
following equation

=0,i=12,3

Notice that the system above does not have a unique solution for u, since [K - a)f M }

had to be singular in order to solve for the natural frequencyw. Solving the above
equation yields the following relations

u, 196me’1°-7El
== 3 =123
u, 3 13mw’l”+El

and u, =u,,i=13 but for the second mode shape thisis different u,, = u,

3

Substituting the values given yields

u, 196mw?l® - 7El

2 = o =_1.088
u, 3 13mw;l” + El

u, 196mw?l’-7El

U, 3 13mw;I°+El

u 96mw?l® — 7El

U _ 135Ma, =1.838

u, 3 13me’l®+El



If weletu,, =1,i=1,2,3, then

1 -1 1
u, =4-1.088¢,u, =40 p,u, =41.838
1 1 1

These mode shapes can be normalized to yield

0.5604 ~0.7071 0.4312
u =1-0.6098},u,={ 0 |u, =10.7926
0.5604 0.7071 0.4312

This solution isthe same if obtained ussing MATLAB

~0.5604 -0.7071 0.4312
u =1 0.6098 |, u, =1 0.0000 },u,=10.7926
~0.5604 0.7071 0.4312

The second box, m,, is placed lowly on the floor; hence, the initial velocity can be safely
assumed zero. Theinitial displacement at m, is given to be 0.05 m.

Hence, the initial conditionsin vector form are given as

x(0)= —o:os and %(0) =

o O O

The equations of motion given by MX (t) + Kx (t) =0 can be transformed into the modal
coordinates by applying the following transformation

1
x(t) = Sr(t) =M 75Pr(t) where P is the basis formed by the mode shapes of the system,
given by

P= [ul u, u3]

Hence, the transformation Sis given by



-0.04 -0.05 0.03
S=10.043 0 0.056
-0.04 0.05 0.03

Theinitial conditions will be also transformed

-0.431
r(0)=s7x(0)=1 0

—0.56
Hence, the modal equations are

with the above initial conditions.

The solution will then be

0.431cos(0.65t)
r(t)= 0
0.56 cos(2.837t)

The solution can then be determined by

0.0172cos(0.65t) — 0.0168 cos(2.837t)
x(t) = {-0.0185cos(0.65t ) — 0.0313cos(2.837t)
0.0172cos(0.65t) — 0.0168 cos(2.837t)

The equations of motion can be also be solved using MATLAB to yield the following
response.
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Figure 1 Numerical response due to initial deflection at m,
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Figure 2 Numerical vs. Analytical Response (shown for x; and x, only)

The MATLARB code is attached below

% Set the values of the physical parameters
%

R R R e e R b b e e b e R R R o e R R R R ok R R R Rk e e

*

% Declare global variablesto be used in the differential equation file
globa M K




% Define the mass of the each box
m=200;

% Define the distance |
1=2;

% Define the area moment of inertia
[=4.17* 10"-5;

% Define the modulus of elasticity
E=0.6*10"9;

% Define the flexural rigidity
ElI=E*;

% Define the system matrices
%

R R R R R b ke e R R R ok e R R o R R Rk ke e R R

*

% Define the mass matrix
M=m*eye(3,3);

% Define the stiffness matrix
K=EI/I"3*[9/64 1/6 13/192;1/6 1/3 1/6;13/192 1/6 9/64];

% Solve the eigen value problem
[u,lambda]=eig(M\K);

% Simulate the response of the system to the given initial conditions
% The states are arranges as: [x1;x2;x3;x1_dot;x2_dot;x3_dot]
[t,xn]=0ded5('sys4p47',[0 10],[0; -0.05;0;0; 0;0)]);

% Plot the results
plot(t,xn(:,1),t,xn(:,2),--",t,xn(:,3),-.");
set(gcf,'Color','White');

xlabel (‘'Time(sec)');

ylabel ('Displacement(m)”);
legend('x_1','’x_2','x_39;

% Analytical solution
for i=1:length(t)

xa(;,i)=[0.0172* cos(0.65*1(i))-0.0168* cos(2.837*(i)):
-0.0185* cos(0.65*1(i))-0.0313* cos(2.837*1(i)) ;




0.0172* cos(0.65*1(i))-0.0168* cos(2.837*1(i))];
end;

% Camparison

figure;

plot(t,xn(:,1),t,xa(1,:),--"t,xn(:,2),t,xa(2,:),"--";

set(gcf,'Color','White');

xlabel (‘'Time(sec)');

ylabel ('Displacement(m)”);

legend('’x_1 Numerical',’x_1 Analytical',’x_2 Numerical',’x_2 Analytica");

451 Recalculate the solution to Problem 4.50 for the case that m; is increased in mass
to 2000 kg. Compare your results to those of Problem 4.50. Do you think it
makes a difference where the heavy mass is placed?

Solution: Given the dataindicated the equation of motion becomes:

200 O 0 9/64 1/6 13/192
0 2000 O |[%+3.197x10*| 1/6 1/3 1/6 |x=0
0 0 200 13/192 1/6 9/64

x(0)=[0 0.05 0]",x(0)=0
Calculate eigenvalues and eigenvectors:

0.07071 0 0
MY2 = 0 0.02246 0
0 0 0.07071

2.2482 0.8246 1.0825
K=M7Y2KM™2={0.8246 0.5329 0.8246 |x10~’
1.0825 0.8246 2.2482

det(K — A1) =A%~ 9.8255x 107 A* +1.3645x 101 - 41382 x 10 = 0
A, =43142%10° , =2.0771x10°° rad/s
A, =1.1657x107 @, =3.4143x10™* rad/s
A, =8.2283x107 @, =9.0710x10™* rad/s




0.2443 0.7071 0.6636
v,=|-09384| v,=| 0 | v,=|0.3455

2 3

0.2443 -0.7071 0.6636

Use the mode summation method to find the solution. Transform the initial
conditions:

a(0)=mM¥*x(0)=[0 22361 0]
g(0)= M¥*%(0)=0

The solution is given by Eq. (4.103),
4

x(t) = Zdisin(witw&i)ui
i=1

where

b, = tan wi\T/TQ(O)} =123 (Eg. (4.97))

v;q(0 .
d = Sing)i) i=12,3 (Eq. (4.98))
u =M%

Substituting known values yields

0,=9,=9,= 7 rad

d, =-2.0984
d, =0
d,=0.7726
0.0178 0.05 0.04692
u, =|-0.02098| u,=| 0 | u,=|0.007728
0.01728 ~0.05 0.04692

The solution is



-0.03625 0.03625
x(t)=| 0.04403 cos(9.7044><10‘5t)+ 0.005969 cos(6.1395><10‘4t) m
-0.03625 0.0325

The results are very similar to Problem 50. The responses of mass 1 and 3 are the
same for both problems, except the amplitudes and frequencies are changed due
to the increase in mass 2. There would have been a greater change if the heavy
mass was placed at mass 1 or 3.



4,52 Repeat Problem 4.46 for the case that the airplane body is 10 m instead of 4 m as
indicated in the figure. What effect does this have on the response, and which
design (4m or 10 m) do you think is better as to vibration?

Solution: Given:

1 0 O - 3 3 -
m{0 10 05(+|—3 -3 6 -3|x=0
0 0 1 0 -3 3

Calculate eigenvalues and eigenvectors:

1 0 0
MY2=m™"?0 03612 0
0 0 1
—0.9487 0
K=M7Y2KMY? = E—'3 -0.9487 06  —0.9487
o oasr 3
Again choose the parameters so that the coefficient is 1 and compute the
eigenvalues:
det(K - A1) = 2° - 6.6A% +10.81=0
A =0
A, =3
A,=3.6
—0.2887 0.7071 0.6455
v,=1-09129 | v, = 0 v, =|-0.4082
—0.2887 -0.7071 0.6455
The natural frequencies are
o, =0 rad/s

w, =1.7321 rad/s
o, =1.8974 rad/s
The relationship between eigenvectors and mode shapes is
u=M"?
—0.2887 0.7071 0.6455
u =mVv?-02887| u, =m0 u, =|-0.1291

1 2 3

—0.2887 —0.7071 0.6455



It appears that the mode shapes contain less "amplitude™ for the wing masses.
This seems to be a better design from a vibration standpoint.



4.53

Often in the design of a car, certain parts cannot be reduced in mass. For
example, consider the drive train model illustrated in Figure P4.44. The mass of
the torque converter and transmission are relatively the same from car to car.
However, the mass of the car could change as much as 1000 kg (e.g., a two-seater
sports car versus a family sedan). With this in mind, resolve Problem 4.44 for the
case that the vehicle inertia is reduced to 2000 kg. Which case has the smallest
amplitude of vibration?

Solution: Let k; = hub stiffness and k, = axle and suspension stiffness. From
Problem 4.44, the equation of motion becomes

75 0 0 1 -1 0
0 100 0 |[x+10,000-1 3 -2|x=0
0 0 2000 0 -2 2

x(0)=0andx(0)=[0 0 1] mss.
Calculate eigenvalues and eigenvectors.

