Chapter Three Solutions
Problem and Solutions for Section 3.1 (3.1 through 3.14)

3.1 Calculate the solution to
>‘<+2>‘<+2x=5(t—7r)

x(0)=1 x(0)=0

and plot the response.

Solution: Given: >'<‘+2>‘<+2x:6(t—7r) x(O):l, X(O):O

k C
,=\|— =14l4radls, {=——==0707L w,=wy1-{" =
\/; 2+km d

Total Solution: x(t) =X, (t) + X (t)
Homogeneous: From Equation (1.36)
x, (t) = Ae " sin(w,t +¢)

2
d

A= \/(VO ’ Cw"x")z * (X"wd)z , 9= tanl[—xowd } =.785 rad

0] v, + 8o X,
= x, (t) = 1414 sin(t +.785)
Particular: From Equation. (3.9)

1 o) 1
x (t)= o, e "

sma) e sm t—
Ve o)

But, sin(—t):—sint So, X () e gint =
x(t) =1.414¢"sin(t +0.785) O<t<nr

x(t) =1.414¢™" sin(t + 0.785) —e™sint t>rx
This is plotted below using the Heaviside function.



x (1) = 1.d1d-e " sin(t + 0.785) — e '~ ain (1) [t - n)

xt) o5 1

IAN



3.2

Calculate the solution to
X+2x%+3x =sint +§(t - )
x(0)=0 x(0)=1

and plot the response.

Solution: Given:>’<‘+2>‘<+3x:sint+5(t—7r), x(O):O, X(O):O

K
w, = \ﬁ =1.732 radfs, { = —— = 05774, o, = o, \1-{* =1.414 rad/s

m 2+ km

Total Solution:
x(t):xh+xpl O<t<r
x(t)=x, +x +x, t>x
Homogeneous: Eq. (1.36)
X, (t) = Ae ™' sin(a)dt + ¢) = Ae™ sin(1.414t + ¢)

Particular: #1 (Chapter 2)

a1

x,(t)=X sin(wt—e), where @ =1rad/s. Notethat f =-2=1
p 0 m
f 200 o
=X = 20 = = 0.3536, and 6 = tanl|: f n 2}: 0.785 rad
\/(wnz—a)z) +(2§a)nco) G m@

= x,,(t) = 0.3536sin(t - 0.7854)

Particular: #2 Equation 3.9
1

1 e lien) . _(t-x) .
sz (t) = m—a)de ¢ "(t )Slna)d (t - T) = We (t )S|n1414(t - 7[)
= x,,(t)=0.7071¢ " sin1.414(t - )
The total solution for 0< t<m becomes:
x(t) = Ae'sin(1.414t +¢) +0.3536sin t - 0.7854)
)

%(t) =~ Ae~'sin(1.414t + 9) +1.414 Ae™ cos(1.414t +¢) +0.3536 cos(t — 0.7854)
x(0)=0= Asing-0.25= A= 025

sing
%(0)=1=-Asing +1.414Acos¢ +0.25= 0.75 = o.25-1.414(o.25)i

tan¢

=¢=034and A=0.75
Thus for the first time interval, the response is

x(t) = 0.75¢"sin(1.414t +0.34) + 0.3536sin(t — 0.7854) 0 <t<z
Next consider the application of the impulse at t = &:



X(t) =X, + Xpl + Xp2

x(t) = ~0.433¢ *sin(1.414t +0.6155) +0.3536sin t - 0.7854) — 0.7071¢  “/sin(L414t ~ ) t >
The response is plotted in the following (from Mathcad):

na T
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an

3.3  Calculate the impulse response function for a critically damped system.

Solution:

A

The change in the velocity from an impulse isv, = E while xo = 0. So for a critically
m

damped system, we have from Egs. 1.45 and 1.46 with x, = 0:

X(t) = v te™ "

A

F. o
= x(t) = —te ™'
m



3.4  Calculate the impulse response of an overdamped system.

Solution:

The change in velocity for an impulsev, = % while xo = 0. So, for an overdamped

system, we have from Eqs. 1.41, 1.42 and 1.43:

X (t) = e_g“’nt I:_—VO e_w(n VEE -1t + V—o e—cu(n VEE-1t ]
2 2
20,15° -1 20 \J¢? -1
oot [emwgzm B ew<n\/;21)t}

X(*#
2ma /¢ -1

3.5  Derive equation (3.6) from equations (1.36) and (1.38).

Solution:

Equation 1.36: x(t) = Ae‘g"’"tsm(a)dt + ¢)

. (v, +¢o xo)2 +(X0a)d)2 o
Equation 1.38: A= 1 - ¢=tan| —2<4
wd V0 + gwnxo
Since Xo =0 and vp = % Equation 1.38 becomes
A= V_O = i
o, Mo
=tan*(0 )

So Equation 1.36 becomes

x(t) = miwde‘g“’"t sin(a)dt)which is Equation 3.6
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Consider a simple model of an airplane wing given in Figure P3.6. The wing is
approximated as vibrating back and forth in its plane, massless compared to the missile
carriage system (of mass m). The modulus and the moment of inertia of the wing are
approximated by E and I, respectively, and | is the length of the wing. The wing is
modeled as a simple cantilever for the purpose of estimating the vibration resulting from
the release of the missile, which is approximated by the impulse funciton Fo(t).
Calculate the response and plot your results for the case of an aluminum wing 2 m long
with m = 1000 kg, £ = 0.01, and | = 0.5 m*. Model F as 1000 N lasting over 107%s.
Modeling of wing vibration resulting from the release of a missile. (a) system of interest;
(b) simplification of the detail of interest; (c) crude model of the wing: a cantilevered
beam section (recall Figure 1.24); (d) vibration model used to calculate the response
neglecting the mass of the wing.
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Solution: Given:
m=1000 kg ¢=0.01

I=4m | =0.5m*
F=1000 N At=10%s
From Table 1.2, the modulus of Aluminum is E =7.1x 10 N/m?

The stiffness is

k= 3;' = 3(7'1Xi2m)(0'5) =1.664x10° N/m

o = \/E =1.29x10° rad/s (205.4 Hz)

m
o, =0 \1-§* =1.29x10°



Solution (Eq. 3.6):

(Fat)e

X(t):m—wd

sine,t = 7.753x 102" sin(1290t) m

The following m-file

t =(0: 0.0001: 0.5);

F=1000; dt =0. 01; m=1000; zet a=0. 01; E=7. 1*10710; | =0. 5; L=4;
wn=sqrt ((3*I *E/ L"3)/ m;

wd=wn*sqrt (1-zeta"2);

x=(F*dt/ (mrwd))*exp(-zeta*wn*t). *si n(wd*t);

pl ot (t, x)

The solution worked out in Mathcad is given in the following:



= 7.1-1010
= 1000 L:=4 I1:=05 F:=1000 At = 107%  zen
= 0.01
_3LE
' ]';. = " g
L wn =~ k= 1664710 wn = 1.29+10°
m
o 2 3
fi ;= —  fn = 205.308 wd 1= wiall — & id = 1.29-10
21 H=
C-wn = 12.9 fat) = 77527107
- ood
t:=0,0.00001 .. 0.4
F _t.wn.t .
(1) = -|{.-'l-.t-e ]l-sm (md-tjl MEtELs
- ood
1-107"
x[t] S
— 0.z 0.3

=110

0.4
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A cam in a large machine can be modeled as applying a 10,000 N-force over an interval
of 0.005 s. This can strike a valve that is modeled as having physical parameters: m = 10
kg, ¢ = 18 Nes/m, and stiffness k = 9000 N/m. The cam strikes the valve once every 1 s.
Calculate the vibration response, x(t), of the valve once it has been impacted by the cam.
The valve is considered to be closed if the distance between its rest position and its actual
position is less than 0.0001 m. Is the valve closed the very next time it is hit by the cam?

Solution: Given:
F =10,000 N At =0.005s

m =10 kg c=18 N-s/m k =9000 N/m

k c
o =,—=30radls {= =0.03 o, =w \1-{* =29.99 rad/s
m 2+km ’

Solution Eg. (3.6):

~Co,t
x(t):%sinwdt
10,000)(0.005)e 0%)
x(t) = ( (2(()) (29299) sin(29.99t)

x(t) = 0.1667¢°* sin(29.99t)m

Att=1s: x(1) =0.1667¢ ¢ 5in(29.99) = -.06707 m

Since ‘x(l)‘ =0.06707 > 0.0001, the valve is not closed.
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The vibration packages dropped from a height of h meters can be approximated by
considering Figure P3.8 and modeling the point of contact as an impulse applied to the
system at the time of contact. Calculate the vibration of the mass m after the system falls
and hits the ground. Assume that the system is underdamped.

=

Solution: When the system hits the grdund, it responds as if an impulse force acted on it.

~Co, t

From Equation (3.6): x(t) = Fe sinm,t  where F =v
mw m

0
d

Calculate vo:
: 1 .
For falling mass: X = Eat

So, v, = gt", where t is the time of impact from height h

h:%gt*2=>t*= 2h

g
v, =/2gh

Let t = 0 when the end of the spring hits the ground

x(t): \/ﬁe‘

The response is Ol sineo t
d

()

Where an, @y, and { are calculated from m, ¢, k. Of course the problem could be solved

as a free response problem with xo = 0, Vo = 4/2gh or an impulse response with impact
model as the unit velocity given.



3.9  Calculate the response of
3x(t) +12x (t) +12x(t) = 35 t)

for zero initial conditions. The units are in Newtons. Plot the response.

Solution: Dividing the equation of motion by 3 reveals;
12 .
o = \/Z =2radls {= W = 1= critically damped

FAt
=3 Vo= ——, XOZO

T

n2 T

ﬂ 01




3.10 Compute the response of the system:
3X(t) +12x(t) +12x(t) = 35(t)
subject to the initial conditions x(0) = 0.01 m and v(0) = 0. The units are in Newtons.
Plot the response.

Solution: From the previous problem the system is critically damped with a solution of
the form

X(t) = (a, +at)e™.
Applying the given initial conditions yields
x(0)=0.01=a and x(0)=0=-2(0.01+4a,0)+a,
= X(t) = (0.01+0.02t)e™

Next add to this the solution due to the unit impulse, which was calculated in Problem 3.9
to get:

x(t) =te™ +(0.01+0.02t)e™*
= X(t) = (0.01+1.02t)e™

x{1) 1= (0.01 + 1.02-1)- 672"

Nz T

ﬂ 0.1 -
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x(t)

3.12

Calculate the response of the system

3x(t) + 6%(t) +12x(t) = 35(t) - 8(t - 1)
subject to the initial conditions x(0) =0.01 m and v(0) = 1 m/s. The units are in Newtons.
Plot the response.

Solution: First compute the natural frequency and damping ratio:
o = ,/E =2radls, {= L 0.5, ®, =2v1-0.5" =1.73 rad/s
" 3 2:2-3
so that the system is underdamped. Next compute the responses to the two impulses:

x(t) = mie‘g“’"t sino,t = 3(1—373)e‘“‘1) sin1.73(t—1) =0.577e'sin1.73t,t >0
o, :

A

F oo
X,(t) =——e " Vsinw, (t-1) =
mo, 3(L.73)

Now compute the response to the initial conditions from Equation (1.36)

e'sin1.73t =0.193e “sin1.73(t - 1),t >1

x, (t) = Ae ' sin(w,t +¢)

A= \/(VO ’ Cw"x")z ’ (Xowd )Z NE tanl[—xowd } =0.071 rad

2
a)d VO + Ca)nXO

= x,(t) =0.5775¢sin(t +0.017)
Using the Heaviside function the total response is
X(t) = 0.577¢™sin1.73t +0.583¢ " sin t +0.017) + 0.193e™" ¥ sin1.73(t — 1)®(t - 1)
This is plotted below in Mathcad:

E—t-mn-t
sin {wd 1] + & &5 gin (wd 1 + @)

—towm [t — 1)
+ [;-Sm[md- (t— lj]l-ﬂbl:t —1)

oo =3-md

05 T+

x[t]

54

k
Note the slight bump in the response at t = 1 when the second impact occurs.

