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Chapter Three Solutions 
 

Problem and Solutions for Section 3.1 (3.1 through 3.14) 
 

3.1 Calculate the solution to 

  

   

!!x + 2 !x + 2x = ! t " #( )

x 0( ) = 1 !x 0( ) = 0

 

 and plot the response. 

 

 Solution: Given: 
   
!!x + 2 !x + 2x = ! t " #( ) x 0( ) = 1, !x 0( ) = 0  

  

  

!
n

=
k

m
= 1.414 rad/s,  " =

c

2 km
= 0.7071,    !

d
= !

n
1#" 2

= 1 rad/s  

 Total Solution: 
 
x t( ) = x

h
t( ) + x

p
t( )  

 Homogeneous:  From Equation (1.36) 

  

  

x
h

t( ) = Ae
!"#

n
t
sin #

d
t + $( )

A =
v

0
+"#

n
x

0
( )

2

+ x
0
#

d( )
2

#
d

2
,      $ = tan

!1
x

0
#

d

v
0

+"#
n
x

0

%

&
'

(

)
* = .785 rad

                  + x
h

t( ) = 1.414e
! t

sin t + .785( )

 

 Particular:  From Equation. (3.9) 

  

  

x
p

t( ) =
1

m!
d

e
"#!

n
t"$( )

sin!
d

t " $( ) =
1

1( ) 1( )
e
" t"%( )

sin t " %( )

But,    sin "t( ) = " sin t   So,     x
p

t( ) = "e
" t"%( )

sin t    &

 

  

  

x t( ) = 1.414e
! t

sin t + 0.785( ) 0 < t < "

x t( ) = 1.414e
! t

sin t + 0.785( ) ! e
!(t!" )

sin t t > "
 

 This is plotted below using the Heaviside function. 



3- 2 



3- 3 

3.2 Calculate the solution to 

  

   

!!x + 2 !x + 3x = sin t + ! t " #( )

x 0( ) = 0 !x 0( ) = 1

 

 and plot the response. 

 

 Solution: Given:
   
!!x + 2 !x + 3x = sin t + ! t " #( ), x 0( ) = 0, !x 0( ) = 0   

  

  

!
n

=
k

m
= 1.732 rad/s, " =

c

2 km
= 0.5774,  !

d
= !

n
1#" 2

= 1.414 rad/s  

 Total Solution: 

  

x t( ) = x
h

+ x
p1

0 < t < !

x t( ) = x
h

+ x
p1

+ x
p2

t > !
 

 Homogeneous:  Eq. (1.36) 

  
  
x

h
t( ) = Ae

!"#
n
t
sin #

d
t + $( ) = Ae

! t
sin 1.414t + $( )  

 Particular:  #1 (Chapter 2) 

  

  

x
p1

(t) = X sin !t "#( ), where ! = 1 rad/s .  Note that  f
0

=
F

0

m
= 1

$ X =
f

0

!
n

2 "! 2

( )
2

+ 2%!
n
!( )

2

= 0.3536,  and # = tan
"1

2%!
n
!

!
n

2 "! 2

&

'
(
(

)

*
+
+

= 0.785 rad

                                         $ x
p1

t( ) = 0.3536sin t " 0.7854( )

 

 Particular:  #2 Equation 3.9 

  

  

x
p2

t( ) =
1

m!
d

e
"#!

n
t"$( )

sin!
d

t " %( ) =
1

1( ) 1.414( )
e
" t"$( )

sin1.414 t " $( )

                       & x
p2

t( ) = 0.7071e
" t"$( )

sin1.414 t " $( )

 

 The total solution for 0< t<π becomes: 

 

   

x t( ) = Ae
! t

sin 1.414t + "( ) + 0.3536sin t ! 0.7854( )

!x t( ) = !Ae
! t

sin(1.414t + ") + 1.414Ae
! t

cos 1.414t + "( ) + 0.3536cos t ! 0.7854( )

x 0( ) = 0 = Asin" ! 0.25# A =
0.25

sin"

!x 0( ) = 1 = !Asin" + 1.414Acos" + 0.25# 0.75 = 0.25!1.414 0.25( )
1

tan"

                  #" = 0.34 and A = 0.75

 

 Thus for the first time interval, the response is 

  
x t( ) = 0.75e

! t
sin 1.414t + 0.34( ) + 0.3536sin t ! 0.7854( ) 0 < t < "  

 Next consider the application of the impulse at t = π: 
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x t( ) = x
h

+ x
p1

+ x
p2

x t( ) = !0.433e
! t

sin 1.414t + 0.6155( ) + 0.3536sin t ! 0.7854( ) ! 0.7071e
! t!"( )

sin 1.414t ! "( ) t > "

 

 The response is plotted in the following (from Mathcad): 

 

 

 

3.3 Calculate the impulse response function for a critically damped system. 

 

 Solution: 
 

 The change in the velocity from an impulse is

  
v

0
=

F̂

m
, while x0 = 0.  So for a critically 

damped system, we have from Eqs. 1.45 and 1.46 with x0 = 0: 

 

  

  

x(t) = v
0
te

!"
n
t

# x(t) =
F̂

m
te

!"
n
t
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3.4 Calculate the impulse response of an overdamped system. 

 

 Solution: 
 

 The change in velocity for an impulse

  
v

0
=

F̂

m
, while x0 = 0.  So, for an overdamped 

system, we have from Eqs. 1.41, 1.42 and 1.43: 

 

  

  

x t( ) = e
!"#

n
t !v

0

2#
n
" 2 !1

e
!# (

n
" 2 !1)t

+
v

0

2#
n
" 2 !1

e
!# (

n
" 2 !1)t

$

%

&
&

'

(

)
)

x t( ) =
F̂

2m#
n
" 2 !1

e
!"#

n
t

e
!# (

n
" 2 !1)t ! e

!# (
n

" 2 !1)t$
%&

'
()

 

 

 

 

 

 

 

3.5 Derive equation (3.6) from equations (1.36) and (1.38). 

 

 Solution: 
 

 Equation 1.36: x(t) = 
  
Ae

!"#
n
t
sin #

d
t + $( )  

 

 Equation 1.38: 

  

A =
v

0
+!"

n
x

0
( )

2

+ x
0
"

d( )
2

"
d

2
, # = tan

$1
x

0
"

d

v
0

+!"
n
x

0

%

&
'

(

)
*  

 Since x0 = 0 and v0 = 

  

F̂

m
,  Equation 1.38 becomes 

  

  

A =
v

0

!
d

=
F̂

m!
d

" = tan
#1

0( ) = 0

 

 So Equation 1.36 becomes 

  

  

x t( ) =
F̂

m!
d

e
"#!

n
t
sin !

d
t( ) which is Equation 3.6 
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3.6 Consider a simple model of an airplane wing given in Figure P3.6.  The wing is 

approximated as vibrating back and forth in its plane, massless compared to the missile 

carriage system (of mass m).  The modulus and the moment of inertia of the wing are 

approximated by E and I, respectively, and l is the length of the wing.  The wing is 

modeled as a simple cantilever for the purpose of estimating the vibration resulting from 

the release of the missile, which is approximated by the impulse funciton Fδ(t).  

Calculate the response and plot your results for the case of an aluminum wing 2 m long 

with m = 1000 kg, ζ = 0.01, and I = 0.5 m
4
.  Model F as 1000 N lasting over 10

-2
s. 

Modeling of wing vibration resulting from the release of a missile.  (a) system of interest; 

(b) simplification of the detail of interest; (c) crude model of the wing: a cantilevered 

beam section (recall Figure 1.24); (d) vibration model used to calculate the response 

neglecting the mass of the wing. 

 

 Solution: Given:   

  

  

m = 1000 kg ! = 0.01

l = 4 m I = 0.5 m
4

F = 1000 N "t = 10
-2

 s

 

 From Table 1.2, the modulus of Aluminum is   E = 7.1!10
10

 N/m
2
 

 

 The stiffness is 

  

   

k =
3EI

!
3

=

3 7.1!10
10

( ) 0.5( )

4
3

= 1.664 !10
9
 N/m

"
n

=
k

m
= 1.29 !10

3
 rad/s (205.4 Hz)

"
d

= "
n

1#$ 2
= 1.29 !10

3
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 Solution (Eq. 3.6): 

 

  

  

x t( ) =
F!t( )e

"#$
n
t

m$
d

sin$
d
t = 7.753%10

"6
e
"12.9t

sin 1290t( )  m  

The following m-file 

t=(0:0.0001:0.5); 
F=1000;dt=0.01;m=1000;zeta=0.01;E=7.1*10^10;I=0.5;L=4; 
wn=sqrt((3*I*E/L^3)/m); 
wd=wn*sqrt(1-zeta^2); 
x=(F*dt/(m*wd))*exp(-zeta*wn*t).*sin(wd*t); 
plot(t,x) 

 

 

The solution worked out in Mathcad is given in the following: 
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3.7 A cam in a large machine can be modeled as applying a 10,000 N-force over an interval 

of 0.005 s.  This can strike a valve that is modeled as having physical parameters:  m = 10 

kg, c = 18 N•s/m, and stiffness k = 9000 N/m.  The cam strikes the valve once every 1 s.  

Calculate the vibration response, x(t), of the valve once it has been impacted by the cam.  

The valve is considered to be closed if the distance between its rest position and its actual 

position is less than 0.0001 m.  Is the valve closed the very next time it is hit by the cam? 

 

 Solution: Given: 

  

  

F = 10,000 N !t = 0.005 s

m = 10 kg c = 18 N " s/m k = 9000 N/m

#
n

=
k

m
= 30 rad/s $ =

c

2 km
= 0.03 #

d
= #

n
1%$ 2

= 29.99 rad/s

 

 

 Solution Eq. (3.6): 

  

  

x t( ) =
F!t( )e

"#$
n
t

m$
d

sin$
d
t

x t( ) =
10,000( ) 0.005( )e

" 0.03( ) 30( )t

10( ) 29.99( )
sin 29.99t( )

x t( ) = 0.1667e
"0.9t

sin 29.99t( )m

 

 

 At t=1 s: 
  
x 1( ) = 0.1667e

!0.9
sin(29.99) = !.06707 m  

 

 Since 
  
x 1( ) = 0.06707 > 0.0001,  the valve is not closed. 
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3.8 The vibration packages dropped from a height of h meters can be approximated by 

considering Figure P3.8 and modeling the point of contact as an impulse applied to the 

system at the time of contact.  Calculate the vibration of the mass m after the system falls 

and hits the ground.  Assume that the system is underdamped. 

 

 Solution: When the system hits the ground, it responds as if an impulse force acted on it. 

 

 From Equation (3.6): 

  

x t( ) =
F̂e

!"#
n
t

m#
d

sin#
d
t       where 

F̂

m
= v

0
 

 

 Calculate v0: 

 

 For falling mass: 

  
x =

1

2
at

2
 

 

 So, 
  
v

0
= gt

*
, where t

*
 is the time of impact from height h 

 

  

  

h =
1

2
gt

*2
! t

*
=

2h

g

v
0

= 2gh

 

 

 Let t = 0 when the end of the spring hits the ground 

 

 The response is 

  

x t( ) =
2gh

!
d

e
"#!

n
t
sin!

d
t  

 

 Where ωn, ωd, and ζ are calculated from m, c, k.  Of course the problem could be solved 

as a free response problem with x0 = 0, v0 = 
  

2gh  or an impulse response with impact 

model as the unit velocity given. 
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3.9 Calculate the response of 

  
   
3!!x(t) + 12 !x t( ) + 12x t( ) = 3! t( )  

 for zero initial conditions.  The units are in Newtons.  Plot the response. 

 

 Solution: Dividing the equation of motion by 3 reveals; 

  

  

!
n

= 4 = 2 rad/s " =
12

2 3( ) 2( )
= 1# critically damped

F̂ = 3 v
0

=
F$t

m
,       x

0
= 0

x = a
1
+ a

2
t( )e

%!
n
t

a
1

= 0 a
2

=
F$t

m

                   # x t( ) =
F̂

m
te

%2t
=

3

3
te

%2t
= te

%2t
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3.10 Compute the response of the system: 

   3
!!x(t) + 12 !x(t) + 12x(t) = 3! (t)  

subject to the initial conditions x(0) = 0.01 m and v(0) = 0.  The units are in Newtons.  

Plot the response. 

 

Solution:  From the previous problem the system is critically damped with a solution of 

the form 

  
x(t) = (a

1
+ a

2
t)e

!2t
. 