0.1155 0 0
MY2=| 0 0.1 0
0 0 0.0224

133.33 -115.47 0
K=M"Y’KMY2=|-115.47 300 -44.721
0 —44.721 10

K — A1) = 2% - 443.332% + 29,0001 = 0
A =0 o, =0 rad/s
,=70.765 @, =8.9311 rad/s
A, =363.57 ®,=19.067 rad/s

-0.1857 0.8758 0.4455
v,=|-02144 | v,=| 04063 | v,=|-0.8882
-0.9589 ~0.2065 0.1123

Use the mode summation method to find the solution. Transform the initial
conditions:

a(0)= m¥*(0) =0
a(0)=Mm"2x(0)=[0 0 44.7214]



The solution is given by

q(t) = (cl + c4t)vl +C, sin(wzt + ¢2)v2 + c3sin(co3t + </)3)v3

¢ =tan™ —in‘Tq(O) i=2,3
i vig) )’ ’

_ v{a(0)
. cosg,’
Thus ¢, = ¢;=0, ¢, =-1.3042 and ¢, = 0.2635. Next apply theinitial conditions:

where

1=2,3

3 3
q(0) =cv, + Y.c;singv, and ¢(0)=c,v,+ Y. c singv,
i=2 i=2
Pre multiply each of these by v, to get:
c,=0=v/q(0) and c, =-42.8845=v;¢(0)
So
q(t) = —42.8845tv, —1.3042sin(8.9311t)v, +0.2635sin(19.067t)v,

Next convert back to the physical coordinates by
x(t)= M 2q(0)

1 —0.1319 0.01355
=0.9195t| 1|+ | —0.05299 |sin8.9311t +| —0.02340 |sin19.067t m
1| |0.007596 0.0006620

Comparing this solution to problem 4.44, the car will vibrate at a dightly higher
amplitude when the mass is reduced to 2000 kg.

454 Use mode summation method to compute the analytical solution for the response
of the 2-degree-of-freedom system of Figure P4.28 with the valueswherem, = 1
kg, m, =4 kg, k; = 240 N/m and k,=300 N/m, totheinitial conditions of

o {021}’ o :m

Solution: Following the development of equations (4.97) through (4.103) for the mode
summation for the free response and using the values of computed in problem 1, compute
theinitial conditionsfor the “q” coordinate system:

M1’2=L1) Z}iQ(O):B 2}:021}:[0.%2}”(0):[; E}BHS}

From equation (4.97):
4 X L X
¢, = tan 1(6 = ¢, = tan 1(—) =

From equation (4.98):



viq(0) _ - _ v;q(0)

d = =v,q(0),d, = =v,q(0
W q(0) ;(ﬁ_/z) q(0)

Next compute q(t)from (4.92) and multiply by MY? to get x(t) or use (4.103) directly
to get
q(t) = d, cos(m;t)v, +d, cos(w,t)v, = cos(w,t)v] q(0)v, + cos(w,t)v] q(0)v,

0.0054 —0.0054
= cos(5.55]1)[ } + cos(24.170t){ }
0.0184 0.0016

Note that as a check, substitute t =0 in this last line to recover the correct initia
condition q(O). Next transform the solution back to the physical coordinates

0.0054 ~0.0054
x(t)=M"?q(t) = cos(5.5511)[ }+ cos(24.170t)[ } m
0.0092 0.0008

455 For azero vaue of an eigenvalue and hence frequency, what is the corresponding
time response? Or asked another way, the form of the modal solution for a non-
zero frequency is Asin(m,t + ¢), what is the form of the modal solution that

corresponds to a zero frequency? Evaluate the constants of integration if the
modal initial conditionsare: r;(0) =0.1,and ry(0) =0.01.

Solution: A zero eigenvalue corresponds to the modal equation:
i1(t)=0=n(t)=a+bt
Applying the giveninitia conditions:
rn(0)=a+b(0)=01=a=0.1
r1(0) =b=0.01
= r(t) =0.1+0.01t



Problems and Solutions for Section 4.5 (4.56 through 4.66)

456 Consider the example of the automobile drive train system discussed in Problem 4.44.
Add 10% modal damping to each coordinate, calculate and plot the system response.

Solution: Let k; = hub stiffness and k, = axle and suspension stiffness. From Problem
4.44, the equation of motion with damping is

75 0 0 1 -1 0
0 100 O ([x+10,000|-1 3 -2|x=0
0 0 3000 0 -2 2

x(0)=0andx(0)=[0 0 1] mis
Other calculations from Problem 4.44 yield:

A =0 o, =0 rad/s

A, =77.951 w,=8.8290 rad/s

A, =362.05 w,=19.028 rad/s

0.1537 —0.8803 0.4488
v,=(01775| v,=|-04222| v,=|-0.8890
0.9721 0.2163 0.0913

Use the summation method to find the solution. Transform the initial conditions:
a(0)=M¥%x(0)=0
a(0)=Mm¥x(0)=[0 0 54.7723]
Also, { =¢,=¢,=0.1.
m,, =8.7848 rad/s

,, =18.932 rad/s
The solution is given by

a(t)=(c, +ct)v, + idie’g“’it sin(w,t +9,)v,
2

a)diviTq(O) _
where¢, = tan™| — - i=2,3 Eq. (4.114)
v, q(O) +{ Vv, q(O)
vl L,
', cosp. —Cw sing, ’

Thus,
¢,=9,=0
d, =1.3485

d, =0.2642



Now,

3
q (0) =cv, +Y.dsingv,
i=2

q(O) =c,v, + i[—{ia)idi sing, +w,d, cosg, v,
i=2
Pre-multiply by v :
qu(O) =0=c,
vIg(0)=53.2414 =,
So,
q(t) =53.2414v, —1.3485e " sin (8.7848t ) v, +0.2648te ™" sin (18.932t) v,

The solution is given by
x(t) = M™%t

1] [ -0.1371 0.01369
x(t):0.9449t 1|-|-0.05693 |02 sin(8.7848t)+ —0.002349 |g 10zt sin(18.932t) m
1| |0.005325 0.0004407

The following Mathcad session illustrates the solution without the rigid body mode
(except for x; which shows both with and without the rigid mode)

x1(t) = 0.9449-t + 0.1371-e” %29t in (8.7848 1) + 0.01369 -~ 19%%t 5in (18.932 1)
x12 (1) := (0.1371-67¥%2% 5in (8.7848 1) + 0.01369 ¢~ 19028t gin (18.932 1) )

2 (1) := 0.05693 & *%2%t 5in (8.7848 1) — 0.002349 e~ 19928 gin (18,932 1)
33 (1) = -0.005325-¢ *%2% 5in (8.7848 1) + 0.000447 e 9928 g (18,932 1)

02 1)

at) e
wef) |
}Q[t] 1

: . ——
x3 () [ 3 4 5 B

The read solid line is the first mode with the rigid body mode included.



4.57  Consider the model of an airplane discussed in problem 4.47, Figure P4.46. (a) Resolve
the problem assuming that the damping provided by the wing rotation is {; = 0.01 in each
mode and recalculate the response. (b) If the aircraft is in flight, the damping forces may
increase dramatically to {; = 0.1. Recalculate the response and compare it to the more
lightly damped case of part (a).

Solution:

From Problem 4.47, with damping

300 0 0 13455 13455 O
0 12,000 0 |[x+Cx+|-13455 26910 ~—13,455x=0
0 0 3000 0  -13455 13455
x(0)=[0.02 0 0] m
%(0)=0
A =0 o, =0 rad/s
2, =4.485 o,=2.118 radls
2, =6.727 w,=2594 radls
~0.4082 0.7071 05774
v, = —0.8165] v,=| 0 | v,=|-05774
~0.4082 07071 05774

The solution is given by

a(t)=(c, +ct)v, + idie’g“’it sin(w,t +9,)v,
i=2

where
9, =tanl[ T wdiViTq(O)T ) 1=23
V. q(O) +l oV q(O) (Eq. (4.114))
4 = ViT_q(O) i=23
' osing,
Now,

3
q(O) =cv,+Y.dsingv,
i=2

q(O) =c,v, + i[—gwidi sing, +w,d, cosg, v,

i=2

Premultiply by v :



viq(0)=44721=c,
vig(0)=0=c,
(@ §,=¢,=¢,=0.01
w,, =2.1177 radls, ,, =2.593 rad/s
¢, =-1.5808 rad, ¢, =1.5608 rad

d, =7.7464, d, =6.3249
Mode shapes:
ui = I\/|—1/2Vi
—0.007454 0.01291 0.01054
u, =|-0.007454 | u, = 0 u, =| -0.005270
—0.007454 -0.01291 0.01054