A chassis dynamometer is used to study the unsprung mass of an automobile as
illustrated in Figure P3.12 and discussed in Example 1.4.1 and again in Problem 1.64.
Compute the maximum magnitude of the center of the wheel due to an impulse of 5000 N



3- 14

applied over 0.01 seconds. Assume the wheel mass is m = 15 kg, the spring stiffness is k
= 500,000 N/m, the shock absorber provides a damping ratio of {= 0.3, and the rotational
inertia is J = 2.323 kg m?. Compute and plot the response of the wheel system to an
impulse of 5000 N over 0.01 s. Compare the undamped maximum amplitude to that of
the maximum amplitude of the damped system (use r = 0.457 m).

Figure P3.12 Simple model of an automobile suspension system mounted on a chassis
dynamometer. The rotation of the car’s wheel/tire assembly (of radius r) is given by A(t)
and is vertical deflection by x(t).

Solution: With the values given the natural frequency, damped natural frequency, and

impulse are calculated to be:
k FAt
o, =,——— =117.67 rad/s =18.73 Hz, w, =112.25rad/s, X =————=0.014 m
m+J/r (m+J/r)w,

The response is then plotted as

F-At
x(t) = ; "8 gin {ad 1)

m -+ —|-wn
:
D015 = - o o o o o o
0.0075 + /r\

" TN

X ' : \\ e ——

== 0 002 004" 0.06 0.08 0.1

= p0075+

£
o
—
wa
1
r



Note that the maximum amplitude of the undamped system, X, is not achieved.

3.13  Consider the effect of damping on the bird strike problem of Example 3.1.1. Recall from

the example that the bird strike causes the camera to vibrate out of limits. Adding
damping will cause the magnitude of the response to decrease but may not be able to
keep the camera from vibrating past the 0.01 m limit. If the damping in the aluminum is

modeled as { = 0.05, approximately how long before the camera vibration reduces to the

required limit? (Hint: plot the time response and note the value for time after which the
oscillations remain below 0.01 m).

Solution: Using the values given in Example 3.1.1 and equations (3.7) and (3.8), the
response has the form

m v
x(t) = m—be“f“’nt sinm,t = 0.026e ™" sin 260.976t
a)n

Here my is the mass of the bird and m is the mass of the camera. This is plotted in
Mathcad below
mb-v

" me-wn

L :=005 T-an = 13.065-sec

Y '=0026 wn = 261303 wd = Wll'qil - t? wd = 260976

x(t) = VetV lginfwd-t) XM(t) := 001

X =0026"m

005
0.025 + ol
x[t] |III \'I a/‘"\
| | 7™
L A S0 2 SRt SRRk
m[ ] | 1 f 'Il 1 " l‘k / L S
4 1 ™ L 7 Ly ;" T \\ /' 1
- ) 0 | 0.0g 04/ 0.0% 0.08 N/ 0.1
- ZI [t .’. i \ A
\__/"
—0.025 +
005+

t

From the plot, the amplitude remains below 0.01 m after about 0.057 s.



3.14  Consider the jet engine and mount indicated in Figure P3.14 and model it as a mass on
the end of a beam as done in Figure 1.24. The mass of the engine is usually fixed. Find a
expression for the value of the transverse mount stiffness, k, as a function of the relative
speed of the bird, v, the bird mass, the mass of the engine and the maximum displacement
that the engine is allowed to vibrate.

///T‘_—’—
Wing, ground;

F&(D) | > x(1)
Engine, m

Figure P3.14 Model of a jet engine in transverse vibration due to a bird strike.

Solution: The equation of motion is
mx(t) + kx(t) = F&(t)
From equations (3.7) and (3.8) the magnitude of the response is
X|= o
me_
for an undamped system. If the bird is moving with momentum mgv then:

2
x| =2 z‘x‘:Ezk:l(mbvj

mo, Jmk m W

This can be used to provide some guidance in designing the engine mount.
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Problems and Solutionsfor Section 3.2 (3.15 through 3.25)
3.15 Calculate the response of an overdamped single-degree-of-freedom system to an
arbitrary non-periodic excitation.
t
Solution: From Equation (3.12): x(t) = J F (‘L')h(t - r)dr
0
For an overdamped SDOF system (see Problem 3.4)
h(t _ T) — ;e—@)n (t—r) (ewn e —l(t—r) _ e—wn I —1(t—1))d1_
2me /% -1
~to, (t-7) (e“’" ¢aft-1) e @ 2 1(tr)jdr

‘ 1
x(t) = b[F (r)me
= x(t) i g lEli=s) _ gronttafi) ) dt

__ e e“wnf(
2me /% -1 'o[ " (T)e
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3.16 Calculate the response of an underdamped system to the excitation given in
Figure P3.16.

Plot of a pulse input of the form f(t) = F,sint.

Figure P"3.16

Solution:

x(t):mi%e—cwntj[p(f)ewsmwd (t-)]ar

F(t) = Fosin(t) t<m (From Figure P3.16)
Fort<m, x(t) = micgdeg“’"ti(sin e sino, (t - r))dr

2[1+ 20, + wan{ecwnt [(wd —1)sint (o, cost}— (a)d —1)sin o,t-lo, coswdt}

+ 2[“ Zaid +wn2}{e§wnt [(wd —1)sint -, cost} + (cod —1)sina)dt -, coswdt}

Forz>r,: j; f(z)h(t-1)d7 = jo” f(z)h(t-7)d7 + j‘ (O)h(t - 7)d7
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X (t) = mia(’)de“:“’nt ]:(sin e sina, (t - r)) dr

F

=_0 gt
M

X
d

{ - {e@n{(wd—1>sm[wd(t—nn—cwncos[wd(t—nm}

2[1+ 20, + o * —(a)d —l)sina) t—Cw cosw,t

d

o {e@’n{(wﬂ+1)sm[wd(t—fnﬂ:wcos[wd(t—nm}

2[1+ 20, + 0’ ] +(0, ~1)sinw,t - Lo, cos,t

Alternately, one could take a Laplace Transform approach and assume the under-damped
system is a mass-spring-damper system of the form

mx(t) + cx(t) + kx(t) = F(t)
The forcing function given can be written as

F(t)=FR(H (t) - H(t-))sin(t)
Normalizing the equation of motion yields

R(t) + 26w, x(t) + w2x(t) = f,(H (t) - H (t - x))sin(t)
where f, = in: andm, candk aresuchthat0 < { <1.

Assuming initial conditions, transforming the equation of motion into the Laplace domain
yields

f0(1+ e‘”s)
s+ 1)(32 +2lw S+ a)ﬁ)

X(s):(

The above expression can be converted to partial fractions

s\ As+B rs Cs+D
X(s)=f0(1+e )(SZ+1)+fO(1+e )(SZ+ZCws+a)2j

where A, B, C, and D are found to be
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e %o,

(1— a),f)z + (ZCcon)2
B = w’ -1

(1— a)rf)2 + (2(;’wn)2
o %o,

(1—a)lf)2 +(24’con)2
D= (1—w§)2+(2§wn)2
(1—w§) +(2§wn)2

Notice that X(s) can be written more attractively as

a As+B Cs+D s As+B Cs+D
X(S)_ fo 2 + 2 2 + foe 2 + 2 2
s+l s°+2{w s+ s+l s°+2{w s+w;

= 1,(G(s)+e™°G(s))
Performing the inverse Laplace Transform yields
x(t)=fo(g(t)+ H (t-7)g(t - 7))

where g(t) is given below

g(t) = Acos(t) + Bsin(t) + Ce™™' cos(m,t ) + (D_—ngnj e dn(w,t)
Wy

o, isthe damped natural frequency, ®, = w,1- > .

Let m=1 kg, c=2 kg/sec, k=3 N/m, and F,=2 N. The system is solved numerically. Both
exact and numerical solutions are plotted below



07 . . .
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Figure 1 Analytical vs. Numerical Solutions

Below isthe code used to solve this problem
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% Establish atime vector
t=[0:0.001:10];

% Define the mass, spring stiffness and damping coefficient
m=1;
c=2;
k=3;

% Define the amplitude of the forcing function
FO=2;

% Cal culate the natural frequency, damping ratio and normalized force amplitude
zeta=c/(2* sgrt(k* m));

wn=sgrt(k/m);

fO=FO/m;

% Calculate the damped natural frequency
wd=wn*sgrt(1-zeta*2);

% Below isthe common denominator of A, B, C and D (partial fractions
% coefficients)
dummy=(1-wn"2)"2+(2* zeta* wn)"2;

% Hence, A, B, C, and D are given by
A=-2* zeta* wn/dummy;
B=(wn"2-1)/dummy;

C=2* zeta* wn/dummy;
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D=((1-wn"2)+(2* zeta* wn)"2)/dummy;

% EXACT SOLUTION
%

khkhkkkhkhkkhkhhkkhhhkkhhhkhhhkhdhhkhdhhkhdhhkhdhhkhkhhkhdhhhkhhhkhhhkhdhhkhdhhkhdhhkhdhhkhdhkhdhkkhdkkdkxk,%x%x
*
%
khkhkkkhkhkkhkhhkkhhhkkhhhkhhhkhdhhkhdhhkhdhhkhkhhkhdhhkhkhhhkhhhkhhhkhdhhkhdhhkhdhhkhdhhkhdhhkhdhkkhdhkkdkxk,%x%x
*
for i=1:length(t)
% Start by defining the function g(t)
g(i)=A*cog(t(i))+B* sin(t(i))+C* exp(-zeta* wn* t(i))* cos(wd* t(i)) +((D-
C* zeta* wn)/wd)* exp(-zeta* wn*t(i))* sin(wd*t(i));
% Before t=pi, the response will be only g(t)
if t(i)<pi
xe(i)=f0*g(i);
% d isthe index of delay that will correspond to t=pi
d=i;
else
% After t=pi, the responseis g(t) plus adelayed g(t). The amount
% of delay ispi seconds, and it is d increments
xe(i)=f0* (g(i)+g(i-d));
end;
end;

% NUMERICAL SOLUTION
%

R R R R R b ke e R R R ok e R R o R R Rk ke e R R
*

%

R R R R e b ke e b b e R R R ok e R R o o R R Rk ke R b b

*

% Start by defining the forcing function
for i=1:length(t)
if t(i)<pi
f(i)=fO*sin(t(i));
else
f(i)=0;
end;
end;

% Define the transfer functions of the system
% Thisisgiven below
% 1
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06 Sh\2+2* zeta* wn+wn”2

% Define the numerator and denominator
num=[1];

den=[1 2* zeta* wn wn"2];

% Establish the transfer function
sys=tf(num,den);

% Obtain the solution using Isim
xn=lsm(sysf,t);

% Plot the results

figure;

set(gcf,'Color','White');

plot(t,xet,xn,--");

xlabel (‘'Time(sec)');

ylabel (‘Response);

legend(‘Forcing Function’,'Exact Solution’,'Numerical Solution’);
text(6,0.05,\uparrow','FontSize', 18);

axes('Position’,[0.55 0.3/0.8 0.25 0.25])
plot(t(6001:6030),xe(6001:6030),t(6001:6030),xn(6001:6030),'--");

3.17 Speed bumps are used to force drivers to slow down. Figure P3.17 isamodel of a
car going over a speed bump. Using the data from Example 2.4.1 and an
undamped model of the suspension system (k = 4 x 10° N/m, m = 1007 kg), find
an expression for the maximum relative deflection of the car’ s mass versus the
velocity of the car. Model the bump as a half sine of length 40 cm and height 20
cm. Note that thisis amoving base problem.
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Figure P3.17 Modéd of acar driving over a speed bump.