Applying the given initial conditions yields 

   

x(0) = 0.01 = a
1
    and  !x(0) = 0 = !2(0.01+ a

2
0) + a

2

                      " x(t) = (0.01+ 0.02t)e
!2t

 

 Next add to this the solution due to the unit impulse, which was calculated in Problem 3.9 

to get: 

  

x(t) = te
!2t

+ (0.01+ 0.02t)e
!2t

                " x(t) = (0.01+ 1.02t)e
!2t
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3.11 Calculate the response of the system 

  
   
3!!x(t) + 6 !x t( ) + 12x t( ) = 3! t( ) " ! (t "1)  

subject to the initial conditions x(0) =0.01 m and v(0) = 1 m/s.  The units are in Newtons.  

Plot the response. 

 

Solution:   First compute the natural frequency and damping ratio: 

  

!
n

=
12

3
= 2 rad/s,  " =

6

2 #2 #3
= 0.5,   !

d
= 2 1$ 0.5

2
= 1.73 rad/s  

so that the system is underdamped.  Next compute the responses to the two impulses: 

  

x
1
(t) =

F̂

m!
d

e
"#!

n
t
sin!

d
t =

3

3(1.73)
e
"(t"1)

sin1.73(t "1) = 0.577e
" t

sin1.73t,t > 0

x
2
(t) =

F̂

m!
d

e
"#!

n
(t"1)

sin!
d
(t "1) =

1

3(1.73)
e
" t

sin1.73t = 0.193e
"(t"1)

sin1.73(t "1),t > 1

 

 Now compute the response to the initial conditions from Equation (1.36) 

 

  

  

x
h

t( ) = Ae
!"#

n
t
sin #

d
t + $( )

A =
v

0
+"#

n
x

0
( )

2

+ x
0
#

d( )
2

#
d

2
,      $ = tan

!1
x

0
#

d

v
0

+"#
n
x

0

%

&
'

(

)
* = 0.071 rad

                  + x
h

t( ) = 0.5775e
! t

sin t + 0.017( )

 

 Using the Heaviside function the total response is 

 
  
x(t) = 0.577e

! t
sin1.73t + 0.583e

! t
sin t + 0.017( ) + 0.193e

!(t!1)
sin1.73(t !1)"(t !1)  

 This is plotted below in Mathcad: 

 

 Note the slight bump in the response at t = 1 when the second impact occurs.   

 

3.12 A chassis dynamometer is used to study the unsprung mass of an automobile as 

illustrated in Figure P3.12 and discussed in Example 1.4.1 and again in Problem 1.64.  

Compute the maximum magnitude of the center of the wheel due to an impulse of 5000 N 
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applied over 0.01 seconds.  Assume the wheel mass is m = 15 kg, the spring stiffness is k 

= 500,000 N/m, the shock absorber provides a damping ratio of ζ = 0.3, and the rotational 

inertia is J = 2.323 kg m
2
. Compute and plot the response of the wheel system to an 

impulse of 5000 N over 0.01 s.  Compare the undamped maximum amplitude to that of 

the maximum amplitude of the damped system (use r = 0.457 m). 

 

Figure P3.12 Simple model of an automobile suspension system mounted on a chassis 

dynamometer. The rotation of the car’s wheel/tire assembly (of radius r) is given by θ(t) 

and is vertical deflection by x(t).  

 

Solution: With the values given the natural frequency, damped natural frequency, and 

impulse are calculated to be: 

  

!
n

=
k

m + J / r
2

= 117.67 rad/s  = 18.73 Hz,  !
d

= 112.25 rad/s,  X =
F"t

(m + J / r
2
)!

n

= 0.014  m

The response is then plotted as 
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Note that the maximum amplitude of the undamped system, X, is not achieved. 

 
 
3.13 Consider the effect of damping on the bird strike problem of Example 3.1.1.  Recall from 

the example that the bird strike causes the camera to vibrate out of limits.  Adding 

damping will cause the magnitude of the response to decrease but may not be able to 

keep the camera from vibrating past the 0.01 m limit.  If the damping in the aluminum is 

modeled as ζ = 0.05, approximately how long before the camera vibration reduces to the 

required limit? (Hint: plot the time response and note the value for time after which the 

oscillations remain below 0.01 m). 

 

 Solution: Using the values given in Example 3.1.1 and equations (3.7) and (3.8), the 

response has the form 

  

x(t) =
m

b
v

m!
n

e
"#!

n
t
sin!

d
t = 0.026e

"13.07t
sin260.976t  

 Here mb is the mass of the bird and m is the mass of the camera. This is plotted in 

Mathcad below 

 

 From the plot, the amplitude remains below 0.01 m after about 0.057 s. 
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3.14  Consider the jet engine and mount indicated in Figure P3.14 and model it as a mass on 

the end of a beam as done in Figure 1.24.  The mass of the engine is usually fixed. Find a 

expression for the value of the transverse mount stiffness, k, as a function of the relative 

speed of the bird, v, the bird mass, the mass of the engine and the maximum displacement 

that the engine is allowed to vibrate. 

 

                 Figure P3.14 Model of a jet engine in transverse vibration due to a bird strike.  
 
 Solution:  The equation of motion is 

   m
!!x(t) + kx(t) = F̂! (t)  

 From equations (3.7) and (3.8) the magnitude of the response is 

  

X =
F̂

m!
n

 

 for an undamped system.  If the bird is moving with momentum mbv then: 

 

 

  

X =
m

b
v

m!
n

" X =
m

b
v

mk
" k =

1

m

m
b
v

X

#

$
%

&

'
(

2

 

 This can be used to provide some guidance in designing the engine mount. 
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Problems and Solutions for Section 3.2 (3.15 through 3.25) 

 

3.15 Calculate the response of an overdamped single-degree-of-freedom system to an 

arbitrary non-periodic excitation. 

 

 Solution: From Equation (3.12): 

  

x t( ) = F !( )h t " !( )d!
0

t

#  

 For an overdamped SDOF system (see Problem 3.4) 

 

  

h t ! "( ) =
1

2m#
n
$ 2 !1

e
!$#

n
t!"( )

e
#

n
$ 2 !1 t!"( ) ! e

!#
n

$ 2 !1 t!"( )%
&

'
( d"

x t( ) = F "( )
0

t

)
1

2m#
n
$ 2 !1

e
!$#

n
t!"( )

e
#

n
$ 2 !1 t!"( ) ! e

!#
n

$ 2 !1 t!"( )%
&

'
( d"

* x t( ) =
e
!$#

n

2m#
n
$ 2 !1

F "( )
0

t

) e
$#

n
"

e
#

n
$ 2 !1 t!"( ) ! e

!#
n

$ 2 !1 t!"( )%
&

'
( d"
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3.16 Calculate the response of an underdamped system to the excitation given in 

Figure P3.16. 

 Plot of a pulse input of the form f(t) = F0sint. 

 

Figure P3.16 
 

 Solution: 

  

  

x t( ) =
1

m!
d

e
"#!

n
t

F $( )e
#!

n
$

sin!
d

t " $( )%
&

'
(d$

0

t

)
F t( ) = F

0
sin t( ) t < *   From Figure P3.16( )

For t + * ,            x t( ) =
F

0

m!
d

e
"#!

n
t

sin$e
#!

n
$

sin!
d

t " $( )( )d$
0

t

)

 

 

  

x t( ) =
F

0

m!
d

e
"#!

n
t $

      
1

2 1+ 2!
d

+!
n

2%& '(
e
#!

n
t !

d
"1( )sin t "#!

n
cos t%& '( " !

d
"1( )sin!

d
t "#!

n
cos!

d
t{ }

%

&

)
)

+
1

2 1+ 2!
d

+!
n

2%& '(
e
#!

n
t !

d
"1( )sin t "#!

n
cos t%& '( + !

d
"1( )sin!

d
t "#!

n
cos!

d
t{ }
'

(

*
*

 

 

 For ! > " , :
  

f (! )h(t " ! )d!
0

t

# = f (! )h(t " ! )d!
0

$

# + (0)h(t " ! )d!
$

t

#  
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x t( ) =
F

0

m!
d

e
"#!

n
t

sin$e
#!

n
$

sin!
d

t " $( )( )d$
0

%

&

      =
F

0

m!
d

e
"#!

n
t '

  

1

2 1+ 2!
d

+!
n

2"# $%

e
&!

n
t !

d
'1( )sin !

d
t ' (( )"# $% '&! n

cos !
d

t ' (( )"# $%
"
#

$
%

                         ' !
d
'1( )sin!

d
t '&!

n
cos!

d
t

)
*
+

,+

-
.
+

/+

"

#

0
0

              +
1

2 1+ 2!
d

+!
n

2"# $%

e
&!

n
t !

d
+ 1( )sin !

d
t ' 1( )"# $% +&! cos !

d
t ' (( )"# $%

"
#

$
%

                         + !
d
'1( )sin!

d
t '&!

n
cos!

d
t

)
*
+

,+

-
.
+

/+

$

%

2
2

 

Alternately, one could take a Laplace Transform approach and assume the under-damped 

system is a mass-spring-damper system of the form 

 

 
m!!x t( ) + c!x t( ) + kx t( ) = F t( )  

The forcing function given can be written as 

 

F t( ) = F
0

H t( ) ! H t ! "( )( )sin t( )  

 

Normalizing the equation of motion yields 

 

 
!!x t( ) + 2!"n

!x t( ) +"n

2
x t( ) = f

0
H t( ) # H t # $( )( )sin t( )  

 

where f
0

=
F

0

m
 and m, c and k are such that 0 < ! < 1. 

 

Assuming initial conditions, transforming the equation of motion into the Laplace domain 

yields 

 

X s( ) =
f
0

1+ e
!" s

( )

s
2

+1( ) s
2

+ 2#$ns +$n

2

( )
 

 

The above expression can be converted to partial fractions 

 

X s( ) = f
0

1+ e
!" s

( )
As + B

s
2

+1

#
$%

&
'(

+ f
0

1+ e
!" s

( )
Cs + D

s
2

+ 2)*ns +*n

2

#

$%
&

'(
 

 

where A, B, C, and D are found to be 
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A =
!2"#n

1!#n

2

( )
2

+ 2"#n( )
2

B =
#n

2 !1

1!#n

2

( )
2

+ 2"#n( )
2

C =
2"#n

1!#n

2

( )
2

+ 2"#n( )
2

D =
1!#n

2

( ) + 2"#n( )
2

1!#n

2

( )
2

+ 2"#n( )
2

 

 

Notice that X s( )  can be written more attractively as 

 

X s( ) = f
0

As + B

s
2

+1
+

Cs + D

s
2

+ 2!"ns +"n

2

#

$%
&

'(
+ f

0
e
)* s As + B

s
2

+1
+

Cs + D

s
2

+ 2!"ns +"n

2

#

$%
&

'(

= f
0

G s( ) + e
)* s

G s( )( )

 

 

Performing the inverse Laplace Transform yields 

 

x t( ) = f
0

g t( ) + H t ! "( )g t ! "( )( )  

 

where g(t) is given below 

 

g t( ) = Acos t( ) + Bsin t( ) + Ce
!"#nt

cos #dt( ) +
D ! C"#n

#d

$

%&
'

()
e
!"#nt

sin #dt( )  

 

!d is the damped natural frequency,!d = !n 1"# 2
. 

 

Let m=1 kg, c=2 kg/sec, k=3 N/m, and F0=2 N. The system is solved numerically. Both 

exact and numerical solutions are plotted below 

 



3- 21 

 
Figure 1 Analytical vs. Numerical Solutions 

 

Below is the code used to solve this problem 

 

% Establish a time vector 

t=[0:0.001:10]; 

 

% Define the mass, spring stiffness and damping coefficient 

m=1; 

c=2; 

k=3; 

 

% Define the amplitude of the forcing function 

F0=2; 

 

% Calculate the natural frequency, damping ratio and normalized force amplitude  

zeta=c/(2*sqrt(k*m)); 

wn=sqrt(k/m); 

f0=F0/m; 

 

% Calculate the damped natural frequency 

wd=wn*sqrt(1-zeta^2); 

 

% Below is the common denominator of A, B, C and D (partial fractions 

% coefficients) 

dummy=(1-wn^2)^2+(2*zeta*wn)^2; 

 

% Hence, A, B, C, and D are given by 

A=-2*zeta*wn/dummy; 

B=(wn^2-1)/dummy; 

C=2*zeta*wn/dummy; 
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D=((1-wn^2)+(2*zeta*wn)^2)/dummy; 

 

% EXACT SOLUTION 

% 

************************************************************************

* 

% 

************************************************************************

* 

for i=1:length(t) 

    % Start by defining the function g(t) 

    g(i)=A*cos(t(i))+B*sin(t(i))+C*exp(-zeta*wn*t(i))*cos(wd*t(i))+((D-

C*zeta*wn)/wd)*exp(-zeta*wn*t(i))*sin(wd*t(i)); 

    % Before t=pi, the response will be only g(t) 

    if t(i)<pi 

        xe(i)=f0*g(i); 

        % d is the index of delay that will correspond to t=pi 

        d=i; 

    else 

        % After t=pi, the response is g(t) plus a delayed g(t). The amount 

        % of delay is pi seconds, and it is d increments 

        xe(i)=f0*(g(i)+g(i-d)); 

    end; 

end; 

 

% NUMERICAL SOLUTION 

% 

************************************************************************

* 

% 

************************************************************************

* 

 

% Start by defining the forcing function 

for i=1:length(t) 

    if t(i)<pi 

        f(i)=f0*sin(t(i)); 

    else 

        f(i)=0; 

    end; 

end; 

 

% Define the transfer functions of the system 

% This is given below 

%         1 

% --------------------------- 
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% s^2+2*zeta*wn+wn^2 

 

% Define the numerator and denominator 

num=[1]; 

den=[1 2*zeta*wn wn^2]; 

% Establish the transfer function 

sys=tf(num,den); 

 

% Obtain the solution using lsim 

xn=lsim(sys,f,t); 

 

% Plot the results 

figure; 

set(gcf,'Color','White'); 

plot(t,xe,t,xn,'--'); 

xlabel('Time(sec)'); 

ylabel('Response'); 

legend('Forcing Function','Exact Solution','Numerical Solution'); 

text(6,0.05,'\uparrow','FontSize',18); 

axes('Position',[0.55 0.3/0.8 0.25 0.25]) 

plot(t(6001:6030),xe(6001:6030),t(6001:6030),xn(6001:6030),'--'); 

   

 

3.17 Speed bumps are used to force drivers to slow down.  Figure P3.17 is a model of a 

car going over a speed bump.  Using the data from Example 2.4.1 and an 

undamped model of the suspension system (k = 4 x 10
5
 N/m, m = 1007 kg), find 

an expression for the maximum relative deflection of the car’s mass versus the 

velocity of the car. Model the bump as a half sine of length 40 cm and height 20 

cm. Note that this is a moving base problem. 
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Figure P3.17  Model of a car driving over a speed bump. 