The solution is given by
x(t)=(c, +ct)u, + idie’g“’it sin(w,t +9,)u,
i=2

17 [0.100
x({t)=0.0333{1|+| 0 [e7*%sin(2.1178t—1.5808)
1] ]0.100

0.0667
+| —0.0333 |e 72925 5in (2.5937t +1.5608)
0.0677

b) ;=0,=§;=01
Same thing as part (a), but now the following values are obtained

w,, =2.1072rad/sec  w,, = 2.5807 rad/sec
¢, =-1.6710rad ¢, =1.4706rad
d, =7.7850 d, = 6.3564

Notice that the rigid mode is not effected by changing the damping ratio, and hence
c=4.4721

Consequently, the solution becomes



1
x(t)=0.0333/ 1 |+
1

0
0.1005

—0.1005

e 0218t gjpy (2.1072t - 1.6710)

0.0670
+| -0.0335 e-°-259“sin(2.5807t+1.4706)
0.0670

Below is the plot of the displacement of the left wing
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4.58 Repeat the floor vibration problem of Problem 4.50 using modal damping ratios of
¢,=001 ¢, =01 ¢, =02
Solution: The equation of motion will be of the form:

9/64 1/6 13/192
200% +Cx +3.197x10™*| 1/6 1/3 1/6 |[x=0
13/192 1/6 9/64

x(0)=[0 005 0] mandx(0)=o0.
M™% =0.7071

2.2482 2.6645 1.0825
K=M"Y’KM™2=|26645 5.3291 2.6645 |x10~
1.0825 2.6645 2.2482

det(K — 21) = 1°~9.8255x 107 A* +1.3645x 10 * /1~ 4.1382 x 10 % =0
A, =43142x10° o, =2.0771x10™ rad/s

A, =1.1657x107 o, =3.34143x107* rad/s

A, =8.2283x107 @, =9.0710x10™* rad/s

0.5604 -0.7071 0.4312
v,=|-06098| v,=| 0 v,=|0.7926
0.5604 0.7071 0.4312

Use the mode summation method to find the solution. First transform the initial

conditions:
a(0) = M**x(0)
4(0)= M**x(0)
The solution is given by Eq. (4.115):

x(t) = IZ; de ' sin(w,t+,)u,
w4V ,q( )

where ¢ :tan{vIT ( )+C.60.V.Q( )] i=12,3

[0 07071 o]
0




vig'(0
d = 'q() i=123 u=M"
sing.

=001 ¢,=01 (=02

Substituting
o,, =2.0770x107 radfs, o, =3.3972x 107 rad/s w, =8.8877 x10™* rad/s

¢, =1.5808 rad, ¢, =1.6710rad, ¢,=1.3694 rad
d, =0.4312, d,=0, d, =0.5720
The mode shapes are

0.03963 ~0.05 0.03049
u, =|-0.04312| u,=| 0 | u, =|0.05604
0.03963 0.05 0.03049
The solution is
0.01709
x(t) =| ~0.01859 [e"*""* “*sin(2.0770 x 10t - 1.5808)
0.01709
0.01744

+| 0.03206 |e 207719 t iy (8.8877 %107t + 1.3694) m
0.01744



4.59 Repeat Problem 4.58 with constant modal damping of £, £, ¢, = 0.1 and compare this
with the solution of Problem 4.58.

Solution: Use the equations of motion and initial conditions from Problem 4.58. The
mode shapes, natural frequencies and transformed initial conditions remain the same.
However the constants of integration are effected by the damping ratio so the solution

x(t) = Zstdiegi“’it sin(w,t +9,)u,

- S ogvia(o) |
has new constants determined by ¢, = tan™| — = =123
V. q(O) +{o.V. q(O)

vig'(0

d = 'q( ) i=12,3
sing.

u =M"v
£, =¢,=¢=01

Substituting yields

w,, =2.0667 x10™ radls, w,, =3.3972x10 rad/s, w, =9.0255x107" rad/s

¢, =-1.6710 rad, ¢, =-1.6710 rad, ¢, =1.4706 rad
d, =04334, d,=00, d,=0.5633

Mode shapes:

0.03963 0.05 0.03049
u =|-004312| u,=| 0 | u,=|0.05604
0.03963 0.05 0.03049
The solution is
0.01717 |
x(t) =| ~0.01869 [e2710 "t sin (2.0667 %107t - 1.6710)
0.01717
[0.01717
+| 0.03157 e-9-°“°xl°’“sin(9.0255><104‘t+1.4706)m
0.01717

The primary difference between problems 4.58 and 4.59 is the settling time; the
responses in Problem 4.59 decay faster than those of Problem 4.58.



4.60 Consider the damped system of Figure P4.1. Determine the damping matrix and use the
formula of Eq. (4.119) to determine values of the damping coefficient ¢, for which this
system would be proportionally damped.

Solution:

From Fig. 4.29,

m O o+ c,+c, —C, o+ kl+k2 —k2 <=0
0 m, —-C, C,+C, —k2 k2 + k3
From Eq. (4.119)

C=aM+pK

c,+c, —c, | [am+B(k +k,) Bk,
-C, C,+cC, B -k, aml+ﬁ(k2+k3)

2

To be proportionally damped,

C2 = ﬁkZ

¢, = om, + Bk,

c, =om, + Bk,
Alternately, compute KM '€ symbolically and show that the condition for symmetry
kKl + k2 - ml 0 cl +c2 -c2 i
[ ] 1 [ -c2 c:+c3]:

“(m2-klel +m2-kle2 +m2-K2cl +m2-k2c2 +k-c2-ml) -(m2-kl-c2 + m2-kK2-¢c2 +k2-c2-ml + L_ ml-c3)
{ml-m2) (ml-m2)

-(m2-k2-cl +m2-k2-c2 + K-c2-ml + c2-ml-k3) (m2-k2-c2 + K-c2-ml + kK2 -ml|c3 + c2-ml- }o + ml-k3-¢c3)
{ml-m2) {ml-m2

Requmng the off diagonal elements to be equal enforces symmetry. This reqmres
mlkz 3 m2k2C1 + (mz M 3)02



4.61 Letks=0inProblem 4.60. Alsolet m =1,m, =4,k =2,k, =1 and calculate c;, c; and
cs such that {; =0.01 and {, = 0.1.

Solution:
From Figure P4.1 the equation of motion is,
c,tc, —cC —
10X+12 2>'<+3 1x:O
0 4 —-C, C,+C, -1 1
Calculate natural frequencies:
-0.5 0.25
det(K — A1) =12 -3.251+0.5=0

A, =0.1619 w, =0.4024 rad/s
A,=3.0881 w,=1.7573 rad/s

K — M—1/2 KM -1/2 :|: 3 _0-5}

From Eq. (4.124)

o, B(0.4024
2(0.4024) 2
o B(1.7573)
N
2(1.7573) 2

Solving for oo and B yields

So, 0.01=

and 0.1=

o =-0.01096

B=0.1174
From Eq. (4.119),

C +cC —C _
c=|4"% > =M + K = 0.3411 0.1174
—C c, +C, -0.1174 0.07354

2

¢, =0.2238
Thus, c,=0.1174

c, =—0.04382
Since negative damping is not usually possible, this design would not work.



4.62 Calculate the constants o and 3 for the two-degree-of-freedom system of Problem 4.29
such that the system has modal damping of £ ={, =0.3.

Solution:

From Problem 4.29 with proportional damping added,

[; Z}X+(QM +ﬁK))’(+|:_31 _11:|x:0

Calculate natural frequencies:

K - M—1/2 KM -1/2 :|: 3 _0-5}

05 0.25
det(K —M) = 2?-3.251+05=0

A, =0.1619 w, =0.4024 rad/s

A, =3.0881 w,=1.7573 rad/s
From Eq. (4.124)

o o
=+t
C' 2coi 2
0.4024
So, 03=—% 4+ B( )
2(0.4024) 2
1.7573
and 0.3= o + ﬁ( )
2(1,7573) 2
Solving for oo and B yields
o =0.1966

B=0.2778



4.63 Equation (4.124) represents n equations in only two unknowns and hence cannot be used
to specify all the modal damping ratios for a system with n > 2. If the floor vibration

system of Problem 4.51 has measured damping of {; = 0.01 and £, = 0.05, determine .
Solution:

From Problem 4.51

det( K-l ) = 2°—9.8255x107 A% +1.3645x 101 — 4.1382x 102 = 0

A, =4.3142x10° o, =2.0771x10°° rad/s
A, =1.1657x107 @, =3.4143x10™ rad/s
A,=8.2283x10"  ®,=9.0710x107 rad/s

Eq. (4.124)

Since the problem contains three modes only, and since the first and second modal
damping ratios are give as £, =0.01 and {, =0.05 then the following linear system can

be set up
o , B(2.0771x10°) oot
2(2.0771><10-5) 2
o ) B(3.4143x10) 005
2(3.4143><10—4) 2

which can be solve to yield o =2.9x 107 and 8 = 290.397 . Hence, the modal damping
of the third mode can be obtained using 4.124

=0.132

o Po
C3__+ 23

- 2a)3



4.64 Does the following system decouple? If so, calculate the mode shapes and write the
equation in decoupled form.

10 5 3| 5 -1
X+ X+ x=0
0 1 -3 3 -1 1

The system will decouple if

Solution:

C=aM + K
5 3| |a+58 B
-3 3 -8 a+pf
Clearly the off-diagonal terms require
B=3
Therefore, the diagonal terms require

5=a+15
3=a+3

These yield different values of o, so the system does not decouple. An easier approach is
to compute CM™K to see if it is symmetric:

O P I M

Since this is not symmetric, the system cannot be decoupled.