Solution: Thisis abase motion problem, so the first step isto trandate the
equation of motion into a useable form. Summing forcesyields in the vertical
direction yields
mx(t) + k(x(t) - y(1)) =0
were the displacement y(t) is prescribed. Next defined the relative displacement
to be z(t) = x(t)-y(t), the relative motion between the car’ s wheel and body. The
equation of motion becomes:
mz(t) + my(t) + kz(t) = 0 = mz(t) + kz(t) = —my(t)
Substitution of the form of y(t) into this last expression yields:
mz(t) + kz(t) = mY o’ sina t(@(t) - (t - 1,))

where @ isthe Heavyside step function and a, is the frequency associated with
the bump. The relationship between the bump frequency and the car’ s constant
velocity is

2r V4

waZ_KV:ZV

where v is the speed of the car in m/s. For congtant velocity, the time t =v/,

when the car finishes going over the bump.
Here, z(t) is From equation (3.13) with zero damping the solution is:

t
2(t) = ij f(t-7)sinw rdr  t<t,
mo_ <
Substitution of f(t) =y(t) yields:
Y(l)z t
z(t)=—=2 Jsin(wbt —-o,7)sinw tdr =
n 0

t
2
Ycob

1 sin(a)bt —(o, + a)b)r) sin(a)bt +(w, - a)b)r)
w 2 —(0, +o,) o, -0,

n 0

Yo! 1 : :
= > > (a)nsma)bt—a)bsma)nt) t<tl
(Dn wn - wb

where the integral has been evaluated symbolically. Clearly aresonance situation
prevails. Consider two cases, high speed (w, >> ) and low speed ((o, << ®,))

as when the two frequencies are near each other and obvious maximum occurs.
For high speed, the amplitude can be approximated as

Yo! o

2
b a)b
2

wn wn - a)b

Yo

b . : B .
—— ((a)n /wb)smwbt—smwnt)~ sinw t
wn wn - wb

For the values given, this has magnitude:



2] -

::e <<
—
:81\; ~ ‘ S|
[
S <
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Thisincreases with the cube of the velocity. Thusthe faster the car is going the
more sever the bump is (larger relative amplitude of vibration), hence serving to

dow motorist down. A plot of magnitude versus speed shows bump sizeis

amplified by the suspension system.

5 k
k=410 m .= 1007 wh 1= [—
m
L:=04 Y:=02
2 -
JT JT
i 12 A 3
Z(v) =
wil 12
ot~ 2 4
- L B
1 T
0.75 - -
z(v) p,/
— 05+
b 4
025t .
5 10
¥
For dow speed, magnitude becomes
2
Y(”] Vo
( n
20|~ | =
o \0 -0,

A plot of the approximate magnitude versus speed is given below

wn = 1993
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05 7

0.38 +
2(v) /

023 T /

I RER J/

L'
Clearly at speeds above the designed velocity there is strong amplification of the
bump’ s magnitude, causing discomfort to the driver and passengers, encouraging
a slow speed when passing over the bumb.

3.18 Calculate and plot the response of an undamped system to a step function with a

finiterisetimeof t, forthecasem=1kg, k=1 N/m,t, =4sand F,= 20 N. This
function is described by

Solution: Working in Mathcad to perform the integrals the solution is:
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= ——————————— 314 [FE
k =
=1 k=1 FO =20 LEIIL:=J; =
rlly o
x1(t) = - J T-smlit—'r) dr
- oo 4 1]
x1(t) = %- (ml.?in)- (t — =zin(t))
1
X2 (t) :=‘ l i -(1 —%)-sm[t—*r:l]d*r i
m- oL
4
-1 FO 1 Fo
201 = —(t—4]- —zinft — 43
X2 (1) y (t—d) (m.mn) +¢1 sin (1t — 4) (m-mn]
n(t) = xlit) + x2(t)-$ (1 —4)
1 FO _: FO _ 2
4 |IZ|'.|1 I'.lJl'L:| |IZ|'.|1 l'.l.'ll'l.:I
50
20 T
x[t]
10 -
0 5 10 15 -
[

J il
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3.19 A wave consigting of the wake from a passing boat impacts a seawall. It is
desired to calculate the resulting vibration. Figure P3.19 illustrates the situation
and suggestsamodel. Thisforcein Figure P3.19 can be expressed as

£(0)- F0[1—%] 0<t<t,

0 t>t

0

Calculate the response of the seal wall-dike system to such aload.

1 o

Tty

i
|
.

WA
i
[~

Solution: From Equation (3.12): x(t) :_t[ F(r)h(t—r)dr
0

From Problem 3.18, h(t — 1) = isin o, (t - r)for an undamped system
Mo

n

0' x(t):ﬁ j e [1__}.% (t_f)df}
()= j s, (1-c)oe-L | rsina t- )df}

00

After integrating and rearrang| ng,

x(t) = :To[wisin ot —t} + %[l— coswt] t<t,

0

Fort >t, j; f(1)h(t - 7)dt = jot f(t)h(t - 7)d7 + j: (O)h(t - 7)d7

=2 ] a(l—tﬁ]smwn(t—f)dr]

nf o0 0

()= | § st cJoe- £ cano - e

nfo0 00
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After integrati ng and rearranging,

x(t) o

3.20 Determine the response of an undamped system to aramp input of the form F(t) =
Fot, where F,isaconstant. Plot the response for three periods for the case m=1kg, k =
100 N/m and F, =50 N.

sin, (t— t)]——[coswt] t>t,

Solution: From Eg. (3.12): x(t)

I F()h(t—)dr

From Problem 3.8, h(t—r):isinwn(t—r)for an undamped system.
mw

n

Therefore,

()= || ()= |= 5 ] csn e o

n

After integrating and rearranging,

F F_F

x(t): : i—isinwr R

mo, | ©, o " k ko,

Using the valuesm = 1 kg, k= 100 kg, and F, =50 N yields

x(t) = 0.5t - .05sin(10t) m
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3.21 A machine resting on an elastic support can be modeled as a single-degree-of -
freedom, spring-mass system arranged in the vertical direction. The ground is subject to
a motion y(t) of the form illustrated in Figure P3.221. The machine has a mass of 5000
kg and the support has stiffness 1.5x10° N/m. Calculate the resulting vibration of the
machine.

- (s}
[ [EXE

Solution: Given m= 5000 kg, k = 1.5x10° N/m, o, = ‘/%1 =0.548 rad/s and that

the ground moation is given by:

2.5t 0<t<0.2
y(t)=40.75-1.25t 0.2<t<0.6
0 t>0.6

The equation of motionis mX +k(x—y) =0 or mX + kx = ky = F(t) Theimpulse
response function computed from equation (3.12) for an undamped systemis

h(t—1) = %Sin o (t-1)

This gives the solution by integrating a yh across each time step:
X() = —— ['ky()sin, (t- 1)z = o, [ y(@)sine, (t- 7)dt
mo, ~° 0

For theinterval 0<t < 0.2:
X(t)=o, jot2.51'sina)n(t —-1)d7
= X(t) = 2.5t — 4.56sin0.548t mm 0<t<0.2
For theinterval 0.2<t < 0.6:
X(t) = o j0°'22.5rsin o (t-7)dr+o, j;z(o.75—1.251)sin o, (t-1)dt

=0.75-0.5c0s0.548(t — 0.2) —1.25t + 2.28sin 0.548(t — 0.2)
Combining this with the solution from the first interval yields.
X(t) =0.75+1.25t — 0.5c0s0.548(t — 0.2)
+6.48sin0.548(t — 0.2) — 4.565in0.548(t —0.2) mm 0.2<t<0.6
Finaly for theinterval t >0.6:
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x(t) =0, jo°'22_5tsin o (t-7)dr+o, jo(f:(o.75—1.25t)sin o, (t-7)dT+ o, J;(O)sin o (t-7)dr

=-0.5c050.548(t — 0.2) — 2.28sin0.548(t — 0.6) + 2.28sin0.548(t — 0.2)
Combining this with the total solution from the previous time interval yields:
X(t) =—0.5c050.548(t — 0.2) + 6.845sin0.548(t — 0.2) — 2.28sin 0.548(t — 0.6)

—4.56sin0.548t mmt>0.6
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3.22 Consider the step response described in Figure 3.7. Calculatet, by noting that it
occurs at the first peak, or critical point, of the curve.

Solution: Assumet,=0. Theresponseisgiven by Eq. (3.17):
F F
x(t) = 2 - ——2—e“" cos(w,t - ¢)
k ky1-¢2
To find t,, compute the derivative and let X (t) =0

()= fgz [~to,& 5 cos(w,t— ) + & (-0, Jsin(w,t - 9) | =0

:—Cwncos(wdt—q))—wdsin(wdt—q)):0

_Cwn

:>tan(a)dt—</))= .

d
_Ca)n

d

}(n can be added or subtracted without changing the

t= i[rz +to+ tan‘l(_gw” j]
wd wd

But,</):tan1[ 6 ]
1-¢?

0,

wdt—q)—zr:tan‘l[

tangent of an angle)
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3.23 Calculate the value of the overshoot (0.s.), for the system of Figure P3.7.

Solution:

The overshoot occurs at tp =7

Substitute into Eq. (3.17):

F
—Le
k
3.24 Itisdesredtodesign asystem so that its step response has a settling time of 3 s
and atimeto peak of 1 s. Calculate the appropriate natural frequency and

damping ratio to use in the design.

—Co, ]y

0S. =

Solution:

Givent =3s,t =1s

Settling time:
t = 35 =3s =fw_= 35 =1.1667 rad/s
* fo, "3

Peak time:

T
thw—:1s =0, =0 1-* = radls
d

2 2
1.1667 1.1667
o, 1—[ ) :n:wnzll—[ j}:nz
o, o,

{ L 13611

n 2

w

n

} =’ =0’ -1311=7" = »_=3.35rad/s



Next use the settling time relationship to get the damping ratio:
¢ = 1.1667 _ 1.1667 £ =0.3483
o, 3.35 e
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3.25 Plot the response of a spring-mass-damper system for thisinput of Figure 3.8 for

the case that the pulse width is the natural period of the system (i.e., t, = vw,).

Solution:

The values from Figure 3.7 will be used to plot the response.