 

 

Solution: This is a base motion problem, so the first step is to translate the 

equation of motion into a useable form.  Summing forces yields in the vertical 

direction yields 

   
m!!x(t) + k x(t) ! y(t)( ) = 0  

were the displacement y(t) is prescribed.  Next defined the relative displacement 

to be z(t) = x(t)-y(t), the relative motion between the car’s wheel and body. The 

equation of motion becomes: 

   m!!z(t) + m!!y(t) + kz(t) = 0 ! m!!z(t) + kz(t) = "m!!y(t)  

Substitution of the form of y(t) into this last expression yields: 

   
m!!z(t) + kz(t) = mY!

b

2
sin!

b
t "(t) # "(t # t

1
)( )  

where Φ is the Heavyside step function and  ωb is the frequency associated with 

the bump.  The relationship between the bump frequency and the car’s constant 

velocity is  

   
!

b
=

2"

2!
v =

"

!
v  

where v is the speed of the car in m/s. For constant velocity, the time 
   
t
1

= v! , 

when the car finishes going over the bump.  

Here, z(t) is From equation (3.13) with zero damping the solution is: 

  

z(t) =
1

m!
n

f (t " #
0

t

$ )sin!
n
#d#       t < t

1
 

Substitution of f(t) =y(t) yields: 

  

z(t) =
Y!

b

2

!
n

sin(!
b
t "!

b
# )

0

t

$ sin!
n
#d# =

=
Y!

b

2

!
n

1

2
 

sin !
b
t " (!

n
+!

b
)#( )

"(!
n

+!
b
)

"
sin !

b
t + (!

n
"!

b
)#( )

!
n
"!

b

%

&
'
'

(

)
*
*

0

t

   

                      =  
Y!

b

2

!
n

1

!
n

2 "!
b

2
!

n
sin!

b
t "!

b
sin!

n
t( )      t < t

1

 

where the integral has been evaluated symbolically. Clearly a resonance situation 

prevails.  Consider two cases, high speed 
  
(!

b
>>!

n
) and low speed (

  
(!

b
<<!

n
) ) 

as when the two frequencies are near each other and obvious maximum occurs.  

For high speed, the amplitude can be approximated as 

  

Y!
b

2

!
n

!
b

!
n

2
"!

b

2
(!

n
/!

b
)sin!

b
t " sin!

n
t( ) #

Y!
b

2

!
n

!
b

!
n

2
"!

b

2
sin!

n
t  

For the values given, this has magnitude: 
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Z(v) !
Y

"
!

#
$%

&
'(

3

v
3

)
n
)

n

2 *)
b

2

( )
 

This increases with the cube of the velocity.  Thus the faster the car is going the 

more sever the bump is (larger relative amplitude of vibration), hence serving to 

slow motorist down.  A plot of magnitude versus speed shows bump size is 

amplified by the suspension system. 

 

For slow speed, magnitude becomes  

   

Z(v) !
Y

"
!

#
$%

&
'(

2

v
2)

n

)
n
)

n

2 *)
b

2

( )
 

A plot of the approximate magnitude versus speed is given below 
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Clearly at speeds above the designed velocity there is strong amplification of the 

bump’s magnitude, causing discomfort to the driver and passengers, encouraging 

a slow speed when passing over the bumb. 

 

3.18 Calculate and plot the response of an undamped system to a step function with a 

finite rise time of t1 for the case m = 1 kg, k = 1 N/m, t1 = 4 s and F0 = 20 N.  This 

function is described by 

 

  

  

F t( ) =

F
0
t

t
1

0 ! t ! t
1

F
0

t > t
1

"

#
$

%
$

 

 

 Solution: Working in Mathcad to perform the integrals the solution is: 
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3.19  A wave consisting of the wake from a passing boat impacts a seawall.  It is 

desired to calculate the resulting vibration.  Figure P3.19 illustrates the situation 

and suggests a model.  This force in Figure P3.19 can be expressed as 

 

  

  

F t( ) =
F

0
1!

t

t
0

"

#$
%

&'
0 ( t ( t

0

0 t > t
0

)

*
+

,
+

 

 

 Calculate the response of the seal wall-dike system to such a load. 

 

  

 Solution: From Equation (3.12):

  

x t( ) =

0

t

! F "( )h t # "( )d"  

 From Problem 3.18, 

  

h t ! "( ) =
1

m#
n

sin#
n

t ! "( ) for an undamped system 

 For 
  
t < t

0
:  

  

  

x t( ) =
1

m!
n 0

t

" F
0

1#
$
t
0

%

&'
(

)*
sin!

n
t # $( )d$

+

,
-
-

.

/
0
0

x t( ) =
F

0

m!
n 0

t

" sin!
n

t # $( )d$ #
1

t
0 0

t

" $ sin!
n

t # $( )d$
+

,
-
-

.

/
0
0

 

 After integrating and rearranging, 

  

  

x t( ) =
F

0

kt
0

1

!
n

sin!
n
t " t

#

$
%

&

'
( +

F
0

k
1" cos!

n
t#$ &' t < t

0
  

 For
  
t > t

0
:

  
f (! )h(t " ! )d!

0

t

# = f (! )h(t " ! )d!
0

t
0

# + (0)h(t " ! )d!
t
0

t

#  

 

  

x t( ) =
1

m!
n 0

t
0

" F
0

1#
$
t
0

%

&'
(

)*
sin!

n
t # $( )d$

+

,

-
-

.

/

0
0

x t( ) =
F

0

m!
n 0

t
0

" sin!
n

t # $( )d$ #
1

t
0 0

t
0

" $ sin!
n

t # $( )d$
+

,
-
-

.

/
0
0
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 After integrating and rearranging, 

  

x t( ) =
F

0

kt
0
!

n

sin!
n
t " sin!

n
(t " t

0
)#$ %& "

F
0

k
cos!

n
t#$ %& t > t

0
 

3.20  Determine the response of an undamped system to a ramp input of the form F(t) = 

F0t, where F0 is a constant.  Plot the response for three periods for the case m = 1 kg, k = 

100 N/m and F0 = 50 N. 

 

 Solution: From Eq. (3.12): 

  

x t( ) =

0

t

! F "( )h t # "( )d"  

 From Problem 3.8, 

  

h t ! "( ) =
1

m#
n

sin#
n

t ! "( ) for an undamped system.  

Therefore, 

  

  

x t( ) =
1

m!
n 0

t

" F
0
#( )sin!

n
t $ #( )d#

%

&
'
'

(

)
*
*

=
F

0

m!
n 0

t

" # sin!
n

t $ #( )d#  

 

 After integrating and rearranging, 

 

  

  

x t( ) =
F

0

m!
n

"

!
n

#
1

!
n

2
sin!

n
"

$

%
&
&

'

(
)
)

=
F

0

k
t #

F
0

k!
n

sin!
n
t  

 

 Using the values m = 1 kg, k = 100 kg, and F0 = 50 N yields 

 

  
  
x t( ) = 0.5t ! .05sin 10t( )   m  
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3. 21     A machine resting on an elastic support can be modeled as a single-degree-of-

freedom, spring-mass system arranged in the vertical direction.  The ground is subject to 

a motion y(t) of the form illustrated in Figure P3.221.  The machine has a mass of 5000 

kg and the support has stiffness 1.5x10
3
 N/m.  Calculate the resulting vibration of the 

machine. 

 

Solution: Given m = 5000 kg, k = 1.5x10
3
 N/m, 

  
!

n
= k

m
= 0.548 rad/s and that 

the ground motion is given by: 

  

y(t) =

2.5t 0 ! t ! 0.2

0.75"1.25t 0.2 ! t ! 0.6

0 t # 0.6

$

%
&

'
&

 

The equation of motion is 
   m
!!x + k(x ! y) = 0  or 

   m
!!x + kx = ky = F(t)  The impulse 

response function computed from equation (3.12) for an undamped system is 

  

h(t ! " ) =
1

m#
n

sin#
n
(t ! " )  

This gives the solution by integrating a yh across each time step: 

  

x(t) =
1

m!
n

ky(" )sin!
n
(t # " )d"

0

t

$ = !
n

y(" )sin!
n
(t # " )d"

0

t

$  

For the interval 0< t < 0.2: 

  

x(t) = !
n

2.5" sin!
n
(t # " )d"

0

t

$
       % x(t) = 2.5t # 4.56sin0.548t   mm  0 & t & 0.2

 

For the interval 0.2< t < 0.6: 

  

x(t) = !
n

2.5" sin!
n
(t # " )d"

0

0.2

$ +!
n

(0.75#1.25" )sin!
n
(t # " )d"

0.2

t

$
      = 0.75# 0.5cos0.548(t # 0.2) #1.25t + 2.28sin0.548(t # 0.2)

 

Combining this with the solution from the first interval yields: 

  

x(t) = 0.75 + 1.25t ! 0.5cos0.548(t ! 0.2)

              +6.48sin0.548(t ! 0.2) ! 4.56sin0.548(t ! 0.2)  mm 0.2 " t " 0.6
 

Finally for the interval t >0.6: 
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x(t) = !
n

2.5t sin!
n
(t " # )d#

0

0.2

$ +!
n

(0.75"1.25t)sin!
n
(t " # )d#

0.2

0.6

$ +!
n

(0)sin!
n
(t " # )d#

0

t

$
      = "0.5cos0.548(t " 0.2) " 2.28sin0.548(t " 0.6) + 2.28sin0.548(t " 0.2)

Combining this with the total solution from the previous time interval yields: 

  

x(t) = !0.5cos0.548(t ! 0.2) + 6.84sin0.548(t ! 0.2) ! 2.28sin0.548(t ! 0.6)

                                                                ! 4.56sin0.548t   mm t " 0.6
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3.22 Consider the step response described in Figure 3.7.  Calculate tp by noting that it 

occurs at the first peak, or critical point, of the curve. 

 

 Solution: Assume t0 = 0.  The response is given by Eq. (3.17): 

 

  

  

x t( ) =
F

0

k
!

F
0

k 1!" 2

e
!"#

n
t
cos #

d
t !$( )  

 To find tp, compute the derivative and let 
   
!x t( ) = 0  

  

   

!x t( ) =
!F

0

k 1!" 2

!"#
n
e
!"#

n
t
cos #

d
t !$( ) + e

!"#
n
t !#

d( )sin #
d
t !$( )%

&
'
( = 0

     )!"#
n
cos #

d
t !$( ) !# d

sin #
d
t !$( ) = 0

                                                       ) tan #
d
t !$( ) =

!"#
n

#
d

 

 

  

!
d
t "# " $ = tan

"1
"%!

n

!
d

&

'(
)

*+
(π can be added or subtracted without changing the 

tangent of an angle) 

  

  

t =
1

!
d

" + # + tan
$1

$%!
n

!
d

&

'(
)

*+
,

-
.
.

/

0
1
1

 

 But, 

 

! = tan
"1

#

1"# 2

$

%
&
&

'

(
)
)

 

 So,  

  

  

t =
1

!
d

" + tan
#1

$

1#$ 2

%

&
'
'

(

)
*
*
# tan

#1
$

1#$ 2

%

&
'
'

(

)
*
*

+

,

-
-

.