4.65 Calculate the damping matrix for the system of Problem 4.63. What are the units of the
elements of the damping matrix?

Solution:

From Problem 4.58,

o =-8.8925x1077
B =3.0052 x10°

From Problem 4.48

200 O 0
M= 0 2000 O
0 0 200

9/64 1/6 13/192
K=3197x10"| 1/6 1/3 1/6
13/192 1/6 9/64

So,
C=aM +BK

0.01334 0.01602 0.006506
C =| 0.01602 0.03025 0.01602
0.006506 0.01602 0.01334

The units are kg/s

4.66  Show that if the damping matrix satisfies C = aM + BK , then the matrix CM 'K is
symmetric and hence that CM 'K = KM™'C..

Solution: Compute the product CM K where C has the form: C = oM + BK .
CM?*=(aM +BK)M?* =al + BKM™ = CM K = aK + SKM 'K
KM™C = KM (oM + BK) = K + BKM 'K

= KM™C =CM ™K



Problems and Solutions for Section 4.6 (4.67 through 4.76)

4.67 Calculate the response of the system of Figure 4.16 discussed in Example 4.6.1 if
F1(t) = 8(t) and the initial conditions are set to zero. This might correspond to a
two-degree-of-freedom model of a car hitting a bump.

Solution: From example 4.6.1, with F;(t) = 5(t), the modal equations are
i +0.2r, +2r, =0.70716(t)
F, +0.41, + 4r, = 0.70715(t)
Also from the example,
o, =2 radls ¢ =0.07071 , =1.4106 rad/s
o, =2 radls £,=01 o, =1.9899 rad/s
The solution to an impulse is given by equations (3.7) and (3.8):

r(t) = P gt w,t
iwdi
This yields
0.5012e " sin1.4106t
0.3553e*'sin1.9899t
The solution in physical coordinates is
2357 —.2357}{ 0.167e %" sin1.4106t }

7071 7071 || -0.118e **sin1.9899t

0.0394e*"sin1.4106t + 0.0279¢ ' 5in1.9899t
0.118e *"sin1.4106t — 0.0834e %% sin1.9899t

x(t) = M2Pr(t) :[

xa):{



4.68

For an undamped two-degree-of-freedom system, show that resonance occurs at
one or both of the system’s natural frequencies.

Solution:
Undamped two-degree-of-freedom system:

Mx + Kx = F(t)

Let F(t) = [Flét)}

Note: placing F; on mass 1 is one way to do this. A second force could be placed
on mass 2 with or without F;.

Proceeding through modal analysis,
It + Ar = PTMY?F(t)
Or,

r;L + wfrl = blFl(t)
i, +wir, = b,F (t)

where b, and b, are constants from the matrix PTM ™2,

If F1(t) = a cos wt and o = m; then the solution for ry is (from Section 2.1),

— 10 E
r(t)=—=sinot+r cosoot+2 tsinawt

1 wl

The solution for r» is

Za H
> tSIna)lt

» ~ 0

20 bza
r(t)- sino,t+| r,, ————— |cosm,t +

w, W, — o,

If the initial conditions are zero,



ba .
r(t) = ——tsinwt
1

b,a
r(t) = ﬁ(coswlt —cos wzt)

2 1

Converting to physical coordinates X(t) = M™*?Pr(t) yields

X, (t) =cr(t) +c,r,(t)
X,(t) =c,r,(t) +c,r,(t)

where c; is a constant from M™*p.
So, if the driving force contains just one natural frequency, both masses will be

excited at resonance. The driving force could contain the other natural frequency
(o = wy2), which would cause r; and r; to be

ba
r(t) = ﬁ(cos w,t — cos a)lt)

1 2

b a
r.(t) = —2—tsinw.t
(1) 0 )

2

and

X, (t) =cr(t) +c,r,(t)
X,(t) =c,r,(t) +c,r,(t)

so both masses still oscillate at resonance.

Also, if F1(t) = a; cos mt + a, cos m,t where m; = my; and w, = wyy, then both ry
and r, would be at resonance, so xi(t) and x»(t) would also be at resonance.



4.69 Use modal analysis to calculate the response of the drive train system of Problem
4.44 to a unit impulse on the car body (i.e., and location gz). Use the modal
damping of Problem 4.56. Calculate the solution in terms of physical coordinates,
and after subtracting the rigid-body modes, compare the responses of each part.
Solution:

Let k; = hub stiffness and k, = axle and suspension stiffness.

From Problems 41 and 51,

75 0 0 1 -1 0
0 100 0 |[§+10,0000-1 3 -2|q=0
0 0 3000 0 -2 2
1155 0 O
MY= 0 1 0
0 0 .0183

1537 —-.8803  .4488
P=|.1775 -4222 -.88910
9721 .2163  .0913

A =0 o =0 rad/s
2, =717.951 _, =8.8290 rad/s
A, =362.05 o, =19.028 rad/s

The initial conditions are 0.

Also

6 =¢=¢=1
m,, =8.7848 rad/s
o,, =18.932 rad/s

From equation (4.129):
I +diag(2.w ) + Ar = PTM?F(t)

Modal force vector:



01775
P M 2F(t) =| .003949 |5(t)
.001668

The modal equations are

= .017755(t)
f, +1.7658¢, +77.951r, = .0039495(t)
F, +3.8055¢, +362.05r, =.0016685(t)

The solution for rq is
r,(t) =.01775t

The solutions for r, and r3 are given by equations 3.7 and (3.8)

A

Foo ot
r(t) = ——e “*'sina,t
miwdi

This yields

r(t) = 4.4949 x 10 &% s5in8.7848t
r,(t) = 8.8083x 10°¢ %% 5in18.932t

The solution in physical coordinates is

q(t) = M~*Pr(t)
1| |-4.5691x10°

q(t) =3.1496 x107*t| 1 |+| —1.8978 x 10~ |e~***'sin8.7848t
1 1.7749%x10°°

45647 x107°
+|-7.8301x10°° |e™9**sin18.932t m
1.4689 x 10

The magnitude of the components is much smaller than that in problem 51, but
they do oscillate at the same frequencies.



4.70  Consider the machine tool of Figure 4.28. Resolve Ex. 4.8.3 if the floor mass m =
1000 kg, is subject to a force of 10 sint (in Newtons). Calculate the response.
How much does this floor vibration affect the machine’s toolhead?
Solution:

From example 4.8.3, with F5(t) = 10 sint N and m3 = 1000 kg.

40 0 30 -30 0 0
(103) 0 2 0 x+(104) _30 38 -8|x=| 0
00 1 0 -8 88 10sint

Calculating the eigenvalues and eigenvectors yields

A, =29.980 o, =5.4761 rad/s
A, =868.2743 o, = 29.4665 rad/s
A, =921.7378 o, =30.3601 rad/s

And

—4215 4989  .7573
P=]-9048 -.1759 -.3877
—-.0602 —-.8486 .5255

Modal force vector:

—.01904
P"M ™ 2F(t)=| —.2684 [sint
1662

Undamped modal equations:

I, +29.9880r, = —.01904sint
F, +868.2743r, = —.2684sint
, +921.7378r, = .1662sint

Inserting the damping terms,



(=1 2w =1.0952

(=01  2{o,=5893

{,=.05  2{m,=3.0360

f, +1.0952¢, +29.9880r, = —.01904sint
F, +.5893t, +868.2734r, = —.2684sint
F, +3.0360¢, +921.7378r, =.1662sint

The damped natural frequencies are

o, = +/1-{? =5.4487 radls

@,, =0 ,\1- > =29.4650 rad/s
o, =0 _\J1- 2 =30.3222 rad/s

The general solution is

r(t) = Ae ' sin(w,t - 6,) + A, sin(wt - ¢,)

where
f. 200 @
A, = 0 and ¢ = tan‘l[—i' ni ]
2 2\? 2 - —
\/(wni - ) + (Zgiwniw) "
Inserting values,
A, =-6.5643x107 m ¢, =3.7764x107 rad
A, =-3.0943x107* m ¢, =6.7952x10™ rad
A, =1.8049%107 m ¢, =3.2974x107° rad