F,=30N

k =1000 N/m
=01

o = 3.16 rad/s

From example 3.2.2 and Figure 3.7, with t = " wehavefort=0to t;,
0]

F want

X(t):_O_Foe—cos(a)dt—q)) Whel’e¢:tanl[ CC J
1- 2

X(t) = .03 - .03015e % cog(3.144t-.1002)  O<t<t,

Fort>t,,

-Gzl ol oo

X(t) = 0.0315e3% { 1.3691c0(3. 144t — 3.026) — cos(3.144t - .1002)} t > t,

The plot in Mathcad follows:

w 1= 3.144
x(t) = 0.03 — 0300 " #% % ons [w-t — 1002) + [ (0.0315) - e”#1% % (13691 -cos [w-t - 3.226)

0.4 q

0z T

/\/\/\M
VA

x[t]
- 1}
-0z /

— |03 |IUJ't -

.1

1
1
1
1
i
1
o
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

)2

i1
t— —
w




Problems and Solutions Section 3.3 (problems 3.26-3.32)

3.26  Derive equations (3.24). (3.25) and (3.26) and hence verify the equations for the Fourier
coefficient given by equations (3.21), (3.22) and (3.23).

Solution: For n # m, integration yields:

‘T[ Sinantsinm(thdt: Sin(n—m)wt Sln(n+m)th]
0

. 2 n—m) a)2(n+m)

ol e

~ sin[(n - m)(27r
2 m)

Since m and n are integers, the sine terms are 0, so this is equal to O.

Equation (3.24), for m = n:

T

:I—Lsin 2n Z—E T
) 2 8nrm T

Since n is an integer, the sine term is 0, so this is equal to T/2.

¢ 1
[ sin®notdt=| St-
) 2

sin(anTt)}

T T . T
= E—%sm[mn] =3

4nw,

0 m#n

.
So, J. sinantsinmthdt:
5 T/2 m=n

Equation (3.25), for m#n



T

b[ cosna)thosma)Ttdt—:Sizn((:_nr?));)T : 3'2”((7;': nT)) 10
:sin (n m)( ) } sm{ n+m( jT}
2(n m)w 2(”+m)
sm[(n m)(ZE)}_S'”[(nJ’m)( )} -0
2(n m)coT 2(n+m)

Since m and n are integers, the sine terms are 0, so this is equal to O.

Equation (3.25), for m = n becomes:

L sin(2ncoTt)}

T

:I+Lsin 2n Z—E T
. 2 8nrm T

T
2

4nw,

T 1
_[coszna)Ttdt =|=t+
5 2

T T .
=5+ %sm[mn] =

Since n is an integer, the sine term is 0, so this is equal to T/2.

.
0 m#n

So, J. cosantcosmthdt:
5 T/2 m=n

Equation (3.26), form#n:

Jcosnwtsmmw tdt = cos(n m)wt COS(”+m)th
0 (n m) (n+m) 0

Ay ety] L

2(n m) 2(n+m)a)T 2{m n) . 2(m+n)
_ cos[( )(Zn)} cos[(n + m)(Zn)} 1 s 1 o
2(n m) (n+m) o, 2(m—n)a)T 2(m+n)coT

Since n is an integer, the cosine term is 1, so this is equal to 0.



;
So, J. cos ne, tsinme, tdt =0

0
Equation (3.26) for n = m becomes:

2nw anrz

T
J cos antsin na)Ttdt = [
N

0

;
Thus J. cos antsin na)Ttdt =0
0

.
] T .
smzna)Tt} =—sin’2zn=0
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3.27 Calculate b, from Example 3.3.1 and show that b, = 0, n = 1,2,...,e0 for the triangular

force of Figure 3.12. Also verify the expression a, by completing the integration
indicated. (Hint: Change the variable of integration from t to x = 2rnt/T.)

.
Solution: From Equation (3.23),b, = %J' F(t)sin ne, tdt . Computing the integral yields:

0

2[™ (4. ). f af, 1.
b == J —t-1 smantdt+J 1-—| t—— [|sinnw,tdt
Tl \T 2 T 2
2 4 T/2 T/2 T 4 T
b == —j tsinne, tdt — J sin antdt+3J sin antdt——J tsin ncoTtdt}
T T 0 0 T/2 TT/Z

2zn
Substitute x = nw,t = %t

n 0 n

0 n n

b, :i[iT xsinxdx—iff1 sinxdx+32_Tn sinxdx—iZTn xsinxdx}

2 (.
- —(smx— XCOS X
mon

. n n 27n
= — —(smx—xcosx)‘ +cosx‘ — 3c0s X
tn| n 0 0

27m:|
1

2
=— —(—nncosnn)+cosnn—1—3+30057rn——( 27rn+7rncosnn
n| zn mn

:nln[ 2coszn+4cosan—4+4— Zcosnn]__[o]

From equation (3.22), a_ =

2 T
?‘!. F (t)cos e, tdt

2[7¢ (4 T4, T
a == J —t-1|cosnw, tdt + J 1-—|t—— ||cosnm,tdt

Tl \T 2 T 2

2 4 T/2 T/2 T 4 T
a == —_[ tcosnew, tdt — J cosantdt+3J cosna)Ttdt——J tcos neo, tdt
" T 0 0 T/2 TT/2

27n
Substitute x = nw,t = Lt



1 2 n n 2zn 2 2zn
a :—{—J xcosxdx—J cosxdx+3j cosxdx——j xcosxdx}
n 0

" n zn
2rn
n

0 n zn

1| 2 ) . )
=— —(cosx+xsmx)‘—smx‘ +3sinx
zn| zn 0

2zn 2 .
- —(COSX —SIn X)
zn nn

= %[%(cosnn —1) - %(1— cosnn)}

2
=— 2[cos;rn—l—lﬂ:osnn]
z°n

0 n even
= 4 [cosnn—l] =4 -8
’n? n odd

T
n°n?




3.28 Determine the Fourier series for the rectangular wave illustrated in Figure P3.28.
Ao
1
L 2w 3T
I
-1
Solution: The square wave of period T is described by
1 0<t<
F(t)= i
-1 n<t<L2rn
Determine the coefficients a ,a ,b from direct integration:
2 T
a, = ?j F(t)dt
2 T 2r
2] -] |
=[]
—t
ﬂ 0
1 1
=—|n-2n+nm|=—(0 =a =0
| 1=-(0) 2
27 _2m_2
—J F cos ne, tdt, where @, T
T T T on
2| 7 2 11 1 x
—D cos ntdt — j cosntdt} [ sinnt ‘ ——sm nt | }
2r| s, ! | n g
1
—1| sin sin{n2x ) +sin(nz
=—[sin(nz)sin(n2r) +sin(nz) | = 0
2 T 2 T 2
b = ?Z[ (t)sm(oTtdt = EL[ sinntdt — ;[ sin ntdt}
= l{—lcos nt ‘ - 1cos nt 2”}: i[—cos nr+1-1-cosnrz | = i[1— cosnr |
T n r n n
If niseven, cosnt = 1. If nisodd, cosnrt = -1
0 neven
So, b =
T n odd
zn

Thus the Fourier Series collapses to a sine series of the form



oo

F (t) = ibﬂ sinnt= ) isin nt
n=1

n=13,- n

The Vibration Toolbox can also be used:
t=0:pi/100:2*pi-pi/100;
f=-2*floor(t/pi)+1;

vtb3_3(f',t',100)

[a,b]=vth3_3(f',t',100)

Note that vtb3 3 always gives some error on the order of delta t (.01 in this case). Using a
smaller delta t reduced the error.



3- 44

3.29 Determine the Fourier series representation of the sawtooth curve illustrated in Figure

Solution: The sawtooth curve of period T is

F(t)=%t 0<t<2r

Determine coefficients a ,a ,b, :

2" 2% (1 1)1
aoz?l F(t)dt:EJ (ﬂtjdt:(z_yzzJEtz

= 4—71[2[47:2 -0]=1
a, = E‘T[ F(t)cos ne, tdt, where @, 275 27r
T T 27r

2r 2r
:i _[ it cos ntdt :i f tcos ntdt
2r|y \2m 2m?| 5

2r

0 = 2:[2 {%(1—1)%(0—0)} =0

i[icos nt+ = ! tsin nt}
2 n

b :E]. F(t)sin no. tdtzi ( ] |nntdt:| {J. tsmntdt}
n T g T 2

m|

:iz izsinnt—ltcosnt iz 0- 0 —-— 27r 0)
2zl n n ]

_ L (z2m)
272\ n n

Fourier Series
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3.30 Calculate and plot the response of the base excitation problem with base motion specified
by the velocity

y(t) = 3e™2d(t) m/s

where ®(t) is the unit step function and m = 10 kg, { = 0.01, and k = 1000 N/m. Assume
that the initial conditions are both zero.

Solution: Given:
y(t) = 3e‘“2u(t) m/s
m=10 kg, £ =0.01, k =1000 N/m

x(0)=x(0)=0

From Equation (2.61):
mx +c(x—y)+k(x—y)=0
mx +cX + kx = cy + ky
Integrate by parts to find y(t):
y(t)=] y(t)dt=3e""pt)dt
Let

When
t> 0,u(t) =1, so y(t) = 6(1— e’“z)

S0, mX +cX + kx = c(3e*“2) + 6k(1_ et/z)

Since ¢ =2¢{vkm =2 kg/s,
10% + 2X +1000x = 6000 —5994e "2

The solution is given by equation (3.13):



t

x(t)= mi%eﬁwnt J [F()errsino, (1-=)]ar

o, = \/E =10 rad/s

m
o, = ® 1-§? =10 rad/s
F (t) = 6000 — 59942

t

_i -0, _ ~712) f0.17 o _
x(t)—looe “! [(6000 5994e )e ) sm(1o(t r))}dr

x(t)=60e—o-n{i e sinf10(t—)Joe - | e—o-msin[m(t_f)}df}

0
After integrating and rearranging

x(t) = 6-5.979e"/2 — 0.0295c0510t — 0.2990sin10t m

10 T

- 46
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3.31 Calculate and plot the total response of the spring-mass-damper system of Figure 2.1 with
m =100 kg, £ = 0.1 and k = 1000 N/m to the signal of Figure 3.12, with maximum force
of 1 N. Assume that the initial conditions are zero and let T = 2w s.

Solution: Given:
m =100 kg, k =1000 N/m,{ =0.1,T =275, F . =1IN,

x(O) = X(O):O, o, :\/%:3.16 rad/s, @, =w\1-{* =3.15rad/s, o, :ZT—E =1 rad/s

From example 3.3.1 and Figure 3.10,
0 n even

F(t)nz:{ a cosnt, a = o

’n?

So, m>'<+c>'<+kx:iancosnt (n odd)
n=1

The total solution is

X(t)th(t)+§{ xm(t) (n odd)

From equation (3.33),

X, (t) = 3,/ m s cos(na)Tt—q)n)

[i:~{r ] +T220,00, T

200 nw. :
¢ = tanl[—C n_T j: tan’l(O 6325n)

o’ —n’*w? 10-n?
e 000811 Cos[m B tanl(o.eszsznﬂ
n*[ n*~19.6n” +100 | 10-n



So,

x(t) = A" sin(a)dt - 9) +n§jI . [n4 __1050602% 100}1/2 cos[nt - tanl(%ﬂ (n odd)

x(t) =—{w Ae “'sin (a)dt - 0)

+ o, Ag cos(a)dt - 9) + 2 0.00811 —sinnt—tan™ 0'6325;]

= n[n“ ~19.6n? +1oo] 10—-n

(n odd)

) = -0.00811 0.6325n
x{0)=0=—Asin6 + cos nt—tan‘l[ H n odd
) zi n?[n*~19.6n2 +100T'2 [ 10-n’ (n oca)

0=-Asinf6-0.00110
x(O) =0={w_Asing+w, Acos6

+i —0.000569 (n odd)

= | [n*-19.6n° +100]1/2[0.00493n2 +1]
0={w_Asin6 +w, Acosé —0.001186

So A =0.00117 mand 6 =-1.232 rad.