/

0
0

t
p

=
"
!

d
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3.23 Calculate the value of the overshoot (o.s.), for the system of Figure P3.7. 

 

 Solution: 

 

 The overshoot occurs at 

 

t
p

=
!

"
d

 

 Substitute into Eq. (3.17): 

  

  

x t
p( ) =

F
0

k
!

F
0

k 1!" 2

e
!"#

n
$ /#

d cos #
d

$
#

d

%

&'
(

)*
!+

,

-
.
.

/

0
1
1

 

 The overshoot is 

  

  

o.s. = x t
p( ) ! x

ss
t( )

o.s. =
F

0

k
!

F
0

k 1!" 2

e
!"#

n
$ /#

d !cos%( ) !
F

0

k

 

 Since 

 

! = tan
"1

#

1"# 2

$

%
&
&

'

(
)
)

,  then cos! = 1-# 2
 

 

 

  

o.s. = !
F

0

k 1!" 2

e
!"#

n
$ /#

d( ) 1!" 2( )

o.s. =
F

0

k
e
!"#

n
$ /#

d

 

3.24 It is desired to design a system so that its step response has a settling time of 3 s 

and a time to peak of 1 s.  Calculate the appropriate natural frequency and 

damping ratio to use in the design. 

 

 Solution: 

 Given 
  
t

s
= 3s, t

p
= 1s  

 Settling time: 

  

  

t
s

=
3.5

!"
n

= 3 s #!"
n

=
3.5

3
= 1.1667 rad/s  

 Peak time: 

  

  

t
p

=
!
"

d

= 1 s     #"
d

= "
n

1$% 2
= !  rad/s

#"
n

1$
1.1667

"
n

&

'(
)

*+

2

= ! #"
n

2
1$

1.1667

"
n

&

'(
)

*+

2,

-

.

.

/

0

1
1

= ! 2

#"
n

2
1$

1.3611

"
n

2

,

-
.
.

/

0
1
1

= ! 2 #"
n

2 $1.311 = ! 2 #"
n

= 3.35 rad/s
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 Next use the settling time relationship to get the damping ratio: 

   
! =

1.1667

"
n

=
1.1667

3.35
#! = 0.3483  
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3.25 Plot the response of a spring-mass-damper system for this input of Figure 3.8 for 

the case that the pulse width is the natural period of the system (i.e., t1 = π⁄ωn). 

 

 Solution: 

 

 The values from Figure 3.7 will be used to plot the response. 

 

  

  

F
0

= 30 N

k = 1000 N/m

! = 0.1

" = 3.16 rad/s

 

 From example 3.2.2 and Figure 3.7, with 

  
t
1

=
!

"
 we have for t = 0 to t1, 

 

  

  

x t( ) =
F

0

k
!

F
0
e
!"#

n
t

k 1!" 2

cos #
d
t !$( ) where$ = tan

!1
"

1!" 2

%

&
'
'

(

)
*
*

 

 x(t) = .03 - .03015e-.316t
  cos(3.144t - .1002)         0 < t ≤ t1 

 

 For t > t1, 

 

  

  

x t( ) =
F

0
e
!"#

n
t

k 1!" 2

e
"#nt

1

cos #
d

t !
$
#

n

%

&'
(

)*
! +

,

-
.
.

/

0
1
1
! cos #

d
t !+( )

2
3
4

54

6
7
4

84
 

 

 x(t) = 0.0315e
-.316t

 {1.3691cos(3.144t – 3.026) – cos(3.144t - .1002)} t > t1 

 

 

 The plot in Mathcad follows: 
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Problems and Solutions Section 3.3 (problems 3.26-3.32) 
 

3.26 Derive equations (3.24). (3.25) and (3.26) and hence verify the equations for the Fourier 

coefficient given by equations (3.21), (3.22) and (3.23). 

 

 Solution: For n ! m, integration yields: 

 

  

  

0

T

! sin n"
T
t sin m"

T
tdt =

sin n # m( )"T
t

"
T

2 n # m( )
#

sin n + m( )"T
t

"
T

2 n + m( )
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=
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+
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%
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+
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T
$

%
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(
)

2 n + m( )"T

=

sin n # m( ) 2*( )$% '(
2 n # m( )"T

#
sin n + m( ) 2*( )$% '(

2 n + m( )"T

= 0

 

 

 Since m and n are integers, the sine terms are 0, so this is equal to 0. 

 

 Equation (3.24), for m = n: 

 

  

  

0

T

! sin
2
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T
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1

2
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1
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T
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T
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+
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T
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%
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'

(
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#

T
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T
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 Since n is an integer, the sine term is 0, so this is equal to T/2. 

 

 So, 

  0

T

! sin n"
T
t sin m"

T
tdt =

0 m # n

T / 2 m = n

$
%
&

 

 

 Equation (3.25), for  m ! n  
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 Since m and n are integers, the sine terms are 0, so this is equal to 0. 

 

 Equation (3.25), for m = n becomes: 

 

  

  

cos
2

0

T

! n"
T
tdt =

1

2
t +

1

4n"
T

sin 2n"
T
t( )

#

$
%

&

'
(

0

T

=
T

2
+

T

8n)
sin 2n

2)
T

*
+,

-
./

T
#

$
%

&

'
(

=
T

2
+

T

8n)
sin 4n)#$ &' =

T

2

 

 

 Since n is an integer, the sine term is 0, so this is equal to T/2. 

 

 So, 

  0

T

! cos n"
T
t cos m"

T
tdt =

0 m # n

T / 2 m = n

$
%
&

 

 

 Equation (3.26), for m ! n : 

 

  

0

T

! cos n"
T
t sin m"

T
tdt =

cos n # m( )"T
t

2"
T

n # m( )
#

cos n + m( )"T
t

2"
T

n + m( )

$

%
&
&

'

(
)
)

0

T

=

cos n # m( )
2*
T

+
,-

.
/0

T
$

%
&

'

(
)

2 n # m( )"T

#

cos n + m( )
2*
T

+
,-

.
/0

T
$

%
&

'

(
)

2 n + m( )"T

#
1

2 m # n( )"T

+
1

2 m + n( )"T

=

cos n # m( ) 2*( )$% '(
2 n # m( )"T

#
cos n + m( ) 2*( )$% '(

2 n + m( )"T

#
1

2 m # n( )"T

+
1

2 m + n( )"T

= 0

 

 

 Since n is an integer, the cosine term is 1, so this is equal to 0. 
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 So, 

  0

T

! cos n"
T
t sin m"

T
tdt = 0  

 Equation (3.26) for n = m becomes: 

  0

T

! cos n"
T
t sin n"

T
tdt =

1

2n"
T

sin
2

n"
T
t

#

$
%

&

'
(

0

T

=
T

4n)
sin

2
2)n = 0  

Thus 

  0

T

! cos n"
T
t sin n"

T
tdt = 0  
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3.27 Calculate bn from Example 3.3.1 and show that bn = 0, n = 1,2,…,∞ for the triangular 

force of Figure 3.12.  Also verify the expression an by completing the integration 

indicated.  (Hint:  Change the variable of integration from t to x = 2πnt/T.) 

 

 Solution: From Equation (3.23),

  

b
n

=
2

T
0

T

! F t( )sin n"
T
tdt . Computing the integral yields: 

  

  

b
n

=
2

T
0

T / 2

!
4

T
t "1

#
$%

&
'(

sin n)
T
tdt +

T / 2

T

! 1"
4

T
t "

T

2

#
$%

&
'(

*

+
,

-

.
/sin n)

T
tdt

*

+
,
,

-

.
/
/

b
n

=
2

T

4

T
0

T / 2

! t sin n)
T
tdt "

0

T / 2

! sin n)
T
tdt + 3

T / 2

T

! sin n)
T
tdt "

4

T
T / 2

T

! t sin n)
T
tdt

*

+
,
,

-

.
/
/

 

 

 Substitute 

  
x = n!

T
t =

2"n

T
t  

 

  

  

b
n

=
1

!n

2

!n
0

!n

" x sin xdx #
0

!n

" sin xdx + 3

!n

2!n

" sin xdx #
2

!n
!n

2!n

" x sin xdx
$

%
&
&

'

(
)
)

=
1

!n

2

!n
sin x # xcos x( )

0

!n

+ cos x
0

!n

# 3cos x
!n

2!n

#
2

!n
sin x # xcos x( )

!n

2!n$

%
&

'

(
)

=
1

!n

2

!n
#!ncos!n( ) + cos!n #1# 3+ 3cos!n #

2

!n
#2!n + !ncos!n( )

$

%
&

'

(
)

                            =
1

!n
#2cos!n + 4cos!n # 4 + 4 # 2cos!n$% '( =

1

!n
0$% '( = 0

 

 

 From equation (3.22), 

  

a
n

=
2

T
0

T

! F t( )cos n"
T
tdt  

 

 

  

a
n

=
2

T
0

T / 2

!
4

T
t "1

#
$%

&
'(

cos n)
T
tdt +

T / 2

T

! 1"
4

T
t "

T

2

#
$%

&
'(

*

+
,

-

.
/cos n)

T
tdt

*

+
,
,

-

.
/
/

a
n

=
2

T

4

T
0

T / 2

! t cos n)
T
tdt "

0

T / 2

! cos n)
T
tdt + 3

T / 2

T

! cos n)
T
tdt "

4

T
T / 2

T

! t cos n)
T
tdt

*

+
,
,

-

.
/
/

 

 

 Substitute 

  
x = n!

T
t =

2"n

T
t  

 



3- 41 

  

  

a
n

=
1

!n

2

!n
0

!n

" xcos xdx #
0

!n

" cos xdx + 3

!n

2!n

" cos xdx #
2

!n
!n

2!n

" xcos xdx
$

%
&
&

'

(
)
)

=
1

!n

2

!n
cos x + x sin x( ) # sin x

0

!n

+ 3sin x
!n

2!n

#
2

!n
cos x # sin x( )

!n

2!n$

%
&

'

(
)

=
1

!n

2

!n
cos!n #1( ) #

2

!n
1# cos!n( )

$

%
&

'

(
)

=
2

! 2
n

2
cos!n #1#1+ cos!n$% '(

                                          =
4

! 2
n

2
cos!n #1$% '( =

0 n even

-8

! 2
n

2
n odd

*

+
,

-
,
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3.28 Determine the Fourier series for the rectangular wave illustrated in Figure P3.28. 

 

 Solution: The square wave of period T is described by 

  

  

F t( ) =
1 0 ! t ! "

#1 " ! t ! 2"

$
%
&

 

 Determine the coefficients 
  
a

0
,a

n
,b

n
 from direct integration: 

  

  

a
0

=
2

T
0

T

! F t( )dt

=
2

2"
0

"

! 1( )dt +

"

2"

! #1( )dt
$

%
&
&

'

(
)
)

=
1

"
t

0

"
# t

"

2"
dt$

%&
'
()

=
1

"
" # 2" + "$% '( =

1

"
0( )          * a

0
= 0

 

  

  

a
n

=
2

T
0

T

! F t( )cos n"
T
tdt,  where "

T
=

2#

T
=

2#

2#
= 1

=
2

2#
0

#

! cos ntdt $
#

2#

! cos ntdt
%

&
'
'

(

)
*
*

=
1

#

1

n
sin nt

0

#
$

1

n
sin nt

#

2#%

&
'

(

)
*

=
1

#n
sin n#( ) $ sin n2#( ) + sin n#( )%
&

(
) = 0

 

 

  

b
n

=
2

T
0

T

! F t( )sin"
T
tdt =

2

2#
0

#

! sin ntdt $
#

2#

! sin ntdt
%

&
'
'

(

)
*
*

=
1

#

$1

n
cos nt

0

#
$

1

n
cos nt

#

2#%

&
'

(

)
*=

1

#n
$cos n# + 1$1$ cos n#%& () =

2

#n
1$ cos n#%& ()

 

 If n is even, cosnπ = 1.  If n is odd, cosnπ = -1 

 So, 

  

b
n

=

0 n even

4

!n
n odd

"

#
$

%
$

 

 Thus the Fourier Series collapses to a sine series of the form 
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F t( ) = b
n

n=1

!

" sin nt =
4

n#n=1,3,!

!

" sin nt  

 

 The Vibration Toolbox can also be used: 

 t=0:pi/100:2*pi-pi/100; 

 f=-2*floor(t/pi)+1; 

 vtb3_3(f',t',100) 

 [a,b]=vtb3_3(f',t',100) 

 

 Note that vtb3_3 always gives some error on the order of delta t (.01 in this case). Using a 

smaller delta t reduced the error. 
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3.29 Determine the Fourier series representation of the sawtooth curve illustrated in Figure 

P3.29. 