So,

r,(t) = Ae " sin(5.4487t — 6,) — 6.543x 10 sin(t — 3.7764 x 10°%)
r,(t) = Ae~*""sin(29.4650t — 0,) — 3.0943x 10~ sin(t — 6.7952 x 10~*)
r,(t) = Ae™°*"sin(30.3222t — 6,) +1.8049 x 10~ sin(t — 3.2974 x 10°)

With zero initial conditions:



=1.2047 x10™* m 6. =.2072 rad
1
=1.0502x10° m 6. =.02002 rad
2
A, =-5.9524x10° m 6, =.1002 rad

Now,

r,(t) =1.2047 x10™e~*""* sin(5.4487t — .2027) — 6.543 x 10 ~* sin(t — 3.7764 x 10°%)
r,(t) =1.0502 x 10~°e~***"* sin(29.4650t —.02002) — 3.0943x 10 sin(t — 6.7952 x 10~*)
r,(t) =—5.9524 x 10 °e™****" 5in(30.3222t —.1002) +1.8049 x 10 ~*sin(t — 3.2974 x 10°°)

Convert to physical coordinates:

~.02108  .02494  .03786
x(t) = MY2Pr(t) =| —.02023 -.003993 —.008670 |r(t)
~.001904 —.02684  .01662

Therefore

x,(t) = —.02108r, +.02494r, +.03786r,
X, (t) = —.02023r, —.003933r, —.008670r,
X,(t) = —.001904r, —.02684r, +.01662r,



4.71 Consider the airplane of Figure P4.46 with damping as described in Problem 4.57
with {; = 0.1. Suppose that the airplane hits a gust of wind, which applies an
impulse of 305(t) at the end of the left wing and 6(t) at the end of the right wing.
Calculate the resulting vibration of the cabin [X(t)].

Solution: From Problems 4.46 and 4.57

01826 0 0
M™*= 0 009129 0
0 0 .01826
0.4082 -0.7071 0.5774
P=]0.8165 0 -0.5774
0.4082 0.7071 0.5774
A =0 o =0 rad/s
A, =4.485 o, =2.118 rad/s
A, =6.727 o, =2.594 rad/s
Also:
=6 =6=01
3
F(t)=]0|o(t)
1

w,, =0rad/s, w,, =2.1072 rad/s, w,, = 2.5807 rad/s
From equation (4.129):
I +diag(2.w )F + Ar = PTM?F(t)
Modal force vector:
—0.0298
PTM2F(t)=| 0.0258 |5(t)
0.0422
The modal equations are
i, =-0.029815(t)
i, +0.424r, + 4.485r, = 0.02585(t)
i, +0.519¢, +6.727r, = 0.04225(t)

The solution for ry is
r,(t) =-0.02981t
The solutions for r, and rs are given by equations (3.7) and (3.8)



A

Foo ot
r(t) = e sina,t

rnia)di

This yields
r,(t) =1.2253x10%e ***sin 2.107t

r,(t) =1.6338x10?e *** sin 2.581t
The solution in physical coordinates is

X(t) = M7?Pr(t)

For x,:
X,(t) = 2.221x 107t +8.06 x 10 ***' sin 2.581t



4.72  Consider again the airplane of Figure P4.46 with the modal damping model of
Problem 4.57 ({; = 0.1). Suppose that this is a propeller-driven airplane with an
internal combustion engine mounted in the nose. At a cruising speed the engine
mounts transmit an applied force to the cabin mass (4m at x,) which is harmonic
of the form 50 sin 10t. Calculate the effect of this harmonic disturbance at the
nose and on the wind tips after subtracting out the translational or rigid motion.

Solution: From Problems 4.47 and 4.57

01826 0 0 -4082 .7071 5774
M™¥2=| 0 .009129 0 | P=|-8165 0 -5774
0 0 .01826 -4082 -7071 .5774
A =0 o =0 rad/s
A, =17.94 o, =4.2356 rad/s
A, =26.91 o , =5.1875 rad/s
Also,
(,=¢,=0,=01=>w,=0rads, o,=42143radls, w,, =5.1615 rad/s
0
F(t) =| 50sin10t
0

The initial conditions are 0. From equation (4.129):
P +diag(2{,w )F + Ar = PTM™?F(t)
Modal force vector:

-.3727
P"TM™F@t)=| 0 [sinl0t
—.2635

The modal equations are

i = —.3727sin10t
r, +.8471r, +17.94r, =0
i, +1.0375r, + 26.91r, = —.2635sin10t

The solutions are



r,(t) =.003727sin10
r,(t)=0
r,(t) = —.006915e~°*" sin(5.1615t +.0726) +.003569sin(10t +.141)

The solutions in physical coordinates is
x(t) = M72Pr(t)
The wing tips are x; and xs, SO

X, (t) = X, (t) = 2.7780 x 10" sin10t — 7.2891x 10° ™% sin(5.1615t +.0726)
+3.7621x 10° sin(10t +.141)



4.73  Consider the automobile model of Problem 4.14 illustrated in Figure P4.14. Add
modal damping to this model of {; = 0.01 and {; = 0.2 and calculate the response
of the body [x2(t)] to a harmonic input at the second mass of 10 sin3t N.

Solution: From problem 4.14

M = 2000 0 « = 1000 —1000 . 9999 —.1044
0 50| ~1000 11000 |’ 1044 9999
A, =04545 @, =0.6741 rad/s,and A,=220.05 w,=14.834 rad/s

Also,
¢,=.01 ¢, =02, w,=06741radls, w,, =14.534 rad/s

|0
RO = {10sin3t}

The initial conditions are all 0. From equation (4.129):
I +diag(2{.w )F + Ar = PTM?F(t)
Modal force vector:
PTM™Y2F(t) = [0'02036}sin3t
1.4141
The modal equations are
i, +0.01348r, +0.454r, = 0.02036sin 3t
r, +5.9336r, +220.046r, =1.4141sin3t
The solutions are
r,(t) = —0.1088e °*®"™sin(0.6741t +1.0914 x 10™*) +.002445sin(3t — .004857)
r,(t) = —0.07500e *****" sin(14.534t +1.3087) +.075865in(3t +1.26947)
The solutions in physical coordinates is
X(t) = M7?Pr(t)
The response of the body is
X, (t) = —.002433e %" sin(.6471t — 1.0914 x 10~*)
+5.4665x 107 sin(3t —.004857)
+2.4153x10°e > sin(14.534t —1.3087)

— 2.4430 x 10°sin(3t +1.2694)



4.74  Determine the modal equations for the following system and comment on
whether or not the system will experience resonance.

o[22 -11 17,
X+ [_1 L }x = [O}sn(o.618t)

Solution: Here M =1 so that the eigenvectors and mode shapes are the same.
Computing the natural frequencies from det(-w’l + K) =0 yields:

o; = 0.618 rad/s and w, =1.681 rad/s
Next solve for the mode shapes and normalize them to get

0.526 -0.851 11 0.526
P= , Sothat P =
0.851 0.526 0 -0.851
The modal equations then become:
i, +(0.618)°r, = f;, + 0.3819r, = 0.526sin(0.618t)

i, +(1.618)°r, = i, + 2.6179r, = —0.851sin(0.618t)

The driving frequency is equal to the natural frequency of mode one so the system
exhibits resonance.

4.75 Consider the following system and compute the solution using the mode
summation method.

usfy 3 <o 3} o-fo) 0[]

Solution: From Example 4.2.4

. |30 1 |A 0 111 1 —
. 1 3 1 0
Appropriate IC are q,=M Zxoz[o} 4,=M zvoz[o}

6 =t @V A0 _ a0 a0) m _
v; 4(0) 0 0,

NS NS

4210 4. A
i . ' d2
sno X%

{gftﬂ ) %Si”(\/?t + g)%m +¥sin[2t + g)%[_ﬂ



x(t) = gcos(\/it)[l/l 3} . gcos(Zt)F/ 3}

1

Y

[ql(t)} _ gcos( ﬁt)H+ L;’cos(m){ 1

|
)

+ l:(:os(Zt)

|

/s
0 1

il

1
-1

|



Problems and Solutions for Section 4.7 (4.76 through 4.79)

4.76  Use Lagrange's equation to derive the equations of motion of the lathe of Fig. 4.21 for the
undamped case.

Solution: Let the generalized coordinates be6,,6, and 6, .