The total solution is:

x(t) = 0.00117€*%" sin(3.15t +1.23)

+) —0.00811 — co{nt—tan‘l(o'egzsznﬂ m (n odd)
n=1 | n? [n“ —19.6n° +100} 10-n
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3.32 Calculate the total response of the system of Example 3.3.2 for the case of a base motion
driving frequency of wy, = 3.162 rad/s.

Solution: Let m, = 3.162 rad/s. From Example 3.3.2,

F (t) =cYw, cosm,t +KYsinm,t = 1.581cos(3.162t) +50sin (3.162t)

Also,

k c
o =,—=3162rad/sand { = =0.158
\/; 2+ km
o, = o 1-§? =31.22 rad/s

The solution is

1/2

a)rf + (ZCCOb)Z
(02 - w2) +(2t0,0,)
x(t) = Ae™ sin(31.22t + 9) + 0-0505008(3.162t - ¢2)

200, @
¢, = tan‘{%} =0.0319 rad
wn - wb

x(t) = Ae"'sin (a)dt + 0) +oY cos(cobt —, - ¢2)

®
0, = tan‘l( " j:1.54 rad
20w,

So,
x(t) = Ae™sin(31.22t +6) +0.0505c0s(3.162t -~ 1.57)

x(t) = ~5Ae™ sin(31.22t + 6) + 31.22Ae”™ cos(31.22t + 8) - 0.16sin(3.162t — 1.57)
= x(0) = 0.01= Asin6 +0.0505(0)
= %(0) = 3-5Asin6 +31.22 Acos6 +0.16(1)

So, A=0.0932 mand 6 =0.107 rad

The total solution is

x(t) = 0.0932¢™ sin (31.22t +0.107) + 0.0505c0s(3.162t ~ 1.57) m
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Problems and Solutions for Section 3.4 (3.35 through 3.38)

3.35 Calculate the response of
mX +cX + kx = F O(t)
where ®(t) is the unit step function for the case with xo = vp = 0. Use the Laplace
transform method and assume that the system is underdamped.

Solution:

Given:
mX +cX + kx = F u(t)

F
X+ 20w X+ o2x =2 u(t) ()
m
Take Laplace Transform:

$?X(s) + 28w X (S) + w2 X (s) = %[%j

_ F/m [ F, w?
X(s)= 2 2\ 2 2 2
(s +2{w s+ ! )s mo, s(s +2{w s+ a)n)
Using inverse Laplace tables,

x(t) = % —~ kfﬁeg“’"t sin (a)nall— £+ cosl((,“))
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Using the Laplace transform method, calculate the response of the system of
Example 3.4.4 for the overdamped case (£ > 1). Plot the response for m = 1 kg, k
=100 N/m, and { = 1.5.

Solution:
From example 3.4.4,

mx + cx + kx = 6(t)

X+ 200 %+l = %5(0

¢>1

Take Laplace Transform:

$?X(s) + 28w sX(s) + w2 X (s) = 1
X (s) = 1/m 1/m

S +20w s+ w? - (s+a)(s+h)

Using inverse Laplace tables, a = —{w_+ wn\/CZ -1, b=-{o - wn,/gz -1

—fo,t

€ W AJC? -1t - szlt
x(t):—[e"g —e ™ }
2me /% -1

—-15t

Inserting the given values yields: x(t) = ——| e***® — g8 | m
gthe g y (t) 22_36[ ]

) = e lj‘t‘ JLst - 11184
2236

00N
_3 |

8x10™H
3 |
6107 '

|
0

2407
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3.37 Calculate the response of the underdamped system given by
mX +cx +kx = Fe™
using the Laplace transform method. Assume a > 0 and that the initial conditions
are all zero.
Solution:

Given:
mx + cX + kx = Foe‘at a >0, initial conditions=10

Rewrite:

at

F
X+20m X +w’x =—Le
m
Take Laplace Transform:

i , F( 1
$X(s) + 20w sX(s) + w; X(s) = ﬁ[m}

Folm

s’ +20w s+ a)rf)(s +a)

X(s):(

For an underdamped system, the inverse Laplace Transform is

- I:0 ot m : _ -t
X(t)_[m(zgwna—wj—az)]{e [ o, sm(wdt)+cos(wdt)} e }
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3.38  Solve the following system for the response x(t) using Laplace transforms:

100X (t) +2000x(t) =506(t)

where the units are in Newtons and the initial conditions are both zero.

Solution:

First divide by the mass to get
X +20x(t) =0.56(t)

Take the Laplace Transform to get
(s*+20)X(s)=0.5

So

0.5

X(s) =
(®) s +20

Taking the inverse Laplace Transform using entry 5 of Table 3.1 yields

05 o
\/5 s2 + @2

1 .
= X(t) = —=sin @t

NG

X(s) = where o = \/%




Problems and Solutions Section 3.5 (3.39 through 3.42)

3.39 Calculate the mean-square response of a system to an input force of constant PSD, S,

and frequency response function H (a)) = 10
i3 +2 ja)i

Solution:

Given: S, =S and H (w) = 3+1§j
®

The mean square of the response can be found from Eqs (3.66) and (3.68):
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3.40 Consider the base excitation problem of Section 2.4 as applied to an automobile model of
Example 2.4.1 and illustrated in Figure 2.16. In this problem let the road have a random
stationary cross section producing a PSD of Sp. Calculate the PSD of the response and
the mean-square value of the response.

Solution: Given: S =S,
From example 2.4.1: m =1007 kg, ¢ = 2000 kg/s, k = 40,000 N/m
2000

— C —
¢ 2Jkm  24/40000-1007

=0.157  (underdamped)

So,
— 1 = 1
H (a)) Kk—ma? + jcw  4x10* 10070 + 2000 jo
H(o) = e
(4><104—1007a)2) +(2000)" joo?

2 1
‘H ((0)‘ T 1.01x10°0* — 4.06 10" @ +1.6 x 10°

The PSD is found from equation (3.62):
5. (o) =M (o)'s, (o)
1

S =
b (a)) 1.01x10%w* —8.46 x10"w? +1.6 x10°

The mean square value is found from equation (3.68):

|2

dw

410" —1007w? + 2000 jo|
Using equation (3.70) yields

S

T2 — 0

- 8x10Y
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3.41 To obtain a feel for the correlation functions, compute autocorrelation Ry(t) for the
deterministic signal Asinmnt.

Solution: The autocorrelation is found from
T

2
R,(7) = lim % [ Asin(a,t) Asin(a, (t + 7))t

T

N .
= ‘!m ?:[sm(a)nt)sm(wnt)cos(wnr)dt
AT
+1im ?Jsin(wnt)cos(a)nt)sin(a)nr)dt
0

-0
Simplifying yields:

A*cos(w, 7)
2

R, (7) =
3.42 Verify that the average x — X is zero by using the definition given in equation (3.47).

Solution:

T

The definition is T = lim = j f(t)dt. Let
0

ToeT

T—ooo T—oo

- 17 17
f = lim = [x(t)dt - lim = [ xdt
T 0 T 0



Problems and Solutions Section 3.6 (3.43 through 3.44)
3.43 A power line pole with a transformer is modeled by
mX +kx = -y
where x and y are as indicated in Figure 3.23. Calculate the response of the relative

displacement (x —y) if the pole is subject to an earthquake base excitation of (assume the
initial conditions are zero)

Solution: Given: mX +kx = -y

Al1-L| o<t<at
y=1 U 4

(0)=x(0)=0

The response x(t) is given by Eq. (3.12) as
«()=] F()h(t—7)or
0

where h(t — r) = isin o, (t - 1') for an undamped system
me_

For OStSZtO,



x(t) = ;[A( —é][miunjsinwn (t-7)dz

A t 1 .
x(t)= 1-—+ SiInmw t—cosw t
mwz t ) n n

0 tOn

For t>2to,

x(t):zf A[i_%j(mio Jsmwn (1-7)ar

x(t) = mﬁ‘)z LO; (sin o t-sinm (t - 2t0)) —Cosm t—Ccosm, (t - 2t0)}

Find y(t) when0 <t <2t ,

o4

y(t)= At—zit2 +C,

0

Ao, A
y(t)==t*——t*+Ct+C
() 2 60 1 2

Using IC's yields C; = C, = 0. Find y(t) when t > wty:

y(t)=0
y(t)=c,
y(t)=ct+c,

Using IC's yields C3 = C4 =0. The relative displacement x(t) — y(t) is therefore:

For OstSZtO

x(t)— y(t) = mﬁ)z {1—%+ 2) sina)nt—coswnt}—gt2 +6—'i;t3

0 0""n

For t > 2t,

x(t)—y(t): 2{ 2) (sinwnt—sinwn(t—2to))—cosa)nt—coswn(t—2t0)}
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3.44  Calculate the response spectrum of an undamped system to the forcing function

Fosinﬂ—t OStStl
F(t)= t
0 t>t

1
assuming the initial conditions are zero.

Solution: Letw=m/t. The solution is the homogeneous solution x(t) and the
particular solution xp(t) orx(t):xh(t)+xp(t). Thus

) F )
x(t) = Acosw t+ Bsinw t + 0 > |sinwt
k — mw

where A and B are constants and ay, is the natural frequency of the system:
Using the initial conditions x(O) = x(O) =0 the constants A and B are

-Fo
A=0, B= 0
wnik—mwzi

so that x(t) :%{sinwt—wﬂsinwnt}, o<st<t
1-(o/o,

Which can be written as (where 6 = F / k the static deflection)
X(t
(): L ]z{sinﬂtfsinzm},oqql

o
[T
(Ztl

and wheret =27 / @ . After t; the solution is a free response

x(t) = A'cosw t+B'sino t, t>t
where the constants A' and B' can be found by using the values of x(t = t;) and
X(t = tl), t>t,. This gives

T . 2mt ' L
x(t :tl) = a{—gsm . 1} =A'coso t +B'sinw t,
1

T T 2t )
X(t:tl): {—t——t—cos 1}=—conA'SIna)nt1+oonB'coscont

T
where

These are solved to yield



ar .
A'=—sinw t,

ot i

ni

So that after t; the solution is

x(t) _ (T/tl)

o 2{1—(1/ 2t

B':—a—ﬂ[1+ cosot, |

] {smzﬂ(t

wntl

i_ -

T 7T

]

—sin2x—
T

t
],tztl



Problems and Solutions for Section 3.7 (3.45 through 3.52)
3.45 Using complex algebra, derive equation (3.89) from (3.86) with s = jw.

Solution: From equation (3.86):

1/2

_ L [ L J
m(jo ) +(cio)+k | \k=mo®—cjo

\H (iw)\ = L — which is Eq. (3.89)

l=mo] +(ca)

3.46  Using the plot in Figure 3.20, estimate the system’s parameters m, ¢, and k, as well as the

natural frequency.

Solution: From Fig. 3.20
1 2=k=05

k
/k
w=wn=0.25= —=m=8
m

1. 4.6 = ¢=0.087
cw



3.47
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Using the values determined in Problem 3.46 plot the inertance transfer function's
magnitude and phase for this system.

