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Problems and Solutions Section 2.1 (2.1 through 2.15)  
 

2.1 To familiarize yourself with the nature of the forced response, plot the solution of a 

forced response of equation (2.2) with ω = 2 rad/s, given by equation (2.11) for a variety 

of values of the initial conditions and ωn as given in the following chart: 

 

Case x
0
 v

0
 f

0
 ωn 

1 0.1 0.1 0.1 1 

2 -0.1 0.1 0.1 1 

3 0.1 0.1 1.0 1 

4 0.1 0.1 0.1 2.1 

5 1 0.1 0.1 1 

 

Solution: Given: !  = 2 rad/sec. 

 From equation (2.11): 

  x(t) = 

n

v

!

0
sin 

n
! t + (x

0
 - 

22

0

!! "
n

f
) cos 

n
! t + 

22

0

!! "
n

f
 cos! t 

 

 Insert the values of x
0
, v

0
, f

0
, and !n for each of the five cases. 
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2.2 Repeat the calculation made in Example 2.1.1 for the mass of a simple spring-mass 

system where the mass of the spring is considered and known to be 1 kg. 

 
Solution: Given: m

sp
 = 1 kg, Example 1.4.4 yields that the effective mass is 

 m
e
 = m + 

3

sp
m

 = 10 +
3

1
 = 10.333 kg. 

 Thus the natural frequency, X and the coefficients in equation (2.11) for the system now 

become 

  

!
n

=
1000

10 + 1

3

= 9.837 rad/s, ! = 2!
n

= 19.675 rad/s

X =
f

0

!
n

2
"!

2
=

2.338

9.837
2
"19.675

2
= "8.053#10

"3
 m,  

v
0

!
n

= 0.02033 m

 

 Thus the response as given by equation (2.11) is 

 

x(t) = 0.02033sin9.837t + 8.053!10
"3

(cos9.837t " cos19.675t) m  

 
 

2.3 A spring-mass system is driven from rest harmonically such that the displacement 

response exhibits a beat of period of 0.2!  s.  The period of oscillation is measured to be 

0.02!  s.  Calculate the natural frequency and the driving frequency of the system. 

 
Solution: Given: Beat period: T

b
 = 0.2! s, Oscillation period: T

0
 = 0.02! s 

 Equation (2.13):  x(t) = 
22

0
2

!! "
n

f
sin 

  

!
n
"!

2
t

#

$
%

&

'
( sin

  

!
n

+!

2
t

"

#
$

%

&
'  

 

 So,    T
b
= 0.2! = 

!!

"

#
n

4
 

     !! "
n

 = 
!

!

2.0

4
 = 20 rad/s 

     T
0
 = 0.02!  = 

!!

"

+
n

4
 

     !! +
n

 = 
!

!

02.0

4
= 200 rad/s 

 Solving for 
n

! and !  gives: 

Natural frequency: 
n

!  = 110 rad/s 

 Driving frequency: !  = 90 rad/s 
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2.4 An airplane wing modeled as a spring-mass system with natural frequency 40 Hz is 

driven harmonically by the rotation of its engines at 39.9 Hz.  Calculate the period of the 

resulting beat. 

 
Solution: Given:  

n
! = 2! (40) = 80!  rad/s, !  = 2! (39.9) = 79.8!  rad/s 

 Beat period: T
b
= 

!!

"

#
n

4
= 

!!

!

8.7980

4

"
 = 20 s. 

 
 

2.5 Derive Equation 2.13 from Equation 2.12 using standard trigonometric identities. 

 

Solution: Equation (2.12): x(t) = 
22

0

!! "
n

f
 [cos ! t – cos 

n
! t] 

  Let  A =  
22

0

!! "
n

f
 

  x(t) = A [cos! t – cos 
n

! t] 

   = A [1 + cos! t – (1 + cos 
n

! t)] 

   = A [2cos
2

t
2

!
 – 2cos

2
tn

2

!
] 

   = 2A [(cos
2

t
2

!
 - cos

2

2

n
!

 cos
2

t
2

!
) - (cos

2
tn

2

!
 - cos

2
tn

2

!
 cos

2
t

2

!
)] 

   = 2A [(1 - cos
2

tn

2

!
) cos

2
t

2

!
 – (1 - cos

2
t

2

!
) cos

2
tn

2

!
] 

   = 2A [sin
2

t
2

!
 cos

2
t

2

!
 - cos

2
t

2

!
 sin

2
t

2

!
] 

   = 2A [sin tn

2

!
 cos t

2

!
 - cos tn

2

!
 sin t

2

!
] [sin tn

2

!
 cos t

2

!
 - cos tn

2

!
 sin t

2

!
] 

   = 2A sin 
!n "!