The Kinetic energy is
1.0 1... 1..
T :EJlef +EJ2022 +EJ39§
The potential energy is

1

u :gkl(%—@z)z +%k2(63—02)2

There is a nonconservative moment M(t) on inertia 3. The Lagrangian is

1., 1., 1. . 1 2 1 2
L=T-U 2531912+5329§+5339§—§k1(92—91) —Ekz(eg—ez)
Calculate the derivatives from Eq. (4.136):
oL . df dL N
—=J6, —|—1|=J06
0, 't dt aelj t
oL . df dL
—=J06, —|—1|=J0
90, 2?7 dt aezj 2
a—'.‘=J39 af oL = 3.0,
00, dt{ 06,
oL
% = _klel + klez
1
oL
87:_k191_(k1+k2)02+k293
2
oL
a_ez_kzez_kzes

3
Using Eq. (4.136) yields
JO, +k6, -k0,=0

3.6, -k, + (k1 + k2)92 ~k,6,=0

16, - k6, +k0,= M(t)

In matrix form this yields



J 0 0 k -k 0 0

1 1 1
0 J, 0]6+|-k k+k, -k, [6=| 0
0 0 J 0 -k K M (t)

3 2 2



4.77 Use Lagrange's equations to rederive the equations of motion for the automobile of
Example 4.8.2 illustrated in Figure 4.25 for the casec, =c, =0.

Solution: Let the generalized coordinates be x and 6.
The Kinetic energy is
T= %mx2 +Lag
The potential energy is (ignoring gravity)
1 2 1 2
u :Ekl(x— 16) +§k2(x+ 1,6)
The Lagrangian is
1 ., 1. ., 1 2 1 2
L=T-U=_mid+_ 06" —Ekl(x— 16) —Ekz(x +1,0)
Calculate the derivatives from Eq. (4.136):

dL . dfdL .
—=mx —|—|=mX
oX dt ox

oL _ .. ddL "
—=J0 —|—=|=J6
00 dt\ 06

oL _

o= (K, + K, )x+ (Kl = k1,)6

g—';) = (k1 —k,L,)x—(k12)e

Using Eq. (4.136) yields
mx +(k, +k, )x+ (K, —k,1,)6 =0
36+ (k1 — k) x = (k)? +k,12)o =0
In matrix form this yields

m o], [ Ktk kL=kL X
0 J|[6] |KL -kl KIZ+kI?| 6



4.78 Use Lagrange's equations to rederive the equations of motion for the building model
presented in Fig. 4.9 of Ex. 4.4.3 for the undamped case.

Solution:

Let the generalized coordinates be X1, X2, X3 and 4.
The Kinetic energy is

1 1 1
T:%mﬁ+§%@+§%ﬁ+§mﬁ

The potential energy is (ignoring gravity)
1 1 2 1 2 1 2
U= Ekle +Ek2(x2 —~ xl) +Ek3(x3— x2) +Ek4(x4 - x3)
The Lagrangian is
L=T-U :%mxf +%m>‘<22 +%m>‘<32 +%mx§
1

_%klxlz _Ekz (Xz - Xl)Z%kz(Xs - Xz)z _%k4 (X4 - X3)2

Calculate the derivatives from Eq. (4.136):

LSS} TS
ox, b dt{ox t
LIS Y (T
ox 27 dt{ox 2
A g, Sy
ox, P dt{ox 33
NI I
ox, % dt{ ox o



Using Eq. (4.136) yields

In matrix form this yields

m 0
0 m,
0 0
0 0

g%=-(h+kgﬁ+kg2
gi_@&—@fmgg+g&
gé_@@—@g«J&—hn
aaTL =k, X, — KX,

rnl).(.l + (kl + kZ)Xl - kzxz =
mzxz - kle +(k2 + k3 X, 373
m,%, — kx, + (k, +k, )%, = k.,

m,X, — k4x3 + k4x4 =0

0 0] [k+k, -k, 0
0 0 |k Ktk K
m 0 —k,  k,+k,
0 m| | O 0 K,




4.79 Consider again the model of the vibration of an automobile of Fig. 4.25. In this case
include the tire dynamics as indicated in Fig. P4.79. Derive the equations of motion
using Lagrange formulation for the undamped case. Let m3 denote the mass of the car

acting at c.g.
i '
¥y -_--Iﬁ:\-\
:;;I
._ﬁ iu .
Solution: '

Let the generalized coordinates be X, X,, X, and 6. The kinetic energy is

T :Emle +%m2>‘<22 +%m3>'<32 +%Jt92

The potential energy is (ignoring gravity)
1 2 1 1 1
U= Ekl(x3 10— xl) +Ek2(x3 —0,0-X,)° +§k3X12 +Ek4x§
The Lagrangian is thus:

1 1 1 1..0 1
L=T-U :§m1X12 +Em2)'(22+§m3).(§ +EJ92——k1(X3—I19—X1)2

1 2 1 1
—Ekz(x3 + I20—x2) —Ekaxl2 —§k4x22

Calculate the derivatives indicated in Eq. (4.146):

oL daL] }
—.:mX ——_=m1X1

ox, ' dt| ox

a_L—m)‘( ia_L =m.X
ox, 2% dt{ox, W
LY R
ox, °° dt| ox, e
oL : d(dL .
—=J0 —|==|=J6
36 dt ae]



aL
a__
(—?_)I(_Z = _(kz + k4)X2 + k2X3 - k2|29
oL
ox,
oL
26

(k1 + k3)X1 + k1X3 - I(1|19

Using EQ. (4.146) yields

%, +(k; + k)% — ko + k9 =0

m,X, +(k4 + kz)Xz - KX, —Kkl,06=0

M;X; — kX — KX, +(k1 + kz)Xg —(k1|1— k2|2)9 =0
36 + kil — kol x, — (k1|1 - k2|2)X3 + (|(1|12 + k2|22) =0

in matrix form

= k1X1 + kzxz - (k1 + kz)xs + (k1|1 + k2|2)9

= _k1|1X1 - kzlzxz + (k1|1 + kzlz)xe _(k1|12 + k2|22)9

m 0 0 0]%)] [(k+k) 0O -k kol
0 m 0 0|fx| | © (ketk) -k kyl,
0 0 m oflx K, -k, (ke+k)  =(kl, + ki)
o 0 0o J(8) | kKl kol (Kl k) (K2 +Kk12)

AN S

D X



Problems and Solutions for Section 4.9 (4.80 through 4.90)

4.80 Consider the mass matrix

M = 10 -1
-1 1
and calculate M, M, and the Cholesky factor of M. Show that
LL" =M
M -1/2 M -1/2 = I
Ml/Z Ml/Z — M

Solution: Given

The matrix, P, of eigenvectors is
. [—0.1091 —0.9940}
—0.9940 0.1091

The eigenvalues of M are

A, =0.8902

A, =10.1098
From Equation

— Pdiag{i,i}PT, V- {0.1111 0.1111}

A A, 0.1111 1.1111

From Equation

M Y2 = Vdiag [11—1/2’12—1/2JVT

Vi [0.3234 0.0808}

0.0808 1.0510
The following Mathcad session computes the Cholesky decomposition.

n -1
= 0.11111 0011111
M ' |:_1 i :| I"'I_1= +
011111 1.11111

L = cholesky (M)

B [3.16228 0 ]
T | -0.31623  0.943638 S O I Uy -1



4.81 Consider the matrix and vector

A= 1 -¢ b= 10
—-£ € 10
use a code to solve Ax = b for £=0.1, 0.01, 0.001, 10°, and 1.

Solution:

The equation is
1 -¢ 10

X =
[—e s} [10}

The following Mathcad session illustrates the effect of € on the solution, a
entire integer difference. Note that no solution exists for the case € = 1.

10
boi= [ - ] gl F
10 EYE I:_E_ B ] nfEy)i=AEY b

So the solution to this problem is very sensitive, and ill conditioned, because
of the inverse.



4.82 Calculate the natural frequencies and mode shapes of the system of
Example 4.8.3. Use the undamped equation and the form given by equation
(4.161).

Solution:

The following MATLAB program will calculate the natural frequencies and
mode shapes for Example 4.8.3 using Equation (4.161).

m=[0.4 0 0;0 2 0;0 0 8]*1le3;

k=[30 -30 0;-30 38 -8;0 —8 88] 1le4;
[u, d]=eig(k, m;

w=sqrt (d);

The matrix d contains the square of the natural frequencies, and the matrix u
contains the corresponding mode shapes.



4.83 Compute the natural frequencies and mode shapes of the undamped
version of the system of Example 4.8.3 using the formulation of equation
(4.164) and (4.168). Compare your answers.

Solution:

The following MATLAB program will calculate the natural frequencies and
mode shapes for Example 4.8.3 using Equation (4.161).

m=[0.4 0 0;0 2 0;0 0 8]*1le3;
k=[ 30 —-30 0;-30 38 —-8;0 -8 88] 1e4;
m =i nv(m;
kt =m *k;
[u, d]=eig(k, m;
w=sqrt (d);

The number of floating point operations needed is 439.
The matrix d contains the square of the natural frequencies, and the matrix u
contains the corresponding mode shapes.

The following MATLAB program will calculate the natural frequencies and
mode shapes for Example 4.8.3 using Equation (4.168).

m=[0.4 0 0;0 2 0;0 0 8]*1le3;
k=[ 30 —-30 0;-30 38 —-8;0 -8 88] 1e4;
nsi =i nv(sqrt(m);
kt =nmsi *k* nsi ;
[p, d]=eig(kt);
w=sqrt (d);
u=nsi *p;

The number of floating point operations needed is 461.
The matrix d contains the square of the natural frequencies, and the matrix u
contains the corresponding mode shapes.