 

 Solution:  The sawtooth curve of period T is 

  
F t( ) =

1

2!
t 0 " t " 2!  

 Determine coefficients 
  
a

0
,a

n
,b

n
: 

 

  

  

a
0

=
2

T
0

T

! F t( )dt =
2

2"
0

2"

!
1

2"
t

#
$%

&
'(

dt =
1

2" 2

#
$%

&
'(

1

2
t

2

0

2"

=
1

4" 2
4" 2 ) 0*+ ,- = 1

 

 

  

  

a
n

=
2

T
0

T

! F t( )cos n"
T
tdt,  where "

T
=

2#
T

=
2#
2#

= 1

=
2

2#
0

2#

!
1

2#
t

$
%&

'
()

cos ntdt
*

+
,
,

-

.
/
/

=
1

2# 2

0

2#

! t cos ntdt
*

+
,
,

-

.
/
/

=
1

2# 2

1

n
2

cos nt +
1

n
t sin nt

*

+
,

-

.
/

0

2#

=
1

2# 2

1

n
2

101( ) +
1

n
0 0 0( )

*

+
,

-

.
/ = 0

 

 

  

  

b
n

=
2

T
0

T

! F t( )sin n"
T
tdt =

2

2#
0

2#

!
1

2#
t

$
%&

'
()

sin ntdt
*

+
,
,

-

.
/
/

=
1

2# 2

0

2#

! t sin ntdt
*

+
,
,

-

.
/
/

=
1

2# 2

1

n
2

sin nt 0
1

n
t cos nt

*

+
,

-

.
/

0

2#

=
1

2# 2

1

n
2

0 0 0( ) 0
1

n
2# 0 0( )

*

+
,

-

.
/

=
1

2# 2

02#
n

$
%&

'
()

=
01

#n

 

 

 Fourier Series 

  

  

F t( ) =
1

2
+

n=1

!

" #1

$n

%
&'

(
)*

sin nt

F t( ) =
1

2
#

1

$ n=1

!

" 1

n
sin nt
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3.30 Calculate and plot the response of the base excitation problem with base motion specified 

by the velocity 

 

  
   
!y t( ) = 3e

! t / 2
"(t) m/s  

 

 where Φ(t) is the unit step function and m = 10 kg, ζ = 0.01, and k = 1000 N/m.  Assume 

that the initial conditions are both zero. 

 

 Solution: Given: 

  

   

!y t( ) = 3e
! t / 2

µ t( )  m/s

m = 10 kg,  " = 0.01, k = 1000 N/m

x 0( ) = !x 0( ) = 0

 

 

 From Equation (2.61): 

  

   

m!!x + c !x ! !y( ) + k x ! y( ) = 0

m!!x + c!!x + kx = c!y + ky
 

 Integrate by parts to find y(t): 

  
   
y t( ) = ! !y t( )dt = 3e

" t / 2
µ t( )dt  

 Let 

  

  

u = µ t( ) dv = 3e
! t / 2

dt

du = " t( )dt v = !6e
! t / 2

 

 When 

  
  
t > 0,µ t( ) = 1,   so  y t( ) = 6 1! e

!1/ 2

( )  

 

 So, 
   
m!!x + c !x + kx = c 3e

! t / 2

( ) + 6k 1! e
t / 2

( )  

 

 Since 
  c = 2! km = 2 kg/s,  

     10!!x + 2 !x + 1000x = 6000 ! 5994e
! t / 2

 

 

 The solution is given by equation (3.13): 
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x t( ) =
1

m!
d

e
"#!

n
t

0

t

$ F %( )e
#!

n
%

sin!
d

t " %( )&
'

(
)d%

!
n

=
k

m
= 10 rad/s

!
d

= !
n

1"# 2
= 10 rad/s

F t( ) = 6000 " 5994e
" t / 2

x t( ) =
1

100
e
"0.1t

0

t

$ 6000 " 5994e
"% / 2

( )e
0.1%

sin 10 t " %( )( )&
'

(
)d%

x t( ) = 60e
"0.1t

0

t

$ e
0.1t

sin 10 t " %( )&' ()d% "
0

t

$ e
"0.4t

sin 10 t " %( )&' ()d%
*
+
,

-,

.
/
,

0,

 

 

 After integrating and rearranging 

 

  
  
x t( ) = 6 ! 5.979e

! t / 2
! 0.0295cos10t ! 0.2990sin10t  m  
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3.31 Calculate and plot the total response of the spring-mass-damper system of Figure 2.1 with 

m = 100 kg, ζ = 0.1 and k = 1000 N/m to the signal of Figure 3.12, with maximum force 

of 1 N.  Assume that the initial conditions are zero and let T = 2π s. 

  
 Solution:  Given:  

   

m = 100 kg, k = 1000 N/m,! = 0.1,T = 2" s,  F
max

= 1N ,

x 0( ) = !x 0( ) = 0,   #
n

=
k

m
= 3.16 rad/s,  #

d
= # 1$! 2

= 3.15 rad/s,    #
T

=
2"

T
= 1 rad/s

 

 From example 3.3.1 and Figure 3.10, 

  

  

F t( )
n=1

!

" a
n
cos nt, a

n
=

0 n even

-8

# 2
n

2
n odd

$

%
&

'
&

 

 So, 

   

m!!x + c !x + kx = a
n

n=1

!

" cos nt n odd( )  

 The total solution is 

  

  

x t( ) = x
h

t( ) +

n=1

!

" x
cn

t( ) n odd( )  

 From equation (3.33), 

  

  

x
cn

t( ) =
a

n
/ m

!
n

2 " n!
T( )

2#
$%

&
'(

2

+ 2)!
n
n!

T
#$ &'

2#

$
%

&

'
(

1/ 2
cos n!

T
t "*

n( )

*
n

= tan
"1

2)!
n
n!

T

!
n

2 " n
2!

T

2

+

,
-

.

/
0 = tan

"1
(
0.6325n

10 " n
2

)

x
cn

t( ) =
"0.00811

n
2

n
4 "19.6n

2
+ 100#$ &'

1/ 2
cos nt " tan

"1
0.6325n

10 " n
2

+
,-

.
/0

#

$
%

&

'
(
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 So,

   

x t( ) = Ae
!"

n
t
sin "

d
t #$( ) +

n=1

%

& #0.00811

n
2

n
4 #19.6n

2
+ 100'( )*

1/ 2
cos nt # tan

#1
0.6325n

10 # n
2

+
,-

.
/0

'

(
1

)

*
2

'

(

1
1
1

)

*

2
2
2

  n odd( )

!x t( ) = #!"
n
Ae

#!"
n
t
sin "

d
t #$( )

      +"
d
Ae

#!"
n
t
cos "

d
t #$( ) +

n=1

%

& 0.00811

n n
4 #19.6n

2
+ 100'( )*

1/ 2
sin nt # tan

#1
0.6325n

10 # n
2

'

(

1
1
1

)

*

2
2
2

(n odd)

x 0( ) = 0 = #Asin$ +

n=1

%

& #0.00811

n
2

n
4 #19.6n

2
+ 100'( )*

1/ 2
cos nt # tan

#1
0.6325n

10 # n
2

+
,-

.
/0

'

(
1

)

*
2

'

(

1
1
1

)

*

2
2
2

  n odd( )

  

 

   

0 = !Asin" ! 0.00110

!x 0( ) = 0 = #$
n
Asin" +$

d
Acos"

+

n=1

%

& !0.000569

n
4 !19.6n

2
+ 100'( )*

1/ 2

0.00493n
2

+ 1'( )*

'

(

+
+
+

)

*

,
,
,

n odd( )

0 = #$
n
Asin" +$

d
Acos" ! 0.001186

 

 

 So A  = 0.00117  m and θ = - 1.232 rad. 

 

 The total solution is: 

 

  

  

x t( ) = 0.00117e
!0.316t

sin 3.15t + 1.23( )

+

n=1

"

# !0.00811

n
2

n
4 !19.6n

2
+ 100$% &'

1/ 2
cos nt ! tan

!1
0.6325n

10 ! n
2

(
)*

+
,-

$

%
.

&

'
/

$

%

.

.

.

&

'

/
/
/

 m n odd( )
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3.32 Calculate the total response of the system of Example 3.3.2 for the case of a base motion 

driving frequency of ωb = 3.162 rad/s. 

 

 Solution:  Let ωb = 3.162 rad/s. From Example 3.3.2, 

 

  
  
F t( ) = cY!

b
cos!

b
t + kY sin!

b
t = 1.581cos 3.162t( ) + 50sin 3.162t( )  

 

 Also, 

  

  

!
n

=
k

m
= 31.62 rad/s and " =

c

2 km
= 0.158

!
d

= !
n

1#" 2
= 31.22 rad/s

 

 

 The solution is 

 

  

  

x t( ) = Ae
!"#

n
t
sin #

d
t +$( ) +#

n
Y

#
n

2
+ 2"#

b( )
2

#
n

2 !#
b

2

( )
2

+ 2"#
n
#

b( )
2

%

&

'
'
'

(

)

*
*
*

1/ 2

cos #
b
t !+

1
!+

2
( )

x t( ) = Ae
!5t

sin 31.22t +$( ) + 0.0505cos 3.162t !+
1
!+

2
( )

+
1

= tan
!1

2"#
n
#

b

#
n

2 !#
b

2

,

-
.

/

0
1 = 0.0319 rad

+
2

= tan
!1

#
n

2"#
b

,

-.
/

01
= 1.54 rad

 

 

 So, 

 

   

x t( ) = Ae
!5t

sin 31.22t +"( ) + 0.0505cos 3.162t !1.57( )

!x t( ) = !5Ae
!5t

sin 31.22t +"( ) + 31.22Ae
!5t

cos 31.22t +"( ) ! 0.16sin 3.162t !1.57( )

        # x 0( ) = 0.01 = Asin" + 0.0505 0( )

        # !x 0( ) = 3! 5Asin" + 31.22Acos" + 0.16 1( )

 

 

 So,   A = 0.0932 m and ! = 0.107 rad   

  

 The total solution is 

 

  
  
x t( ) = 0.0932e

!5t
sin 31.22t + 0.107( ) + 0.0505cos 3.162t !1.57( )  m  
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Problems and Solutions for Section 3.4 (3.35 through 3.38) 
 

3.35 Calculate the response of 

  
   
m!!x + c !x + kx = F

0
!(t)  

 where Φ(t) is the unit step function for the case with x0 = v0 = 0.  Use the Laplace 

transform method and assume that the system is underdamped. 

 

 Solution: 
 

 Given: 

  

   

m!!x + c !x + kx = F
0
µ(t)

!!x + 2!"
n
!x +"

n

2
x =

F
0

m
µ(t)               (! < 1)

 

 

 Take Laplace Transform: 

 

  

  

s
2
X (s) + 2!"

n
sX (s) +"

n

2
X (s) =

F
0

m

1

s

#
$%

&
'(

X (s) =
F

0
/ m

s
2

+ 2!"
n
s +"

n

2

( )s
=

F
0

m"
n

2

#

$
%

&

'
(

"
n

2

s s
2

+ 2!"
n
s +"

n

2

( )

 

 

 Using inverse Laplace tables, 

 

  

  

x(t) =
F

0

k
!

F
0

k 1!" 2

e
!"#

n
t
sin #

n
1!" 2

t + cos
!1

(" )( )  
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3.36 Using the Laplace transform method, calculate the response of the system of 

Example 3.4.4 for the overdamped case (ζ > 1).  Plot the response for m = 1 kg, k 

= 100 N/m, and ζ = 1.5. 

 

 Solution: 
 

 From example 3.4.4, 

 

  

   

m!!x + c !x + kx = ! (t)

!!x + 2"#
n
!x +#

n

2
x =

1

m
! (t)               (" > 1)

 

 

 Take Laplace Transform: 

 

  

  

s
2
X (s) + 2!"

n
sX (s) +"

n

2
X (s) =

1

m

X (s) =
1 / m

s
2

+ 2!"
n
s +"

n

2
=

1 / m

(s + a)(s + b)

 

 

 Using inverse Laplace tables,
  
a = !"#

n
+#

n
" 2 !1 ,  b = !"#

n
!#

n
" 2 !1   

 

  

  

x(t) =
e
!"#

n
t

2m#
n
" 2 !1

e
#

n
" 2 !1t ! e

!#
n

" 2 !1t$
%&

'
()

 

 

 Inserting the given values yields:  

  
x(t) =

e
!15t

22.36
e

11.18t ! e
!11.18t"

#
$
%  m  
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3.37 Calculate the response of the underdamped system given by 

  
   
m!!x + c !x + kx = F

0
e
!at

 

 using the Laplace transform method.  Assume a > 0 and that the initial conditions 

are all zero. 