2
t

# 

$ 

% 

& 
 sin 

!n +!

2
t

" 

# 

$ 

% 
 

   x(t) = 
2 f

0

!n

2
" !

2
 sin 

!n "!

2
t

# 

$ 

% 

& 
 sin 

!n +!

2
t

" 

# 

$ 

% 
  which is Equation (2.13). 
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2.6 Compute the total response of a spring-mass system with the following values: k = 1000 

N/m, m = 10 kg, subject to a harmonic force of magnitude F
0
 = 100 N and frequency of 

8.162 rad/s, and initial conditions given by x
0
 = 0.01 m and v

0
 = 0.01 m/s.  Plot the 

response. 

 
Solution: Given:  k = 1000 N/m, m = 10 kg, F0=100 N, ω = 8.162 rad/s 

x0=0.01m, v0=0.01 m/s 

From Eq. (2.11):   

t
f

t
f

xt
v

tx

n

n

n

n
n

!

!!

!

!!

!
!

coscos)(sin)(
22

0

22

0
0

0

"

+

"

"+=  

srad
m

k
n /10

10

1000
===!               f

F

m
N m

0

0
100

10
10= = = /  

In Mathcad the solution is 
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2.7 Consider the system in Figure P2.7, write the equation of motion and calculate the 

response assuming a) that the system is initially at rest, and b) that the system has an 

initial displacement of 0.05 m. 

 
Solution:  The equation of motion is 

m ˙ ̇ x + k x = 10sin10t  

Let us first determine the general solution for 

˙ ̇ x +!n

2
x = f

0
sin! t  

Replacing the cosine function with a sine function in Eq. (2.4) and following the same 

argument, the general solution is: 

x(t) = A
1
sin!nt + A

2
cos!nt +

f
0

!n

2
"!

2
sin!t  

Using the initial conditions, x(0) = x
0
 and ˙ x (0) = v

0
, a general expression for the 

response of a spring-mass system to a harmonic (sine) excitation is: 

x(t) = (
v

0

!n

"
!

!n

#
f
0

!n

2
" !

2
)sin!nt + x

0
cos!nt +

f
0

!n

2
"!

2
sin!t  

Given:  k=2000 N/m, m=100 kg, ω=10 rad/s, 

  

!
n

=
k

m
=

2000

100
= 20 rad/s = 4.472 rad/s           f

0
=

F
0

m
=

10

100
= 0.1N/kg  

a) x0 = 0 m, v0 = 0 m/s 

Using the general expression obtained above: 

x(t) = (0 !
10

20
"

0.1

20
2

!10
2
)sin 20t + 0 +

0.1

20
2

! 10
2

sin10t  

  = 2.795!10
"3

sin4.472t "1.25!10
"3

sin10t  

b) x0 = 0.05 m, v0 = 0 m/s 

x(t) = (0 !
10

20
"

0.1

20
2

!10
2
)sin 20t + 0.05cos 20t +

0.1

20
2

!10
2

sin10t  

  

= 0.002795sin4.472t + 0.05cos4.472t ! 0.00125sin10t

          = 5.01"10
!2

sin(4.472t + 1.515) !1.25"10
!3

sin10t
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2.8  Consider the system in Figure P2.8, write the equation of motion and calculate the 

response assuming that the system is initially at rest for the values =
1

k 100 N/m, =
2

k  

500 N/m and m = 89 kg. 

 

Solution: The equation of motion is 

m ˙ ̇ x + k x = 10sin10 t          where    k =
1

1

k
1

+
1

k
2

 

The general expression obtained for the response of an underdamped spring-mass system 

to a harmonic (sine) input in Problem 2.7 was: 

x(t) = (
v

0

!n

"
!

!n

#
f
0

!n

2
" !

2
)sin!nt + x

0
cos!nt +

f
0

!n

2
"!

2
sin!t  

Substituting the following values 

k = 1/(1/100+1/500)= 83.333 N/m,   m = 89 kg              ω = 10  rad/s 

!n =
k

m
=

83.333

89
= 0.968 rad/s         kgN

m

F
f /112.0

89

10
0

0
===  

and initial conditions: x0 = 0, v0 = 0 

The response of the system is evaluated as 

tttx 10sin00113.0968.0sin0117.0)( !=  
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2.9 Consider the system in Figure P2.9, write the equation of motion and calculate the 

response assuming that the system is initially at rest for the values !  = 30°, k = 1000 N/m 

and m = 50 kg. 