The method of Equation (4.161) is faster.



4.84 Use a code to solve for the modal information of Example 4.1.5.

Solution: See Toolbox or use the following Mathcad code:

w =1

Crisren

)

Find [w] = 1.414

ismen

'~ (5] + om0

Find [m] = 2



4.85 Write a program to perform the normalization of Example 4.4.2 (i.e.,
calculate o such that the vector owvy is normal).

Solution:

The following MATLAB program will perform the normalization of
Example 4.4.2.

x=[. 4450 .8019 1];
mag=sqrt (sumx."2));
xnor mex/ mag;

The variable mag is the same as o, and xnor mis the normalized vector.
The original vector x can be any length.



4.86 Use a code to calculate the natural frequencies and mode shapes obtained
for the system of Example 4.2.5 and Figure 4.4.

Solution: See Toolbox or use the following Mathcad code:

1 0 12 -z 1 0
M= E = .=
0 4 -~z 12 0 2
Kd = M-
- 12 -1
Ki =
-1 3
A = eigensrals (Fd) 12 11
) [2.59 }

wml = ||l1 we = ||’]‘|:| ml =17 we = 3.43

w1l = eigenvec |[I{|:1 , :“1) ¥Z = Bigenvec |{I{d , :“ujl

0.109 0,994 T
= v2 = 71T vz =0
0.994 0.109
717 vl = 1 vl vz =1

P = avgment(vl,v2) 289 0 T
F'E4P = PoP=
RS X ¥

1
0

1]
1

|



4.87 Following the modal analysis solution of Window 4.4, write a program to
compute the time response of the system of Example 4.3.2.

Solution: The following MATLAB program will compute and plot the time
response of the system of Example 4.3.2.

t=(0:.1:10)";

ms[1 0;0 4];
k=[12 -2;-2 12],
n=max(size(m);

x0=[1 1]’ ;
xd0=[ 0 0] ;

nsi =i nv(sqrtmm);
kt =nsi *k* nsi ;

[P, W =eig(kt);
for i=1. n-1
for j=1. n-1I
Pfow(j,j)>wj +1,j +1)
dummy=w(j,j);
Wi, )=w(j +1,j +1);
wW(j +1, j +1) =dumy;
durmy=p(:.j);
p(:.j)=p(:,]+1);
p(:, ] +1) =dumy;
end
end
end
pt=p’;
S=msl *p;
si=pt*sqrtm(n;

r 0=si *x0

r do=si *xdO;

r=[1;

for i=1. n,
W =sqrt(w(i,i));
rcol =(swrt((w *r0(i))”2+rd0o(i)"2/w)*...

sin(w *t+atan2(w *r0(i),rdo(i)));

r(:,i)=rcol

end

X=S*r;

pl ot (t, x);

end



4.88 Use a code to solve the damped vibration problem of Example 4.6.1 by
calculating the natural frequencies, damping ratios, and mode shapes.

Solution: See Toolbox or use the following Mathcad code (all will do this)

9 0 27 -3 30 27 -3
M = K = Mr 1= ¢ =
[D 1] [—3 3 ] [D 1] [—.3 0.3]

Kd = Mr LK Ml 5 cd = Ml {oome )
1 T
0.1 0.3
= [z
2
wl :=Jl_1 W = JPTD wl = 1.414 ws = 2

w1l 1= eigensec |{Kd . ’]‘1) w2 1= eigenyec |[K|:1 ,luj

A = eigensals (Fd)

0.707 0707 T
1 = vZ = w11 vz =0
0.707 0.707
715wl = 1 w2 vz = 1
P = angment (vl ,v2) T 0 T i 0
T KdP = f.p=
0 4 o1
[n.?n? —n.?n?]
= I
0.707  0.707 Cz =P -Cd-P 0z 0
=0 o4
| 1= .0 1 = 0.071 C2) 9 |
£l = o o £1 =10 tz = ! 2 =101

2

2
= . - &
wal 1= wlafl =1 e = w1 — g2

wdl = 1.411 wdz = 1.99



4.89 Consider the vibration of the airplane of Problems 4.46 and 4.47 as given
in Figure P4.46. The mass and stiffness matrices are given as

00 - 3 3 0
M=m 0 K=I—3 -3 6 -3
0 -3 3

where m = 3000 kg, | =2 m, | =5.2 x 10° m*, E = 6.9 x 10° N/m?, and the
damping matrix C is taken to be C = (0.002)K. Calculate the natural
frequencies, normalized mode shapes, and damping ratios.

Solution: Use the Toolbox or use a code directly such as the following
Mathcad session:

E =69 10° I:=5210" . '= 3000 L:=2
100 g [ 730
M:=m|0 4 0 Ki=——|-3 6 -3 ¢ = 0.002 K
0o 1 L g -3 3
3100 0 0 1.346-107 —1.396-10 0o
M=|q 1za0® o E = |_134-10" zeo1-10° -1 .346-107
0 0 3-10° 0 -1 346107 1.346-107
=012 gy
IMr. = (M

4485 2242 0
Eh:=MrlEMr!l Eh=|-zzd4z 2247 —2.242

ch o= Ml (oot
0 224z 4485

6. 77
eigenwals (Kh) = [ 4.485 A =0 w, 1= ||’-“1
1]



A, =d4.485 w, = (A w, = 2.115
2 2T " 2 0.403
¥y = eigenvec (Kh,llj vy = | 0.616
;]-.3 = 6727 I'.I.'I3 = ll'lg LI.'I3 = 2.594 0408
=1.707 0.57%7
v, 1= elgenvec (Kh,lz] v, = |0 ¥y 1= elgensec (Kh,la] vy = | 0577
0.7a7 0.27%7

Pl .= augment(vl,vz) P = augment(Pl ,v3:| Az = PY ChP

0o 0
— Ar
Ac=|0 ge7r-10 0 (2= —21 g2 o z1ge1070
0o 0.013 E-mz
Ar
2,2
£3 1= - ;
2w, £3 = 2.594-10°
The normalized mode shapes are
0.577
-1 ul
ul = Mr vy uln = uln = | 0.577
|ul]
0.577
[—0.707 ]
-1 u
W = Mr Wy wn = —— wn=|0
2]
0.707
Fe rem 7
V.o
WS = M v, wn = —— wn = [-0.333
|u3| -
| 0667 |




4.90 Consider the proportionally damped, dynamically coupled system given

by
=l @ 1 ocold 2 2|49 2
-1 1 -1 1 2 2

and calculate the mode shapes, natural frequencies, and damping ratios.

Solution: Use the Toolbox or any of the codes. A Mathcad solution is
shown:

9 -1 49 -2 3 -1
M = K = =
-1 1 -2 2 -1 1
L := cholesky (M)

-1 5444 1.218
Kho=LtE (7] Kn- [ ]

1218 2431 Ch = L'l-['if- (LT ]_1]

a |:III.333 —D.ESE]

: 2873
—0.235 0.917 eigenvalz (Kh) = 5

A =2 w, = ||5‘~1 w = 1414 A, 1=5875 w, = ||,12 w, = 2.424

¥, 1= elgenvec (Kh,llJ v, = ~H.343 . _ | 0.843
0.943 | ¥, 1= eigenvec (Kh,lz] ¥y = 0,333
Pi=angment(v,,7;) 4o = o7 .chop Lo
AT = { ]
ﬁcn ; 0 025
£1 = - Aty
2-my bl =0384 &2 = —— +

20 ¢z = 0.052



Computing the mode shapes from the eigenvectors yields:

(9 _lj
-1 1/ R = cholesky(M)
~1 {033 0
R =
0.118 1.061

-1 {-0333 -0.111 -1{0934 0311
ul=R ul = w=R ul =
0.943 0961 0.333 0.443



Problems and Solutions Section 4.10 (4.91 through 4.98)

4.91* Solve the system of Example 1.7.3 for the vertical suspension system of a car with
m = 1361 kg, k = 2.668 x 10° N/m, and ¢ = 3.81 x 10" kg/s subject to the initial
conditions of x(0) = 0 and v(0) = 0.01 m/s”.

Solution: Use a Runge Kutta routine such as the one given in Mathcad here or
use the toolbox:

m = 1361 k = 2.668 10° ¢ = 3.81 107
o1
0
o— |: ] A= -k -&
0.01 Py D(1,X) = & X
2 := rhfixed (3 ,0,20,3000 , I}
1.= E{D} R
x1 =2
2107
a=1p7 4
© 1107 -
1] I:IIE I:II.-'-1 I:IIE| I:IIE I1
—

_1 L] 1|:| =



4.92* Solve for the time response of Example 4.4.3 (i.e., the four-story building of
Figure 4.9). Compare the solutions obtained with using a modal analyss
approach to a solution obtained by numerical integration.