 

 Solution: 
 

 Given: 

 

  
   
m!!x + c !x + kx = F

0
e
!at

           a > 0,   initial conditions = 0  

 

 Rewrite: 

 

  

   
!!x + 2!"

n
!x +"

n

2
x =

F
0

m
e
#at

 

 

 Take Laplace Transform: 

 

  

  

s
2
X (s) + 2!"

n
sX (s) +"

n

2
X (s) =

F
0

m

1

s + a

#
$%

&
'(

X (s) =
F

0
/ m

s
2

+ 2!"
n
s +"

n

2

( )(s + a)

 

 

 For an underdamped system, the inverse Laplace Transform is 

 

  

  

x(t) =
F

0

m 2!"
n
a #"

n

2 # a
2

( )

$

%
&
&

'

(
)
)

e
#!"

n
t !"

n
# a

"
d

sin("
d
t) + cos("

d
t)

*

+
,

-

.
/ # e

#at
0
1
2

32

4
5
2

62
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3.38 Solve the following system for the response x(t) using Laplace transforms: 

  
   100!!x(t) + 2000x(t) = 50! (t)  

 where the units are in Newtons and the initial conditions are both zero. 

 

 Solution: 
 

 First divide by the mass to get 

 

  
   
!!x + 20x(t) = 0.5! (t)  

 

 Take the Laplace Transform to get 

 

  
  (s

2
+ 20)X (s) = 0.5  

 

 So 

 

  

  
X (s) =

0.5

s
2

+ 20
 

 

 Taking the inverse Laplace Transform using entry 5 of Table 3.1 yields 

 

  

  

X (s) =
0.5

20

!
"

s
2

+"
2

   where " = 20

# x(t) =
1

4 5

sin 20t
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Problems and Solutions Section 3.5 (3.39 through 3.42) 
 

3.39 Calculate the mean-square response of a system to an input force of constant PSD, S0, 

and frequency response function 

  

H !( ) =
10

3+ 2 j!( )
 

 

 Solution: 
 

 Given: 

  

S
ff

= S
0
 and H !( ) =

10

3+ 2 j!
 

 

 The mean square of the response can be found from Eqs (3.66) and (3.68): 

 

  

  

x
2

= E x
2!

"
#
$ =

%&

&

' H (( )
2

S
ff
(( )d(

x
2

= S
0

%&

&

'
10

3+ 2 j(

2

d(

 

 Using Eq. (3.67) yields 

 

  

  
x

2
=

50!S
0

3
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3.40 Consider the base excitation problem of Section 2.4 as applied to an automobile model of 

Example 2.4.1 and illustrated in Figure 2.16.  In this problem let the road have a random 

stationary cross section producing a PSD of S0.  Calculate the PSD of the response and 

the mean-square value of the response. 

 

 Solution: Given: 
  
S

ff
= S

0
 

 From example 2.4.1: 
  m = 1007 kg, c = 2000 kg/s, k = 40,000 N/m  

  

   

! =
c

2 km
=

2000

2 40000i1007

= 0.157      (underdamped)  

 

 So, 

  

  

H !( ) =
1

k " m!
2

+ jc!
=

1

4 #10
4
"1007!

2
+ 2000 j!

H !( )
2

=
1

4 #10
4
"1007!

2

( )
2

+ 2000( )
2

j!
2

H !( )
2

=
1

1.01#10
6
!

4
" 4.06 #10

7
!

2
+ 1.6 #10

9

 

 

 The PSD is found from equation (3.62): 

 

  

  

S
xx

!( ) = H !( )
2

S
ff
!( )

S
xx

!( ) =
1

1.01"10
6
!

4
# 8.46 "10

7
!

2
+ 1.6 "10

9

 

 

 The mean square value is found from equation (3.68): 

 

  

  

x
2

= E x
2!

"
#
$ =

%&

&

' H (( )
2

S
ff
(( )d(

x
2

= S
0

%&

&

'
1

4 )10
4 %1007( 2

+ 2000 j(

2

d(

 

 

 Using equation (3.70) yields 

 

  

  
x

2
=

!S
0

8 "10
10
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3.41 To obtain a feel for the correlation functions, compute autocorrelation Rxx(τ) for the 

deterministic signal Asinωnt. 

 

 Solution: The autocorrelation is found from 

   

R
xx

(! ) = lim
T"#

1

T
Asin($

n
t)Asin

%T

2

T

2

& ($
n
(t + ! ))dt

          = lim
T"#

A
2

T
sin($

n
t)sin

%T

2

T

2

& ($
n
t)cos($

n
! )dt

                                       + lim
T"#

A
2

T
sin($

n
t)cos

0

T

& ($
n
t)sin($

n
! )dt

"0

! "###### $######

 

 Simplifying yields: 

 

  
R

xx
(! ) =

A
2
cos("

n
! )

2
 

  

 

 

3.42 Verify that the average  x ! x  is zero by using the definition given in equation (3.47). 

 

 Solution: 
 

 The definition is 

  

f = lim
T!"

1

T
0

T

# f t( )dt.   Let 

 

  

  

f (t) = x t( ) ! x ,    

             so that     f = lim
T"#

1

T
0

T

$ x t( ) ! x( )dt

            f = lim
T"#

1

T
x(t)

0

T

$ dt ! lim
T"#

1

T
x

0

T

$ dt

              = x ! x lim
T"#

1

T
dt

0

T

$ = x ! x = 0
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Problems and Solutions Section 3.6 (3.43 through 3.44) 
 
3.43 A power line pole with a transformer is modeled by 

 

  
  m
!!x + kx = ! !!y  

 

 where x and y are as indicated in Figure 3.23.  Calculate the response of the relative 

displacement (x – y) if the pole is subject to an earthquake base excitation of (assume the 

initial conditions are zero) 

 

  

   

!!y t( ) =
A 1!

t

t
0

"

#$
%

&'
0 ( t ( 2t

0

0 t > 2t
0

)

*
+

,
+

 

 

 

 Solution: Given: 
  m
!!x + kx = ! !!y  

  

   

!!y =
A 1!

t

t
0

"

#$
%

&'
0 ( t ( 2t

0

0 t > 2t
0

)

*
+

,
+

x 0( ) = !x 0( ) = 0

 

 

 The response x(t) is given by Eq. (3.12) as 

 

  

  

x t( ) =

0

t

! F "( )h t # "( )d"  

 

 where 

  

h t ! "( ) =
1

m#
n

sin#
n

t ! "( )  for an undamped system 

 

 For 
  
0 ! t ! 2t

0
,  
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x t( ) = A 1!
"
t
0

#

$%
&

'(
1

m)
n

#

$%
&

'(
sin)

n
t ! "( )d"

0

t

*

x t( ) =
A

m)
n

2
1!

t

t
0

+
1

t
0
)

n

sin)
n
t ! cos)

n
t

+

,
-

.

/
0

 

 For t>2t0, 

 

  

  

x t( ) = A 1!
"
t
0

#

$%
&

'(
1

m)
n

#

$%
&

'(
sin)

n
t ! "( )d"

0

2t
0

*

x t( ) =
A

m)
n

2

1

t
0
)

n

sin)
n
t ! sin)

n
t ! 2t

0
( )( ) ! cos)

n
t ! cos)

n
t ! 2t

0
( )

+

,
-

.

/
0

 

 

 Find y(t) when
  
0 ! t ! 2t

0
, 

 

  

   

!!y t( ) = A 1!
t

t
0

"

#$
%

&'

!y t( ) = At !
A

2t
0

t
2

+ C
1

y t( ) =
A

2
t

2 !
A

6t
0

t
3
+ C

1
t + C

2

 

 

 Using IC's yields C1 = C2 = 0.  Find y(t) when t > wt0: 

 

  

   

!!y t( ) = 0

!y t( ) = C
3

y t( ) = C
3
t + C

4

 

 

 Using IC's yields C3 = C4 =0. The relative displacement x(t) – y(t) is therefore: 

 

 For 
  
0 ! t ! 2t

0
 

  

  

x t( ) ! y t( ) =
A

m"
n

2
1!

t

t
0

+
1

t
0
"

n

sin"
n
t ! cos"

n
t

#

$
%

&

'
( !

A

2
t

2
+

A

6t
0

t
3
 

 For t > 2t0, 

 

  

  

x t( ) ! y t( ) =
A

m"
n

2

1

t
0
"

n

sin"
n
t ! sin"

n
t ! 2t

0
( )( ) ! cos"

n
t ! cos"

n
t ! 2t

0
( )

#

$
%

&

'
(  
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3.44 Calculate the response spectrum of an undamped system to the forcing function 

  

  

F t( ) =

F
0
sin

!t

t
1

0 " t " t
1

0 t > t
1

#

$
%

&
%

 

 assuming the initial conditions are zero. 

 

 Solution: Let
  
! = " / t

1
.  The solution is the homogeneous solution xh(t) and the 

particular solution 
  
x

p
t( )   or x t( ) = x

h
t( ) + x

p
t( ).   Thus 

  

  

x t( ) = Acos!
n
t + Bsin!

n
t +

F
0

k " m! 2

#

$%
&

'(
sin!t  

 where A and B are constants and ωn is the natural frequency of the system: 

 Using the initial conditions 
   
x 0( ) = !x 0( ) = 0  the constants A and B are 

  

  

A = 0, B =
!F

0
"

"
n

k ! m"
2

( )
 

 so that 

  

x t( ) =
F

0
/ k

1! " /"
n( )

2
sin"t !

"

"
n

sin"
n
t

#
$
%

&%

'
(
%

)%
, 0 * t * t

1
 

 Which can be written as (where 
  
! = F

0
/ k  the static deflection) 

  

  

x t( )

!
=

1

1"
#
2t

1

$

%&
'

()

2
sin

*t

t
1

"
#
2t

1

sin
2*t

#

+
,
-

.-

/
0
-

1-
, 0 2 t 2 t

1
 

 and where
  
! = 2" /#

n
.  After t1 the solution is a free response 

  
  
x t( ) = A 'cos!

n
t + B 'sin!

n
t, t > t

1
 

 where the constants A' and B' can be found by using the values of x(t = t1) and 

   
!x t = t

1
( ), t > t

0
.   This gives 

  

   

x t = t
1

( ) = a !
"

2t
1

sin
2#t

1

"

$

%
&

'

(
) = A 'cos*

n
t
1
+ B 'sin*

n
t
1

!x t = t
1

( ) = a !
#

t
1

!
#

t
1

cos
2#t

1

"

+
,
-

.-

/
0
-

1-
= !*

n
A 'sin*

n
t
1
+*

n
B 'cos*

n
t

 

 where 

  

  

a =
!

1"
#
2t

1

$

%&
'

()

2
 

 These are solved to yield    
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A ' =
a!

"
n
t
1

sin"
n
t
1
,    B ' = #

a!

"
n
t
1

1+ cos"
n
t
1

$% &'  

 So that after t1 the solution is 

  

  

x t( )

!
=

" / t
1

( )

2 1# " / 2t
1

( )
2

{ }
sin2$

t
1

"
#

t

"
%

&'
(

)*
# sin2$

t

"

+

,
-
-

.

/
0
0
, t 1 t

1
 



3- 61 

Problems and Solutions for Section 3.7 (3.45 through 3.52) 
 

3.45 Using complex algebra, derive equation (3.89) from (3.86) with s = jω. 

 

 Solution: From equation (3.86): 

 

  

  
H s( ) =

1

ms
2

+ cs + k
 

 

 Substituting  s = j!  yields 

 

  

  

H j!( ) =
1

m j!( )
2

+ c j!( ) + k

=
1

k " m!
2
" cj!

 

 

 The magnitude is given by 

 

  

  

H j!
dr( ) =

1

m j!( )
2

+ cj!( ) + k

"

#
$
$

%

&
'
'

=
1

k ( m! 2 ( cj!

"

#
$

%

&
'

)

*

+
+
+

,

-

.

.

.

1/ 2

 

  

  

H j!( ) =
1

k " m!
2

( )
2

+ c!( )
2

which is Eq. (3.89) 

 

3.46 Using the plot in Figure 3.20, estimate the system’s parameters m, c, and k, as well as the 

natural frequency. 

 

 Solution: From Fig. 3.20 

 

  

  

1

k
= 2 ! k = 0.5

" = "
n

= 0.25 =
k

m
! m = 8

1

c"
# 4.6 ! c = 0.087
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3.47 Using the values determined in Problem 3.46 plot the inertance transfer function's 

magnitude and phase for this system.  

 

 Solution: From Problem 3.46 

  

  

1

k
= 2 ! k = 0.5," = "

n
= 0.25 =

k

m
! m = 8,

1

c"
# 4.6 ! c = 0.087  

 

 The inertance transfer function is given by Eq. (3.88): 

 

  

  
s

2
H s( ) =

s
2

ms
2

+ cs + k
 

 

 Substitute  s = j!  to get the frequency response function.  The magnitude is given by: 

 

  

  

j!( )
2

H j!( ) =
!