Solution: From Problem 3.46

l:2=>k:0.5,a>:co =0.25= h:>m:8,iz4.6:>c:0.087
k n m cw

The inertance transfer function is given by Eq. (3.88):

2

S
SH(s)=— >
ms- +cs + k

Substitute s = jw to get the frequency response function. The magnitude is given by:

o’ °

(i0) H(io) - J -

(k-me?) +(co) \/(0.5—80)2)2 +(0.0870)

The phase is given by

6= tan™ Imaginary part of frequency response function
Real part of frequency response function

Multiply the numerator and denominator of (jco)2 H (ja)) by (k - mwz) —Cjw to get

io) H{jo :—a)z(k—mw)+cja)3
( ) ( ) (k—ma)z)2+(cw)2

3
So, ¢ =tan™ w =tan™ O(jﬂ
-’ (k -~ mwz) 8w - 0.5

The magnitude and phase plots are shown on a semilog scale. The plots are given in the
following Mathcad session




d(3) = atah 0.0287-0)
8w —-05

2
w

2

J[0.52 - 8w )2 +(0087-0)°

L

o)

10

0 ‘d‘g 04 06 03
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3.48 Using the values determined in Problem 3.46 plot the mobility transfer function's
magnitude and phase for the system of Figure 3.20.

Solution: From Problem 3.46
1 k

—=2=k=05w=w =0.25= —:>m:8,iz4.6:>c:0.087
k n m cw

The mobility transfer function is given by equation (3.87):

_ S
SH(S)_ ms® +cs+k

Substitute s = jw to get the frequency response function. The magnitude is given by

(o) {io) = T—r—= g
| ‘J

(k- jo?) +(co) \/(0.5—8(02)2 +(0.0870)

The phase is given by

6= tan™ Imaginary part of frequency response function
Real part of frequency response function

Multiply the numerator and denominator of joH (ja)) by j and by —(k — mwz) j—cw to
get

ja)(k - ma)z) +cw’

(k —~ mcoz)2 + (coo)2

w(k —~ mcoz) 0.5— 8w?
So, p=tan™| ———— |=tan"| ———

(jo)H(jo)=

Cw 0.087w

The magnitude and phase plots are shown on a semilog scale.



P
w

2
(0.52 _so?) + (0.087-63)°

2..
2..
| I
H(w) “ 1. .
| 7 L 0% 04 06 03
||II -1 |
| '\ -
(= / — { -2
0.1 1 10
w

3.49 Calculate the compliance transfer function for a system described by

a +bx + cx + di +ex = f(t)
where f(t) is the input force and x(t) is a displacement.

Solution:
. - X(s)
The compliance transfer function is -
S

Taking the Laplace Transform yields
(as4 +Dbs® +cs® +ds + e) X (s) = F(s)

X (s) 1

So, =
F(s) as* +bs®+cs® +ds+e




3.50 Calculate the frequency response function for the compliance of Problem 3.49.

Solution: From problem 3.49,

1
His)=
( ) as* +bs®+cs’ +ds+e
Substitute s = jw to get the frequency response function:

H(jw): a(jw)4 +b(jw)3+c(jw)2 +d(jw)+e

an’ —cw® +e— j(—ba)3 + da))

0 o + oo

3.51 Plot the magnitude of the frequency response function for the system of Problem 3.49 for

a=1b=4,c=11d =16, ande =8.

Solution: From Problem 3.50
aw’ —cw’ +e— j(—ba)3 + da))

" (jw) i (aco4 —cw’ + e)2 + (—bco3 + da))2

The magnitude is

H(jo)|= =

\/(co4 —11w* +8)* + (4w’ +16w)°
This is plotted in the following Mathcad session:

1

H(r.ujl =
4 3 2 312
w o —=11wm +8] + 6w —4w
|
0.1~ —
Hwa])
nos — —
i |
0.1 1 in
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3.52  An experimental (compliance) magnitude plot is illustrated in Fig. P3.52. Determine
,{,c,m, and k. Assume that the units correspond to m/N along the vertical axis.

% » i .
SREDE 2 )

Solution: Referring to the plot, it starts at

H@i| =

Thus: 0.05= % =k =20 N/m
At the peak, m, = w = 3 rad/s. Thus the mass can be determined by

k
m=— =m=222kg
)

n

The damping is found from

i:0.11:>c:3.03 kgls = ¢= ¢ 3.03

cw oJkm 2420222

=0.227



Problems and Solutions Section 3.8 (3.53 through 3.56)
3.53 Show that a critically damped system is BIBO stable.
Solution:

For a critically damped system
1 ~0,(t-2)
h(t—7)==(t-7)e ™
(t-7)= 1 (t=7)

Let f(t) be bounded by the finite constant M. Using the inequality for integrals and
Equation (3.96) yields:

(0 <] f@n(t- ) de = j M Lt e)er e

0

The function h(t — t) decays exponentially and hence is bounded by some constant times
1/t, say My/t. This is just a statement the exponential decays faster then “one over t”
does. Thus the above expression becomes;

x| <M j.%dr = MM,
0

This is bounded, so a critically damped system is BIBO stable.



3.54  Show that an overdamped system is BIBO stable.

Solution: For an overdamped system,

eswn(w)[e(wn@)(w) (mﬂ)(m)}

1
hit—7)=——F——
( ) 2me \§? -1
Let f(t) be bounded by M,

From equation (3.96),

i

(1)< m

t)‘s M ‘h(t—f)‘df
1
t

2mo_J¢? -1

x(t) < M -1 —e(m"Jﬁ{m")t
‘ (t)‘_men\/Cz_ll(“’n\/Cz_l_C&)](l j

-1 (wn 52—1—cmn]t
[wnJe”—wa(le J]

[on §2—l—§wn t
Since @ /{*-1-{w, <0, then 1—e is bounded.

dr

!
!

e—cwn«-f){e(wn ) Ao 42—1)&—1))

[on §2 -1-%o, |t

Also, since - /(> —1-{w_ <0, then 1—e is bounded.

Therefore, an overdamped system is BIBO stable.
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Is the solution of 2X +18x = 4cos2t + cost Lagrange stable?

Solution: Given
2X +18x = 4cos2t + cost

The total solution will be

x(t) =X, (t) + X, (t) + X, (t)

From Eq. (1.3): X, (t) = Asin(a)nt +¢)
f
From Eq. (2.7): X oy (t) = ?EZZCOSZ'[
—_ foz
and Xp, (t) = wrf T cost

Adding the solutions yields

f f

01 01
772 COS2t + 7 7

cost|< M

‘x(t)‘ = Asin(3t + <p) +

Since3#2,3#1, and the homogeneous solution is marginally stable, this system is

Lagrange stable.
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3.56  Calculate the response of equation (3.99) for x, =0,v, =1 for the case thata =4 and b =

0. Is the response bounded?
Solution: Given:x, =0,v, =1La=4,b=0. From Eq. (3.99),

X+ X+4X =ax +hbx =4x

So, X+x=0

Let
x(t) = Ae™
x(t) = 1Ae™
x(t) = 22Ae™

Substituting,
A2 Ae™ + AAe™ =0
A+A=0

So, 4,,=0,-1

The solution is

()= A6 + A = A A

x(t)=-Ae™
x(0)=0=A+A
x(0)=1=-A,

So, A =landA =-1
Therefore,
x(t) =1-¢*

Since‘x(t)‘ = ‘1— e“‘l, the response is bounded.
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Problems and Solutions from Section 3.9 (3.57-3.64)

3.57*. Numerically integrate and plot the response of an underdamped system
determined by m= 100 kg, k = 1000 N/m, and ¢ = 20 kg/s, subject to the initial
conditions of x, = 0 and v, = 0, and the applied force F(t) = 30d(t -1). Then plot the

72

exact response as computed by equation (3.17). Compare the plot of the exact solution to

the numerical simulation.

Solution: First the solution is presented in Mathcad:

I (Eh =
k e
w0y o0 an= = BT =
m C
FO =30 wn = 3 162 S =1 ¢ o= 0032
2 afk-m
¢ Fi Fi
A = atan " ? = [0.03 — = 0.03002 E-wn = 0.1
- 2
1= a1 — &
k
a m=|—
wd = wi-al — & wd = 31607 A = 0.032 )
(T
[[FO FO
xalt) = el e m]-cns[md- (t—1m) — El] d (1 —10)
2
i kol — ¢
—_— D 1
X = 0 Xl
) Dit, ) = 2 Fi
-2 Cown X, —wn X+ —F (1 -1
Gan¥, ot —E(1-1)
Z = akfixed (3{,0,30,2000,0)
g e
ti=2 ¥ =xa(t)  xn =217
0.0s T
n.od +
i
x
I Y3
1] 3 10 1I5 20 23 S:EI
' =
e
A [l [

The Matlab code to provide similar plotsis given next:
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%Numerical Solutions
%Problem #57

clc

clear

close all

%Numerical Solution
x0=[0;0];

tspan=[0 15];

[t,x]=ode45("prob57a*,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #57%);
xlabel("Time, sec.");
ylabel ("Displacement, m");
hold on

%Analytical Solution
m=100;

c=20;

k=1000;

F=30;

w=sqrt(k/m);
d=c/(2*w*m);
wd=w*sqrt(1-d"2);

to=1;
phi=atan(d/sqrt(1-d"2));

%For t<to
t=linspace(0,1,3);
x=0.*t;
plot(t,x,"*");

%for t>=to

t=linspace(1,15);

x=F/k-F/(k*sqrt(1-d"2)) .*exp(-d.*w.*(t-to)) .*cos(wd.*(t-to)-phi);
plot(t,x,"*");

legend("Numerical®, “Analytical”)

%M-File for Prob #50

function dx=prob(t,x);

[rows, cols]=size(X);dx=zeros(rows, cols);
m=100;

c=20;

k=1000;

F=30;

if t<1
dx==0;
else
dx(1)=x(2);
dx(2)=-c/m*x(2) - k/m*x(1) + F/m;
end
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3.58*. Numerically integrate and plot the response of an underdamped system
determined by m= 150 kg, and k = 4000 N/m subject to the initial conditions of x, = 0.01
m and v, = 0.1 m/s, and the applied force F(t) = F(t) = 15®(t -1), for various values of the
damping coefficient. Usethis“program” to determine a value of damping that causes the
transient term to die out with in 3 seconds. Try to find the smallest such value of
damping remembering that added damping is usually expensive.

Solution: First the solution is given in Mathcad followed by the equivalent Matlab code.

2= 150 | _ 4000w e F c=710 0= 001 0 =01
m c
wn = ¢ =
24fkem

FO =15 t0 =1

¢ =
8 = atan L 8= . 2 7 7
1o wd = wnyf 1-¢ s G0+ Conx0)"+ (x0-wd)
. wd?
wd = . x0-wd
e mn[vo n C-wn-XOJXh(t) = a8 i (ud 4 §)
FoO FO — & on(i—
ga(t) = || = - ———— e S twod (- t0) — 8] | [ @t - t0) + zh(p)
k 2
o 12
xa(t) = "@ __F0 gm0 o 10y — 8]:|:|~‘i>(t— £0) + h(t)
K 3
el 1-¢
X1
(vo] &% 22 on X - il Xg+ 12 Bt - 10)  FO
m E) = T
7 ‘= rkfixed(3,0,30,2000 D)
A — 0
t=2 %= xat) mn = AL 3:=F()
0.0
1|I 'II\
M g *.L
X | .
P o
L S - | ¢ =710
0\ 2 4 6
- 0.01-

A vaue of ¢ =710 kg/swill do the job.
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%Vibrations
%Numerical Solutions
%Problem #51

clc
clear
close all

%Numerical Solution

x0=[0.01;0];
tspan=[0 15];

[t,x]=oded45("prob5la”,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #517%);
xlabel("Time, sec.");
ylabel ("Displacement, m");
hold on

%Analytical Solution

m=150;

c=0;

k=4000;

F=15;

w=sqrt(k/m);
d=c/(2*w*m) ;
wd=w*sqrt(1-d"2);

to=1;
phi=atan(d/sqrt(1-d"2));

%for t<to
t=linspace(0,1,10);
x0=0.01;

v0=0;
A=sqrt(vON2+(x0*w)"2)/w;
theta=pi/2;
X=A.*sin(w.*t + theta);
plot(t,x,"*")

%for t>=to

t=linspace(1,15);

Xx2=F/k-F/ (k*sqrt(1-d™2)) .*exp(-d.*w.*(t-to)) .*cos(wd.*(t-to)-phi);
X1=A.*sin(w.*t + theta);

X=X1+x2;

plot(t,x,"*");
legend("Numerical®, “Analytical”)
%Clay

%Vibrations

%Solutions
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%M-File for Prob #51

function dx=prob(t,x);

[rows, cols]=size(X);dx=zeros(rows, cols);
m=150;

c=0;

k=4000;

F=15;

if t<l
dx(1)=x(2);
dx(2)=-c/m*x(2)- k/m*x(1);
else
dx(1)=x(2);
dx(2)=-c/m*x(2) - k/m*x(1)+ F/m;
end
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3.59*. Solve Example 3.3.2, Figure 3.9 by numerically integrating rather then using
analytical expressions, and plot the response.