Solution: The following code provides the numerical solution.

1 000 Oooan
T L S L M = 40001
oo 1o “loo oo ' (0,025 ]
o001 0000 0.0z
10000 -5000 0 0 0.01
0.001
_|-5000 10000 -S000 0 o= 0 oo
| o -sooo toooo -S000 .
0 0 -5000 5000 .
0
- I:I -
& = avgment (stack (0, -M LK) staek (1, -1171 )
Dit,X) = AX Z := rkfived {3 ,0, 200, 3000, D) +
v = 0=
ti=2 x1 =zl 2 1= 2IEF 3o pi8F x4 1=z
o.0d -
©l 002 m ﬁ; i ; i ﬁ
3 ﬂrﬂﬁﬂﬁfﬁﬂ‘{'ﬁ_ﬂ’fm v
- i 5 B _I\H__ | ! ‘E‘ I A _I&J
x I 1’-4 T U‘?HD;M : '.'J 1]
o Al
™ .0z - i v UI ' Jit
.04t

k
which compares very well with the plots given in Figure 4.11 obtained by plotting
the modal equations. One could also plot the modal response and numerical
response on the same graph to see a more rigorous comparison.



4.93* Reproduce the plots of Figure 4.13 for the two-degree of freedom system of
Example 4.5.1 using a code.

Solution: Use any of the codes. Thetrick hereisto construct the damping matrix
from the given modal information by first creating it in moda form and then
transforming it back to physical coordinates as indicated in the following Mathcad

session:
9 0 111 27 -3 00 10
e P P:z?'l R =0y
- 1 - B}
30
Mr = [D 1} wl = a2 wZi=2 £1:=005 £2:=01
z¢lwl 0
he = C = MrF-Ac FF M
o0 ztzwz = M ar r 1
& 1= avgment[awck [0, -1 LK) swck (1,171 )] |0
Dit,¥) = &X d
0
+
Z 1= rkfixed (% ,0 80,4000, D) .
v ===
1=z xl i=2%1F xp = ziET




4.94*. Consider example 4.8.3 and @) using the damping ratios given, compute a

damping matrix in physical coordinates, b) use numerical integration to compute
the response and plot it, and ¢) use the numerical code to design the system so that
all 3 physical coordinates die out within 5 seconds (i.e., change the damping
matrix until the desired response results).

Solution: A Mathcad solution is presented. The damping matrix isfound, asin
the previous problem, by keeping track of the various transformations. Using the
notation of the text, the damping matrix is constructed from:

2w 0 0 1.062x10°  —679.3 187.0
C= M%P 0 2{20)2 0 |PT M% =| -679.3 2.785x10° 617.8
0 0 2530)3 187.0 617.8 2.041x10°
as computed using the code that follows. With this form of the matrix the
damping ratios are adjusted until the desired criteria are met:
1 00 oo 0.4 0 0 wl = 53872
_ _ _ 3
I:=|0 1 @ O:=|0 0 0 M:=|0o 2 a0 T
ool ooan 0 8
w3 = 30.1166
a0 -3 0 Al0.4-10° 0 0 1 i=0.2
_ 4 i
0 -8 &9
0 0 afE10° £3 1= 0.05
-0.4116 -0.1021  0.9056 2-wl- gl 0 0
P = |-0.6348 -0.1935 -0.4239 At = i 2 w22 0
-0.2185 0.9758  0.0106 0 0 2w t3

¢ = M P AcPY - Mr

& = augment[stack [0, -M LK) stack (1, -1171 )

In changing the damping ratiosit is best to start with the rubber component which
isthe first mode-damping ratio. Doubling it nails the first two coordinates but
does not affect the third coordinate enough. Hence the second mode-damping
ratio must be changed (doubled here) to attack thismode. This could be
accomplished by adding a viscoelastic strip as described in Chapter 5 to the metal.
Thus the ratios given in the code above do the trick as the following plots show.

Note aso how much the damping matrix changes.



o
1
oo oo oo

1= g70F

1000

1
=

Dit,¥) =& H +

¥l =25 LF

1*10

w1 510
e
3

1.138-10° 313286 206.132
f:=1 LB .
C=|-m13.286 4536107 605984
208132 &05.984  8.958-10°
o
0
0
(e — 21— 0.00
f, [ (200 -2 1)
fl
£, fied (3,0, 15, 4000, D)
xz 1= 2TEF x3 1= Z5F%
1 "I!,_ J"__‘AEF.P‘%____—__'.._ R
0 LL 3 4 5 B



4.95*. Compute and plot the time response of the system (Newtons):

Y P ] S s S

subject to the initial conditions:
0 1
X, = m, v,=| | m/s
o™ 7o)

Solution: The following Mathcad session illustrates the numerical solution of
this problem using a Runge Kutta solver.

10 00 50 3 -1 -
I = 0= M = K =
0 1 00 01 -1 1 01

3 -05
G = 0
[-0.5 05 ]

T
— W|— O O
L

A = angment (stack (0, -M~ 1K), stack (1, -M~1 ]
Dit, X) =AX+
Z := rkfixed (X, 0, 100, 3000, D}
— <>
b= xl ;=21 X =2%”
4 +
. x
x1 ;J l"
—_— 2 4+ : - _er T, N e e e em———- -
?_2_ 1 ,/"—'\\ T
1 \,\ o
‘/V Sy, _'___r"_’_— . T
/ : : : : :




4.96* Consider the following system excited by a pulse of duration 0.1 s (in Newtons):
2 0 % 3 -005][x | 1 x
. 0.3 0.05 || X N 3 |- 0 [(t — 1) — (t - 3)]
0 1]|%, —0.05 005 J|x,| [-1 1]Xx, 1
and subject to the initial conditions:

0 | 0
x0={ 01 m, V0=|:O} m/s

Compute and plot the response of the system. Here @ indicates the Heaviside
Step Function introduced in Section 3.2.

Solution: The following Mathcad solution (see example4.10.3 for the other

codes) gives the solution:
2 0 3 -1
M = K = 0
o1 -1 1 -0.1

SRS

. 033 -0.05 - 0 0
" |-0.05 0.05 R =M LE

& = angment [stack [0, -M L g ) stack (1, -1171 )

0
0
Dit,X) =aX+ |, |[[#(t-1) - 2(t-3)]
a
fl
% = rkfived (3,0, 1203000, D)
e
ti=2 xl:=z51% gz = gtE +
xl




It is also interesting to examine the first 20 seconds more closely to see the effect
of the impact:
2 —_

¥
[
w
-
"~
-
-
L) B
—
-
.
-
-
-

Note that the impact has much more of an effect on the response than does the
initial condition.



4.97.* Compute and plot the time response of the system (Newtons):
X — X =11 x
5 0| X N 3 0.5 X N 30 -1 X _ 1sin(4t)
0 1]X -05 05 || x, -1 1 ]x 1
subject to the initial conditions:

X, = {OOJ m, v, = Lﬂ m/s

Solution: Following the codes of Example 4.10.2 yields the solution directly.

10 oo 5 0 a0 -1 q
I:= Q= M = K =
01 oo o1 -1 1 o1
X =
o[ 3 -0S . .
" |-05 05 1 fi=M 1B
& = avgment (stack (0, -M LK) stack (1, -1171 ) 0
0
Dit,®) == &X + | [sinfd1)
0
% = rkfixed (¥ ,0,20,3000,D) ;
1
— 0= R
1= 2 ¥l = z-;::]_::- X2 = A 4+




4.98.* Compute and plot the time response of the system (Newtons):

40 0 Ofl*%| |4 -1 0 OfX| |50 -10 0 0 ||%] |0
O300>'<2+—12—10>'<2+—1OO 200 -100 O (| X, | _|0
0 0 25 0 X 0 -1 2 -1x 0 -100 200 -100 || x, 0
0 0 0 6% 0 0 -1 1]x, 0 0 -100 100 || x, 1
subject to the initial conditions:
0 1
0 0
X, = m, v,=| | m/s
0 0
0.01 0
Solution: Again follow Example 4.10.2 for the various codes. Mathcad is given.
1 000 00 oo 4 0 0 0
o100 00 oo b3 00
I:= 0= M =
o010 00 oo b0 250 -
0001 0000 00 0 6 0
0
00 -100 0 0 4 -1 0 0 0
- -100 200 -100 0 s -1 2 -1 10 0.0
0 -100 200 -100 o -1 2z -1 ®= i
0 0 -100 100 o o -1 1 0
0 0
0 | 0
Bi=| fi=MLE
1 & = agment (zwack (0, M LK) svek (1, -1t ¢))
"0 ]
0
0
0
Dit,X) =&+ |1 [sn(d
£, 2 = ghfived (3, 0,200 ,3000 D)
fE 2= 5= 4=
=2 o= E ¥ =2
% | 1=z°0F

xl =251

sin(4t)
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