2

k " m!
2

( )
2

+ c!( )
2

=
!

2

0.5" 8!
2

( )
2

+ 0.087!( )
2

 

 

 The phase is given by 

 

  

 

! = tan
-1

Imaginary part of frequency response function

Real part of frequency response function

"
#$

%
&'

 

 

 Multiply the numerator and denominator of 
  

j!( )
2

H j!( )  by k " m!
2

( ) " cj!  to get 

 

  

  

j!( )
2

H j!( ) =
"!

2
k " m!( ) + cj!

3

k " m!
2

( )
2

+ c!( )
2

 

 

 So, 

  

! = tan
"1

c# 3

"# 2
k " m# 2

( )

$

%
&
&

'

(
)
)

= tan
"1

0.087#
8# 2 " 0.5

$
%&

'
()

 

 

 The magnitude and phase plots are shown on a semilog scale.  The plots are given in the 

following Mathcad session 
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3.48 Using the values determined in Problem 3.46 plot the mobility transfer function's 

magnitude and phase for the system of Figure 3.20. 

 

 Solution: From Problem 3.46 

  

  

1

k
= 2 ! k = 0.5," = "

n
= 0.25 =

k

m
! m = 8,

1

c"
# 4.6 ! c = 0.087    

 

 The mobility transfer function is given by equation (3.87): 

 

  

  
sH s( ) =

s

ms
2

+ cs + k
 

 

 Substitute  s = j!  to get the frequency response function.  The magnitude is given by 

 

  

  

j!( ) H j!( ) =
!

k " j!
2

( )
2

+ c!( )
2

=
!

0.5" 8!
2

( )
2

+ 0.087!( )
2

 

 

 The phase is given by 

 

  

 

! = tan
-1

Imaginary part of frequency response function

Real part of frequency response function

"
#$

%
&'

 

 

 Multiply the numerator and denominator of 
 
j!H j!( )  by j and by 

  
! k ! m"

2

( ) j ! c"  to 

get 

 

  

  

j!( ) H j!( ) =

j! k " m!
2

( ) + c!
2

k " m!
2

( )
2

+ c!( )
2

 

 

 So, 

  

! = tan
"1

# k " m# 2

( )

c# 2

$

%
&
&

'

(
)
)

= tan
"1

0.5" 8# 2

0.087#

$

%
&

'

(
)  

 

 The magnitude and phase plots are shown on a semilog scale. 
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3.49 Calculate the compliance transfer function for a system described by 

 

  
  
a!!!x + b!!!x + c!!x + d !x + ex = f t( )  

 

 where f(t) is the input force and x(t) is a displacement. 

 

 Solution: 

   The compliance transfer function is 

  

X s( )

F s( )
.  

 

 Taking the Laplace Transform yields 

 

  
  

as
4

+ bs
3
+ cs

2
+ ds + e( ) X s( ) = F s( )  

 

 So, 

  

X s( )

F s( )
=

1

as
4

+ bs
3
+ cs

2
+ ds + e
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3.50 Calculate the frequency response function for the compliance of Problem 3.49. 

 
 Solution: From problem 3.49, 

  

  
H s( ) =

1

as
4

+ bs
3
+ cs

2
+ ds + e

 

 Substitute  s = j!  to get the frequency response function: 

  

  

H j!( ) =
1

a j!( )
4

+ b j!( )
3

+ c j!( )
2

+ d j!( ) + e

H j!( ) =

a!
4
" c!

2
+ e " j "b!

3
+ d!( )

a!
4
" c!

2
+ e( )

2

+ "b!
3
+ d!( )

2

 

 

3.51 Plot the magnitude of the frequency response function for the system of Problem 3.49 for 

    a = 1,b = 4,c = 11,d = 16,  and e = 8. 

 

 Solution: From Problem 3.50 

  

H j!( ) =

a!
4
" c!

2
+ e " j "b!

3
+ d!( )

a!
4
" c!

2
+ e( )

2

+ "b!
3
+ d!( )

2
 

 The magnitude is 

  

H ( j! ) =
1

(!
4
"11!

2
+ 8)

2
+ ("4!

3
+ 16! )

2

 

 This is plotted in the following Mathcad session: 
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3.52 An experimental (compliance) magnitude plot is illustrated in Fig. P3.52.  Determine 

  ! ," ,c,m,  and k.  Assume that the units correspond to m/N along the vertical axis. 

 

 Solution: Referring to the plot, it starts at  

  
H (! j) =

1

k
 

 Thus: 

  
0.05 =

1

k
! k = 20 N/m  

 At the peak, ωn = ω = 3 rad/s.  Thus the mass can be determined by 

  

m =
k

!
n

2
" m = 2.22 kg  

 The damping is found from 

  

1

c!
= 0.11" c = 3.03 kg/s "#=

c

2 km
=

3.03

2 20 $2.22

= 0.227  
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Problems and Solutions Section 3.8 (3.53 through 3.56) 
 

3.53 Show that a critically damped system is BIBO stable. 

 

 Solution: 
 

 For a critically damped system 

 

  

  
h t ! "( ) =

1

m
t ! "( )e

!#
n

t!"( )
 

 

 Let f(t) be bounded by the finite constant M.  Using the inequality for integrals and 

 Equation (3.96) yields: 

 

  

  

x t( ) ! f (" )

0

t

# h t $ "( ) d" = M

0

t

#
1

m
t $ "( )e

$%
n

t$"( )
d"  

 

 The function h(t – τ) decays exponentially and hence is bounded by some constant times 

1/t, say M1/t.  This is just a statement the exponential decays faster then “one over t” 

does. Thus the above expression becomes; 

  

x(t) < M
M

1

t
0

t

! d" = MM
1
 

 

 This is bounded, so a critically damped system is BIBO stable. 
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3.54 Show that an overdamped system is BIBO stable. 

 

 Solution: For an overdamped system, 

 

  

  

h t ! "( ) =
1

2m#
n

$ 2 !1

e
!$#

n
t!"( )

e
#

n
$ 2 !1

%
&'

(
)* t!"( )

! e
! #

n
$ 2 !1

%
&'

(
)* t!"( )%

&'
(

)*
 

 

 Let f(t) be bounded by M, 

 

 From equation (3.96), 

 

  

  

x t( ) ! M

0

t

" h t # $( ) d$

x t( ) ! M

0

t

"
1

2m%
n
& 2 #1

e
#&%

n
t#$( )

e
%

n
& 2 #1

'
()

*
+, t#$( )

# e
# %

n
& 2 #1

'
()

*
+, t#$( )'

()
*

+,
d$

 

 

  

  

x t( ) !
M

2m"
n
# 2 $1

$1

"
n
# 2 $1 $#"

%

&
'
'

(

)
*
*

1$ e
"

n
# 2 $1$#"

n

%
&'

(
)* t%

&'
(

)*
+

,

-
-

                                      $
$1

"
n
# 2 $1 +#"

n

%

&
'
'

(

)
*
*

1$ e

"n #2$1$#"n

%
&'

(
)*

t%

&
'

(

)
*
.

/

0
0

 

 

  

 Since 
  
!

n
" 2 #1 #"!

n
< 0,  then   1! e

"n #2!1!#"n

$
%&

'
()

t

 is bounded. 

 

 Also, since -
  
!

n
" 2 #1 #"!

n
< 0,  then   1! e

"n #2!1!#"n

$
%&

'
()

t

 is bounded. 

 

 Therefore, an overdamped system is BIBO stable. 
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3.55 Is the solution of    2!!x + 18x = 4cos2t + cos t  Lagrange stable? 

 

 Solution: Given 

  

   

2!!x + 18x = 4cos2t + cos t

!
n
=

k

m
= 3

 

 

 The total solution will be 

 

  
  
x t( ) = x

h
t( ) + x

P1
t( ) + x

P2
t( )  

 

 From Eq. (1.3): 
  
x

h
t( ) = Asin !

n
t + "( )  

 

 From Eq. (2.7): 

  

x
P1

t( ) =

f
0

1

!
n

2
"2

2
cos2t  

 

 and 

  

x
P2

t( ) =

f
0

2

!
n

2
"1

2
cos t  

 

 Adding the solutions yields 

 

  

  

x t( ) = Asin 3t + !( ) +

f
0

1

3
2 " 2

2
cos2t +

f
0

1

3
2 "1

2
cos t < M  

 

 Since 3 ! 2,3 ! 1, and the homogeneous solution is marginally stable, this system is 

Lagrange stable. 
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3.56 Calculate the response of equation (3.99) for 
  
x

0
= 0,v

0
= 1 for the case that a = 4 and b = 

0.  Is the response bounded? 

 

 Solution: Given:
  
x

0
= 0,v

0
= 1,a = 4,b = 0 .  From Eq. (3.99), 

 

     !!x + !x + 4x = ax + b !x = 4x  

 

 So,    !!x + !x = 0  

 

 Let 

  

   

x t( ) = Ae
!t

!x t( ) = !Ae
!t

!!x t( ) = !
2
Ae

!t

 

 

 Substituting, 

  

  

!
2
Ae

!t
+ !Ae

!t
= 0

!
2

+ ! = 0

 

 

 So, 
 
!

1,2
= 0,"1  

 

 The solution is 

 

  

   

x t( ) = A
1
e
!

1
t
+ A

2
e
!

2
t
= A

1
+ A

2
e
" t

!x t( ) = "A
2
e
"1

x 0( ) = 0 = A
1
+ A

2

!x 0( ) = 1 = "A
2

 

 

 So, 
  
A

1
= 1 and A

2
= !1 

 

 Therefore, 

 

  
  
x t( ) = 1! e

!1
 

 

 Since
  
x t( ) = 1! e

! t
1, the response is bounded. 

 



3- 72 

Problems and Solutions from Section 3.9 (3.57-3.64) 

 

3.57*.  Numerically integrate and plot the response of an underdamped system 

determined by m = 100 kg, k = 1000 N/m, and c = 20 kg/s, subject to the initial 

conditions of x0 = 0 and v0 = 0, and the applied force F(t) = 30Φ(t -1).  Then plot the 

exact response as computed by equation (3.17).  Compare the plot of the exact solution to 

the numerical simulation. 

 

Solution: First the solution is presented in Mathcad: 

 

 

The Matlab code to provide similar plots is given next: 
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%Numerical Solutions  
%Problem #57 
clc 
clear 
close all 
%Numerical Solution 
x0=[0;0]; 
tspan=[0 15]; 
 
[t,x]=ode45('prob57a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #57'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
m=100; 
c=20; 
k=1000; 
F=30; 
w=sqrt(k/m); 
d=c/(2*w*m); 
wd=w*sqrt(1-d^2); 
to=1; 
phi=atan(d/sqrt(1-d^2)); 
 
%for t<to 
t=linspace(0,1,3); 
x=0.*t; 
plot(t,x,'*'); 
 
%for t>=to 
t=linspace(1,15); 
x=F/k-F/(k*sqrt(1-d^2)).*exp(-d.*w.*(t-to)).*cos(wd.*(t-to)-phi); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
 
%M-file for Prob #50 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
m=100; 
c=20; 
k=1000; 
F=30; 
 
if t<1 
   dx==0; 
   else 
 dx(1)=x(2); 
   dx(2)=-c/m*x(2) - k/m*x(1) + F/m; 
end 
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3.58*.  Numerically integrate and plot the response of an underdamped system 

determined by m = 150 kg, and k = 4000 N/m subject to the initial conditions of x0 = 0.01 

m and v0 = 0.1 m/s, and the applied force F(t) = F(t) = 15Φ(t -1), for various values of the 

damping coefficient.  Use this “program” to determine a value of damping that causes the 

transient term to die out with in 3 seconds.  Try to find the smallest such value of 

damping remembering that added damping is usually expensive. 

 

Solution: First the solution is given in Mathcad followed by the equivalent Matlab code. 

 

 

 

A value of c = 710 kg/s will do the job.  
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%Vibrations 
%Numerical Solutions  
%Problem #51 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0.01;0]; 
tspan=[0 15]; 
 
[t,x]=ode45('prob51a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #51'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
m=150; 
c=0; 
k=4000; 
F=15; 
w=sqrt(k/m); 
d=c/(2*w*m); 
wd=w*sqrt(1-d^2); 
to=1; 
phi=atan(d/sqrt(1-d^2)); 
 
 
 
%for t<to 
t=linspace(0,1,10); 
x0=0.01; 
v0=0; 
A=sqrt(v0^2+(x0*w)^2)/w; 
theta=pi/2; 
x=A.*sin(w.*t + theta); 
plot(t,x,'*') 
 
%for t>=to 
t=linspace(1,15); 
x2=F/k-F/(k*sqrt(1-d^2)).*exp(-d.*w.*(t-to)).*cos(wd.*(t-to)-phi); 
x1=A.*sin(w.*t + theta); 
 
x=x1+x2; 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
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%M-file for Prob #51 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
m=150; 
c=0; 
k=4000; 
F=15; 
 
 
if t<1 
   dx(1)=x(2); 
   dx(2)=-c/m*x(2)- k/m*x(1); 
   else 
 dx(1)=x(2); 
   dx(2)=-c/m*x(2) - k/m*x(1)+ F/m; 
end 
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3.59*.  Solve Example 3.3.2, Figure 3.9 by numerically integrating rather then using 

analytical expressions, and plot the response. 