Solution: Both Mathcad and Matlab solutions follow:
[l=—"—-—"———""—"——Prob 3.52

¥0 =001 %0:=3  whi=3 : ¢ =10

k = 1000

k
Wi = [— ¢o= wi = 31.623
i

T =005
2-afk-m
2 =
wd = i all —q wd = 31.22499 B =153
A = 0.09341 d=0.1074

xa ] 1= dee bt si.nl[mui-t + ¢]| + 0.05-cos |{3-t - EIII

Xi
Dit,X) = 2 c k _
—E-Q-mn-}{l — o Xy + —¥-wh-cog |[mh-t]| + —-‘Et'-smlimh-t]l
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+
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— m = Z
x = xalt)
01T
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%Numerical Solutions
%Problem #53

clc

clear

close all

%Numerical Solution
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x0=[0;0];
tspan=[0 10];

[t,x]=o0ded45("prob53a”,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #53%);
xlabel("Time, sec.");
ylabel ("Displacement, mm");
hold on

%Analytical Solution
t1=0.2;
t2=0.6;

%for t<to

t=linspace(0,tl);
x=2.5*t-4.56.*sin(0.548.*t);
plot(t,x,"*");

%for tl<t<t2

t=linspace(tl,t2);

x=0.75 - 1.25.*t + 6.84.*sin(0.548*(t-tl1))- 4.56.*sin(0.548.*t);
plot(t,x,"*");

%for t2<t

t=linspace(t2,10);
x=6.84_.*sin(0.548_*(t-t1))-2.28.*sin(0.548_*(t-1t2))-
4.56.*sin(0.548.*t);
plot(t,x,"*");
legend("Numerical®, “Analytical”)
%Clay

%Vibrations

%Solutions

%Clay

%Vibrations

%Solutions

%M-File for Prob #52

function dx=prob(t,x);

[rows, cols]=size(X);dx=zeros(rows, cols);
m=1;

c=10;

k=1000;

Y=0.05;

wb=3;

a=c*Y*wb;

b=k*Y;
alpha=atan(b/a);
AB=sqgrt(a”2+b”2)/m;

dx(1)=x(2);
dx(2)=-c/m*x(2)- k/m*x(1)+ a/m*cos(wb*t) + b/m*sin(wb*t);
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3.60*. Numerically simulate the response of the system of Problem 3.21 and plot the
response.

Solution: The solutionin Matlab is
%Clay

%Vibrations

%Numerical Solutions
%Problem #53

clc
clear
close all

%Numerical Solution

x0=[0;0];
tspan=[0 10];

[t,x]=ode45("prob53a”,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #53%);
xlabel("Time, sec.");
ylabel ("Displacement, mm");
hold on

%Analytical Solution

t1=0.2;
t2=0.6;

%for t<to

t=linspace(0,tl);
x=2.5*t-4.56.*sin(0.548.*t);
plot(t,x,"*");

%for tl<t<t2

t=linspace(tl,t2);

x=0.75 - 1.25.*t + 6.84.*sin(0.548*(t-tl1))- 4.56.*sin(0.548.*t);
plot(t,x,"*");

%for t2<t

t=linspace(t2,10);
x=6.84_.*sin(0.548_*(t-t1))-2.28.*sin(0.548_*(t-1t2))-
4.56.*sin(0.548.*t);

plot(t,x,"*");

legend("Numerical®, “Analytical”)

%Clay
%Vibrations
%Solutions
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%M-File for Prob #53

function dx=prob(t,x);
[rows, cols]=size(Xx);dx=zeros(rows, cols);

m=5000;
k=1.5e3;
ymax=0.5;
F=k*ymax;
t1=0.2;
t2=0.6;

if t<tl

dx(1)=x(2);

dx(2)= - k/m*x(1)+ F/m*(t/tl);
elseif t<t2 & t>tl

dx(1)=x(2);

dx(2)= - k/m*x(1)+ F/*t1*m)*(t2-1t);
else

dx(1)=x(2);

dx(2)= - k/m*x(1);
end
[l =——————Figure No. 1
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3.61*. Numerically simulate the response of the system of Problem 3.18 and plot the
response.

Solution: The solutionin Matlabis
%Clay

%Vibrations

%Numerical Solutions

%Problem #54

clc
clear
close all

%Numerical Solution

x0=[0;0];
tspan=[0 10];

[t,x]=oded45("prob54a”,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #54%);
xlabel("Time, sec.");
ylabel ("Displacement, m");
hold on

%Analytical Solution
to=4;

%for t<to
t=linspace(0,to);
x=5*(t-sin(t));
plot(t,x,"*");

%for t>=to
t=linspace(to,10);
x=5*(sin(t-to)-sin(t))+20;

plot(t,x,"*");
legend("Numerical®, “Analytical”)
%Clay

%Vibrations

%Solutions

%M-File for Prob #54

function dx=prob(t,x);
[rows, cols]=size(X);dx=zeros(rows, cols);

mx 3
(UL

1
1
2

Ouit us



3-

to=4;

ifT t<to

dx(1)=x(2);

dx(2)= - k/m*x(1)+ F/m*(t/to);
else

dx(1)=x(2);

dx(2)= - k/m*x(1)+ F/m;
end
[|=——————Figure No. 1
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3.62*. Numerically simulate the response of the system of Problem 3.19 for a2 meter
concrete wall with cross section 0.03 m? and mass modeled as lumped at the end of 1000
kg. Use F, =100 N, and plot the response for the case t,=0.25 s.

Solution The solution in Matlab is:

%Numerical Solutions
%Problem #3.62

clc
clear
close all

%Numerical Solution

x0=[0;0];
tspan=[0 0.5];

[t,x]=o0ded45("prob55a-”,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #55%);
xlabel("Time, sec.");
ylabel ("Displacement, m");
hold on

%Analytical Solution

o
[eNc N o)
w @D

o
“r ©ur

*

RMNOWER

TMX =2 M3
>
P S

o
o

w=sqrt(k/m);
to=0.25;

%for t<to

t=linspace(0,to);

x=F/k*(1-cos(w*t))+ F/(to*k)*(1/w*sin(w*t)-t);
plot(t,x,"*");

%for t>=to

t=linspace(to,0.5);

x=-F/k*cos(W*t)- F/(w*k*to)*(sin(w*(t-to))-sin(w*t));
plot(t,x,"*");

legend("Numerical®, “Analytical”)

%Clay

%Vibrations

%Solutions

%M-File for Prob #3.62



function dx=prob(t,x);
[rows, cols]=size(Xx);dx=zeros(rows, cols);

m=1000;
E=3.8e9;
A=0.03;

1=2;
k=E*A/1;
F=100;
w=sqrt(k/m);
to=0.25;

if t<to
dx(1)=x(2);
dx(2)= - k/m*x(1) + F/m*(1-t/to);
else
dx(1)=x(2);
dx(2)= - k/m*x(1);

end
[[——————r7——m—m——"vw Figure MNo. 1
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3.63*. Numerically simulate the response of the system of Problem 3.20 and plot the
response.

Solution The solution in Matlab is:

%Clay

%Vibrations

%Numerical Solutions
%Problem #56

clc
clear
close all

%Numerical Solution

x0=[0;0];
tspan=[0 2];

[t,x]=o0ded45("prob56a”,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #56%);
xlabel("Time, sec.");
ylabel ("Displacement, m");
hold on

%Analytical Solution

t=linspace(0,2);
x=0.5*t-0.05*sin(10*t);
plot(t,x,"*");
legend("Numerical®, “Analytical”)

%Clay
%Vibrations
%Solutions

%M-File for Prob #56

function dx=prob(t,x);

[rows, cols]=size(Xx);dx=zeros(rows, cols);
m=1;

k=100;
F=50;

dx(1)=x(2);
dx(2)= - k/m*x(1) + F/m*(t);
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3.64*. Compute and plot the response of the system of following system using numerical
integration:
10X(t) + 20x%(t) +1500x(t) = 20sin 25t + 10sin15t + 20sin 2t

with initial conditions of X, = 0.01 m and v, = 1.0 m/s.

Solution The solution in Matlab is:
%Clay

%Vibrations

%Numerical Solutions
%Problem #57

clc
clear
close all

%Numerical Solution

x0=[0.01;1];
tspan=[0 5];

[t,x]=oded45("prob57a*,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #57%);
xlabel("Time, sec.");
ylabel ("Displacement, m");
hold on

%Analytical Solution

m=10;

c=20;

k=1500;
w=sqrt(k/m);
d=c/(2*w*m) ;
wd=w*sqrt(1-d"2);

Y1=0.00419;
ph1=3.04;
wb1=25;

Y2=0.01238;
ph2=2_.77;
wb2=15;

Y3=0.01369;
ph3=0.0268;
wb3=2;

A=0.1047;
phi=0.1465;



3- 88

x=A_*exp(-d*w.*t) . *sin(wd*t+phi)+ Yl.*sin(wbl*t-phl) + Y2*sin(wb2*t-
ph2) + Y3*sin(wb3*t-ph3);

plot(t,x,"*")

legend("Numerical®, “Analytical”)
%Clay

%Vibrations

%Solutions

%M-File for Prob #57

function dx=prob(t,x);
[rows, cols]=size(Xx);dx=zeros(rows, cols);

m=10;
c=20;
k=1500;

dx(1)=x(2);
dx(2)= -c/m*x(2) - k/m*x(1) + 20/m*sin(25*t) + 10/m*sin(15*t) +
20/m*sin(2*t) ;
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o
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Problems and Solutions Section 3.10 (3.65 through 3.71)

3.65*. Compute the response of the system in Figure 3.26 for the case that the damping
islinear viscous and the spring is a nonlinear soft spring of the form
k(x) = kx — kx*

and the system is subject to a excitation of the form (t; = 1.5and t, = 1.6)

F(t) =1500[@(t—t,) - D(t —t,)| N
and initial conditions of x, = 0.01 m and v, = 1.0 m/s. The system has amass of 100 kg, a
damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m. The value
of k, istaken to be 300 N/m®. Compute the solution and compare it to the linear solution
(k, = 0). Which system has the largest magnitude? Compare your solution to that of
Example 3.10.1.
Solution: The solution in Mathcad is

x0=001v0=1 m:=100 k:=2000 kl:=300  ¢:=30

FO = 1500 1= 15 ..
m Ry mof)o= o ¢ =003
=0 m =23
Xzz[ ]Y:X
v0

F(t) = f0-B(t - t1) — f0-B(t — t2)

X1
Di{t,2) =
~2.2.n-X] — wn’-Xg + [u-(xg)3 + f(t)]
T

Lit,¥) =
| (—2-2.0n-¥) - wnd ¥g) + £08)
7 = rfixed(X,0, 10,2000 D)

O (I S W = thfixed(Y,0,10,2000,1)

xL = W<1>
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0.67
AI
34} ||'K | Fﬂh‘ /\ﬁi N
: ./A II | f‘ / ‘51 J'\
X— / \\ !f A {11 ll|11 ! j 3{ 4;': ‘]s“ ~..” \65
" \ R v Y7 5
..... _ g.}.o \/ 2 \ \ 4 Y 7 . vy 8
E 1H ‘L‘J >
- 0.4t W/
- 0.6
t
t:=0,0001.55

E(1) = f0-B(t - t1) - F0-B(t—12)
157 '

10t
F(b

5..