 

Solution:  Both Mathcad and Matlab solutions follow: 

 
%Numerical Solutions  
%Problem #53 
clc 
clear 
close all 
%Numerical Solution 
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x0=[0;0]; 
tspan=[0 10]; 
 
[t,x]=ode45('prob53a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #53'); 
xlabel('Time, sec.'); 
ylabel('Displacement, mm'); 
hold on 
 
%Analytical Solution 
t1=0.2; 
t2=0.6; 
 
%for t<to 
t=linspace(0,t1); 
x=2.5*t-4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
 
%for t1<t<t2 
t=linspace(t1,t2); 
x=0.75 - 1.25.*t + 6.84.*sin(0.548*(t-t1))- 4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
 
%for t2<t 
t=linspace(t2,10); 
x=6.84.*sin(0.548.*(t-t1))-2.28.*sin(0.548.*(t-t2))-
4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #52 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
m=1; 
c=10; 
k=1000; 
Y=0.05; 
wb=3; 
 
a=c*Y*wb; 
b=k*Y; 
alpha=atan(b/a); 
AB=sqrt(a^2+b^2)/m; 
 
dx(1)=x(2); 
dx(2)=-c/m*x(2)- k/m*x(1)+ a/m*cos(wb*t) + b/m*sin(wb*t); 
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3.60*.  Numerically simulate the response of the system of Problem 3.21 and plot the 

response. 

 

Solution: The solution in Matlab is 

%Clay 
%Vibrations 
%Numerical Solutions  
%Problem #53 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0;0]; 
tspan=[0 10]; 
 
[t,x]=ode45('prob53a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #53'); 
xlabel('Time, sec.'); 
ylabel('Displacement, mm'); 
hold on 
 
%Analytical Solution 
 
t1=0.2; 
t2=0.6; 
 
%for t<to 
t=linspace(0,t1); 
x=2.5*t-4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
 
%for t1<t<t2 
t=linspace(t1,t2); 
x=0.75 - 1.25.*t + 6.84.*sin(0.548*(t-t1))- 4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
 
%for t2<t 
t=linspace(t2,10); 
x=6.84.*sin(0.548.*(t-t1))-2.28.*sin(0.548.*(t-t2))-
4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
 
%Clay 
%Vibrations 
%Solutions 
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%M-file for Prob #53 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=5000; 
k=1.5e3; 
ymax=0.5; 
F=k*ymax; 
t1=0.2; 
t2=0.6; 
 
if t<t1 
   dx(1)=x(2); 
   dx(2)= - k/m*x(1)+ F/m*(t/t1); 
elseif t<t2 & t>t1 
 dx(1)=x(2); 
   dx(2)= - k/m*x(1)+ F/(2*t1*m)*(t2-t); 
else 
   dx(1)=x(2); 
   dx(2)= - k/m*x(1);   
end 
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3.61*.  Numerically simulate the response of the system of Problem 3.18 and plot the 

response. 

Solution:  The solution in Matlab is 

%Clay 
%Vibrations 
%Numerical Solutions  
%Problem #54 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0;0]; 
tspan=[0 10]; 
 
[t,x]=ode45('prob54a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #54'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
to=4; 
 
%for t<to 
t=linspace(0,to); 
x=5*(t-sin(t)); 
plot(t,x,'*'); 
 
%for t>=to 
t=linspace(to,10); 
x=5*(sin(t-to)-sin(t))+20; 
 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #54 
 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=1; 
k=1; 
F=20; 
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to=4; 
 
if t<to 
   dx(1)=x(2); 
   dx(2)= - k/m*x(1)+ F/m*(t/to); 
else  
 dx(1)=x(2); 
   dx(2)= - k/m*x(1)+ F/m; 
end 
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3.62*.  Numerically simulate the response of the system of Problem 3.19 for a 2 meter 

concrete wall with cross section 0.03 m
2
 and mass modeled as lumped at the end of 1000 

kg.  Use F0 = 100 N, and plot the response for the case t0 =0.25 s. 

Solution The solution in Matlab is: 

 
%Numerical Solutions  
%Problem #3.62 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0;0]; 
tspan=[0 0.5]; 
 
[t,x]=ode45('prob55a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #55'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
m=1000; 
E=3.8e9; 
A=0.03; 
l=2; 
k=E*A/l; 
F=100; 
w=sqrt(k/m); 
to=0.25; 
 
 
%for t<to 
t=linspace(0,to); 
x=F/k*(1-cos(w*t))+ F/(to*k)*(1/w*sin(w*t)-t); 
plot(t,x,'*'); 
 
%for t>=to 
t=linspace(to,0.5); 
x=-F/k*cos(w*t)- F/(w*k*to)*(sin(w*(t-to))-sin(w*t)); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #3.62 
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function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=1000; 
E=3.8e9; 
A=0.03; 
l=2; 
k=E*A/l; 
F=100; 
w=sqrt(k/m); 
to=0.25; 
 
 
if t<to 
   dx(1)=x(2); 
   dx(2)= - k/m*x(1) + F/m*(1-t/to); 
   else 
 dx(1)=x(2); 
   dx(2)= - k/m*x(1); 
end 
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3.63*.  Numerically simulate the response of the system of Problem 3.20 and plot the 

response. 

Solution The solution in Matlab is: 

%Clay 
%Vibrations 
%Numerical Solutions  
%Problem #56 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0;0]; 
tspan=[0 2]; 
 
[t,x]=ode45('prob56a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #56'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
t=linspace(0,2); 
x=0.5*t-0.05*sin(10*t); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
 
 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #56 
 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=1; 
k=100; 
F=50; 
 
 
 dx(1)=x(2); 
 dx(2)= - k/m*x(1) + F/m*(t); 
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3.64*.  Compute and plot the response of the system of following system using numerical 

integration: 

   10!!x(t) + 20 !x(t) + 1500x(t) = 20sin25t + 10sin15t + 20sin2t  

with initial conditions of x0 = 0.01 m and v0 = 1.0 m/s. 

Solution The solution in Matlab is: 

%Clay 
%Vibrations 
%Numerical Solutions  
%Problem #57 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0.01;1]; 
tspan=[0 5]; 
 
[t,x]=ode45('prob57a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #57'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
m=10; 
c=20; 
k=1500; 
w=sqrt(k/m); 
d=c/(2*w*m); 
wd=w*sqrt(1-d^2); 
 
 
Y1=0.00419; 
ph1=3.04; 
wb1=25; 
 
Y2=0.01238; 
ph2=2.77; 
wb2=15; 
 
Y3=0.01369; 
ph3=0.0268; 
wb3=2; 
 
A=0.1047; 
phi=0.1465; 
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x=A.*exp(-d*w.*t).*sin(wd*t+phi)+ Y1.*sin(wb1*t-ph1) + Y2*sin(wb2*t-
ph2) + Y3*sin(wb3*t-ph3); 
 
plot(t,x,'*') 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #57 
 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=10; 
c=20; 
k=1500; 
 
 
dx(1)=x(2); 
dx(2)= -c/m*x(2) - k/m*x(1) + 20/m*sin(25*t) + 10/m*sin(15*t) + 
20/m*sin(2*t) ; 
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Problems and Solutions Section 3.10 (3.65 through 3.71) 

 

3.65*.  Compute the response of the system in Figure 3.26 for the case that the damping 

is linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k
1
x

3
 

and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 1.6) 

F(t ) = 1500 !(t " t
1
) " !(t " t

2
)[ ] N  

and initial conditions of x0 = 0.01 m and v0 = 1.0 m/s.  The system has a mass of 100 kg, a 

damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 

of k1 is taken to be 300 N/m
3
.  Compute the solution and compare it to the linear solution 

(k1 = 0).  Which system has the largest magnitude?  Compare your solution to that of 

Example 3.10.1. 

Solution: The solution in Mathcad is 
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Note that for this load the load, which is more like an impulse, the linear and nonlinear 

responses are similar, whereas in Example 3.10.1 the applied load is a “wider” impulse 

and the linear and nonlinear responses differ quite a bit. 

 

3.66*. Compute the response of the system in Figure 3.26 for the case that the damping is 

linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k
1
x

3
 

and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 1.6) 

F(t ) = 1500 !(t " t
1
) " !(t " t

2
)[ ] N  

and initial conditions of x0 = 0.01 m and v0 = 1.0 m/s.  The system has a mass of 100 kg, a 

damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 

of k1 is taken to be 300 N/m
3
.  Compute the solution and compare it to the linear solution 

(k1 = 0).  How different are the linear and nonlinear responses?  Repeat this for t2 = 2.  

What can you say regarding the effect of the time length of the pulse? 

 

Solution:  The solution in Mathcad for the case t2 = 1.6 is 
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Note in this case the linear response is almost the same as the nonlinear response. 

Next changing the time of the pulse input to t2 = 2 yields the following: 
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Note that as the step input last for a longer time, the response of the linear and the 

nonlinear becomes much different. 
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3.67*.  Compute the response of the system in Figure 3.26 for the case that the damping 

is linear viscous and the spring stiffness is of the form 

k(x) = kx ! k
1
x

2
 

and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 2.5) 

F(t ) = 1500 !(t " t
1
) " !(t " t

2
)[ ] N  

initial conditions of x0 = 0.01 m and v0 = 1 m/s.  The system has a mass of 100 kg, a 

damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 

of k1 is taken to be 450 N/m
3
. Which system has the largest magnitude? 

Solution:  The solution is computed in Mathcad as follows: 

 
Note that the linear response under predicts 

the actual response 
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3.68*. Compute the response of the system in Figure 3.26 for the case that the damping is 

linear viscous and the spring stiffness is of the form 

k(x) = kx + k
1
x

2
 

and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 2.5) 

F(t ) = 1500 !(t " t
1
) " !(t " t

2
)[ ] N  

initial conditions of x0 = 0.01 m and v0 = 1 m/s.  The system has a mass of 100 kg, a 

damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 

of k1 is taken to be 450 N/m
3
. Which system has the largest magnitude? 

Solution:  The solution is calculated in Mathcad as follows: 

 

 

 

3.69*. Compute the response of the system in Figure 3.26 for the case that the damping is 

linear viscous and the spring stiffness is of the form 

k(x) = kx ! k
1
x

2
 

In this case (compared to the 

hardening spring of the previous 

problem, the linear response over 

predicts the time history. 
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and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 2.5) 

F(t ) = 150 !(t " t
1
) " !(t " t

2
)[ ] N  

initial conditions of x0 = 0.01 m and v0 = 1 m/s.  The system has a mass of 100 kg, a 

damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 

of k1 is taken to be 5500 N/m
3
. Which system has the largest magnitude transient?  Which 

has the largest magnitude in steady state? 

 

Solution:  The solution in Mathcad is given below.  Note that the linear system response 

is less than that of the nonlinear system, and hence underestimates the actual response. 

 

 

 

3.70*.  Compare the forced response of a system with velocity squared damping as 

defined in equation (2.129) using numerical simulation of the nonlinear equation to that 

of the response of the linear system obtained using equivalent viscous damping as 
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defined by equation (2.131).  Use as initial conditions, x0 = 0.01 m and v0 = 0.1 m/s with a 

mass of 10 kg, stiffness of 25 N/m, applied force of the form (t1 = 1.5 and t2 = 2.5) 

F(t ) = 15 !(t " t
1
) " !(t " t

2
)[ ] N  

and drag coefficient of α = 25. 

 

Solution: The solution calculated in Mathcad is given in the follow: 

 

 

 

 

Note that the linear solution is very different from the nonlinear solution and dies out 

more rapidly. 
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3.71*.  Compare the forced response of a system with structural damping (see table 2.2) 

using numerical simulation of the nonlinear equation to that of the response of the linear 

system obtained using equivalent viscous damping as defined in Table 2.2.  Use the 

initial conditions, x0 = 0.01 m and v0 = 0.1 m/s with a mass of 10 kg, stiffness of 25 N/m, 

applied force of the form (t1 = 1.5 and t2 = 2.5) 

F(t ) = 15 !(t " t
1
) " !(t " t

2
)[ ] N  

and solid damping coefficient of b = 8.  Does the equivalent viscous damping 

linearization, over estimate the response or under estimate it? 
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Solution:  The solution is calculated in Mathcad as follows. Note that the linear solution 

is an over estimate of the nonlinear response in this case. 

 