Note that for this load the load, which is more like an impulse, the linear and nonlinear
responses are similar, whereas in Example 3.10.1 the applied load is a “wider” impulse

and the linear and nonlinear responses differ quite a bit.

3.66*. Compute the response of the system in Figure 3.26 for the case that the damping is
linear viscous and the spring is a nonlinear soft spring of the form
k(x) = kx — kx*
and the system is subject to a excitation of the form (t; = 1.5and t, = 1.6)
F(t) =1500[@(t—t,) - D(t —t,)| N

and initial conditions of x, = 0.01 mand v, = 1.0 m/s. The system hasamass of 100 kg, a
damping coefficient of 30 kg/s and alinear tiffness coefficient of 2000 N/m. Thevalue

of k, istaken to be 300 N/m*. Compute the solution and compare it to the linear solution
(k, = 0). How different arethe linear and nonlinear responses? Repeat thisfor t, = 2.

What can you say regarding the effect of the time length of the pulse?

Solution: The solution in Mathcad for the caset, = 1.6 is
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[=———-————"—Prob309="———— B
x0 :=0.01 ,_ . ||
S m =100 k1= 2000 S =
[k oL 1= 3 FO :=1300 11 =15 Z =16
wn = E=— FO
m - = — =
2 n‘fﬁ o = ” =003
x0
x =[ ] T =X
s
[ =%t —1) -0t —12)
%
Dit,¥) = 2 ; L
“Z{wn K, —wn X, + [-::e,- (%) + f(tj] [
Ty
Lt,¥) = 3
(—2-§-mn-'ﬁ:’1 — Wi -Ynjl + fit)
Z := rkfived (3 ,0,10,2000 D)
Y g o=zl W= rhfived (¥ ,0,10,2000,L)

%L = wWo1F

05 T

BT
<
<N_
Q:
<
<]

SEN

A [ [»

Note in this case the linear response is almost the same as the nonlinear response.
Next changing the time of the pulse input to t, = 2 yields the following:
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[l=————————Prob309=————————— M|
x0 1= 0.01 _ . -
v = 1 m = 100 k = z000 I E
o i k . o 1= 3 Fo = 1500 11 =15 =
S = FO
in q ' = — =
2 o 0 1= — & = 0.034
x0
= T =X
o

fit) =00t —t1) — 0% (1 - 12)

Ki
Dit,x) = 2
-2 GwnH, —wn - H, + |:I3-L.- (Kuf + fI:t:I]
?1
L{t,T) = 3

(—E-Q-mn-‘fl — -YD] + £(t)
Z i= rifixed (3,010, 2000 , D)
pimptlE oot W 1= rhfixed (¥ ,0,10,2000,L)

%L = W lF

rJI' e
r ! N 4 rllh P
= 1 1 i L t -'l;:
— Ly A
L 0 RN YN VA
- - B Lt " L
lI ~|' N
I'i

4 [ DE

Note that as the step input last for alonger time, the response of the linear and the
nonlinear becomes much different.
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3.67*. Compute the response of the system in Figure 3.26 for the case that the damping
islinear viscous and the spring stiffnessis of the form

k(X) = kx—kx?

and the system is subject to aexcitation of the form (t;, = 1.5and t, = 2.5)

F(t) =1500[@(t—t,) - D(t —t,)| N
initial conditions of x, = 0.01 mand v, = 1 m/s. The system has a mass of 100 kg, a
damping coefficient of 30 kg/s and alinear tiffness coefficient of 2000 N/m. Thevalue
of k, istaken to be 450 N/m?*. Which system has the largest magnitude?
Solution: The solution is computed in Mathcad as follows:
= ProbIbl=""——————"H]

¥ =0m

] v |

ol = 1 m =100 k = z000 .

_ £ . e =45 FO:=1500 11 :=15 2 =2c
wn = o ¢ = Fo

f0i=— =003
m

fit) =f0-F{t—t) —0-Ft—12)

15'57“1
Dit,®) = 2 .
-2 Goon ¥y —on X, + [n-:,- (KD) + f(tj]
Yl
Lit,¥) = 2
(—Z-Q-mn-‘fl — -“fn) + 1t}
Z 1= akfixed (3 ,0,10,2000 ,I)
Lk g o= EilE W= rkfixed (¥ ,0,10,2000,L)

xL = wol®

NVAVATAVAY
.} .«v\(/\/

t | the actual response

Note that the linear response under predicts
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3.68*. Compute the response of the system in Figure 3.26 for the case that the damping is
linear viscous and the spring stiffnessis of the form

K(x) = kx + k,x?

and the system is subject to a excitation of the form (t;, = 1.5and t, = 2.5)

F(t) =1500[@(t—t,) - D(t —t,)| N
initial conditions of x, = 0.01 mand v, = 1 m/s. The system has a mass of 100 kg, a
damping coefficient of 30 kg/s and alinear tiffness coefficient of 2000 N/m. Thevalue
of k, istaken to be 450 N/m?*. Which system has the largest magnitude?
Solution: The solution is calculated in Mathcad as follows:

x0 = 0.01 m = 100 k = 2000
I . . FO:=1500 t1:=15 .
o \F =1 a=45 £ =130
m
C —]
= = m ’
w0 m ¢ =0034
f(t) = 0.2t —-t1) - 0-B(t - t2)
X +
D(t,X) =
_2.2.n- X — wn’ Xg + [—u-(:x:g)2 + f(t)]
Ty
Z = rkfixed(2{,0,10,2000,D) Lit,T) =
(—2-¢.0n 7] - wn? Yg) + £
t= Z<D> X = ?_',<1>
- W W= rkfized(Y,0,10,2000,L)
In this case (compared to the
| hardening spring of the previous
. problem, the linear response over
| ;.&\ predicts the time history.
- / :
XL . g .-/ H\ {P ’\L /"\‘c ’ 1'?' N /_‘
VIV ERY Y

3.69*. Compute the response of the system in Figure 3.26 for the case that the damping is
linear viscous and the spring stiffnessis of the form
k(X) = kx—kx?



and the system is subject to aexcitation of the form (t, = 1.5and t, = 2.5)

F(t) =150[@(t—t,) - d(t —t,)| N
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initial conditions of x, = 0.01 mand v, = 1 m/s. The system has a mass of 100 kg, a
damping coefficient of 30 kg/s and alinear tiffness coefficient of 2000 N/m. The value
of k, istaken to be 5500 N/m?. Which system has the largest magnitude transient? Which
has the largest magnitude in steady state?

Solution: The solution in Mathcad is given below. Note that the linear system response

isless than that of the nonlinear system, and hence underestimates the actual response.

Ll Proh 3.62 HlE
x0 := 0.01 . . =
: S m = 100 k = 2000 .= a0 =

" "JE . v i=55 FO =150 =15 ...
= m ﬁ = i E _
o o 0=—  f=003
x0
¥ :[ ] Y= ¥
w0
i) =0 F0t—1t1) — 0 &1 —12)
Ki
Dit,5) = 2
-2 Goon K —wn X + [—m- (Knjz + fl:tj]
Y1
L{t,¥) = 2
(—Z-an-‘fi — wn 'Yn) + 1(1]
Z := rkfixed (¥ ,0,10,2000, D)
R S W 1= rkfived (¥ ,0,10,2000,L)
L = wWE LT
04 T
02 e i
M i
1 1
% I AT AP o
L T VR z\'_/U"U'Us
- A
-0z .
04
' |
-
A Tl vl
3.70*. Compare the forced response of a system with velocity squared damping as

defined in equation (2.129) using numerical simulation of the nonlinear equation to that
of the response of the linear system obtained using equivalent viscous damping as
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defined by equation (2.131). Use asinitia conditions, x, = 0.01 m and v, = 0.1 m/swith a

mass of 10 kg, stiffness of 25 N/m, applied force of theform (t, = 1.5 and t, = 2.5)
Ft)=19@(t-t)- d(t—t,)| N

and drag coefficient of o = 25.

Solution: The solution calculated in Mathcad is given in the follow:

80:=001 05 gqm= 11=Oo k=25  4.=25 Fo=15
k - 4
wn = |— f0 =
m
3o
=15 12=25 ceq = |2 g
3T
__ceq
0 CE £() = 0-B(t—t1) - 0. B(t—12)
¥ =
v0 ¥ S
D(t,X) =
—on? Xy - 2 (X)) = + £
m 1| ¢ = 0.564
T
DI, Y) = ( 2 )
Z = rkfized(3{,0,20,2000,D) —2:¢wn Ty —wn Yo/ +£(1)
p= 20 o A W= rkfixed(Y,0,20,2000,D1)
%L = W(D
;
[
!
xL | |
""" ||' k. /.\.
(:’._N ['1;'- = "{ \\‘ }//—-.\ N //‘_‘\:
0 'I.H's-f A0~ 15 7w
I|\>"'.||I
_o2
t

Note that the linear solution is very different from the nonlinear solution and dies out
more rapidly.
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3.71*. Compare the forced response of a system with structural damping (see table 2.2)
using numerical smulation of the nonlinear equation to that of the response of the linear
system obtained using equivalent viscous damping as defined in Table 2.2. Use the
initial conditions, X, = 0.01 m and v, = 0.1 m/s with amass of 10 kg, stiffness of 25 N/m,
applied force of theform (t, = 1.5 and t, = 2.5)

Ft)=19@(t-t)- d(t—t,)| N
and solid damping coefficient of b = 8. Does the equivalent viscous damping
linearization, over estimate the response or under estimate it?
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Solution: The solution is calculated in Mathcad as follows. Note that the linear solution

isan over estimate of the nonlinear response in this case.

=== PrbhiIiM=———— 0 H

¥ '=0.01 vl =01 m =10 k=25 b= Fil '= 15
k i ::E
wn = | — 1M
m Z2:h
ceq =
i1 '= 5 7 =25 1T I
ceq
£ = — —
i)=&t —1) —0Fi(t—12)
0 i 2 afkm
X = Vo= e
M 1
D{t,¥) = 2 h %y
0 ml I:'| |K1| I::I
?1
L{t,T) =

2
(—Z-Q-mn-?l — wn 'Ynjl + (1)
Z 1= rifixed (% ,0,20,2000, )

A [

ti=2<0* - W= rkfived (Y ,0,20,2000,L)
' 7L = Wl
1-- rFl\.
05 +
n Ji'
o 0 U \.__/ 15
-5+
+
. ||
-
[P