 

Figure P2.9 

 

 Solution: Free body diagram: 

Assuming x = 0 to be at equilibrium: 

Fx = m˙ ̇ x = !k(x + ") + mgsin#$ + 90sin25t    (1) 

where  Δ is the static deflection of the spring.  From static equilibrium in the x direction 

yields 

!k" + mgsin#      (2) 

Substitution of (2) onto (1), the equation of motion becomes 

m ˙ ̇ x + k x = 90sin2.5t  

The general expression for the response of a mass-spring system to a harmonic (sine) 

excitation (see Problem 2.7) is: 

x(t) = (
v

0

!n

"
!

!n

#
f
0

!n

2
" !

2
)sin!nt + x

0
cos!nt +

f
0

!n

2
"!

2
sin!t  

Given:  v0 = 0,  x0 = 0, ! = 2.5 rad/s 

!n =
k

m
=

1000

50
= 20 = 4.472 rad/s   ,   f

0
=

F
0

m
=

90

50
=

9

5
N/kg  

 

So the response is: 

x(t) = !0.0732sin 4.472t + 0.1309sin 2.5t

m 

x 

mg sin θ 

F=90 sin 2.5 t 

Fs 

(Forces that are normal 

to the x direction are 

neglected) 

θ 
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2.10 Compute the initial conditions such that the response of : 

m x!!  + kx =  F
0
 cos! t 

oscillates at only one frequency (! ). 

 
Solution:  From Eq. (2.11): 

t
f

t
f

xt
v

tx

n

n

n

n
n

!

!!

!

!!

!
!

coscos)(sin)(
22

0

22

0
0

0

"

+

"

"+=  

For the response of tFxkxm !cos
0

=+!!  to have only one frequency content, namely, 

of the frequency of the forcing function, ω, the coefficients of the first two terms are set 

equal to zero.  This yields that the initial conditions have to be 

22

0

0

!! "
=

n

f
x    and   0

0
=v  

Then the solution becomes 

t
f

tx

n

!
!!

cos)(
22

0

"
=  

 

2.11 The natural frequency of a 65-kg person illustrated in Figure P.11 is measured along 

vertical, or longitudinal direction to be 4.5 Hz.  a) What is the effective stiffness of this 

person in the longitudinal direction? b) If the person, 1.8 m in length and 0.58 m
2
 in cross 

sectional area, is modeled as a thin bar, what is the modulus of elasticity for this system? 

 

Figure P2.11 Longitudinal vibration of a person 

Solution: a) First change the frequency in Hz to rad/s: 

  

!
n

= 4.5
cycles

s

2"  rad

cycles
= 9"  rad/s . 

Then from the definition of natural frequency: 

  
k = m!

n

2
= 65 " (9# )

2
= 5.196 $10

4
 N/m  

b) From section 1.4, the value of the stiffness for the longitudinal vibration of a beam is 

   
k =

EA

!
! E =

k!

A
=

5.196 "10
4

( )(1.8)

0.58
= 1.613"10

5
 N/m

2
= 1.613"10

5
 Pa  

 

2.12 If the person in Problem 2.11 is standing on a floor, vibrating at 4.49 Hz with an 

amplitude of 1 N (very small), what longitudinal displacement would the person “feel”? 

Assume that the initial conditions are zero.  
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Solution: Using equation (2.12) for a cosine excitation and zero initial conditions yields 

(converting the frequency from Hertz to rad/s and using the value of k calculated in 2.11): 

 

  

X =
F

0

m

1

!
n

2
"!

2
=

1

65

1

k

m
" (4.49 #2$ )

2

                           =
1

65

1

5.196 %10
4

65
" (4.49 #2$ )

2

= 0.00443347 = 0.0043 m

 

  

 

 
2.13  Vibration of body parts is a significant problem in designing machines and structures.  A 

jackhammer provides a harmonic input to the operator’s arm.  To model this situation, 

treat the forearm as a compound pendulum subject to a harmonic excitation (say of mass 

6 kg and length 44.2 cm) as illustrated in Figure P2.13. Consider point O as a fixed pivot. 

Compute the maximum deflection of the hand end of the arm if the jackhammer applies a 

force of 10 N at 2 Hz.  

 

Figure P2.13 Vibration model of a forearm driven by a jackhammer 

  
Solution: Taking moments about point O yields (referring to Example 1.4.6 for the 

inertial of a compound pendulum): 

   

m!
2

3

""! + mg
!

2
sin! = F

O
!cos! cos"t  

Using the linear approximation for sine and cosine and dividing through by the inertia 

yields: 

   

!!! +
3g

2"
! =

3F
O

m"
cos"t  

Thus the natural frequency is 
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!
n

=
3g

2!
=

3(9.81)

2(0.442)
= 5.77 rad/s   (=0.92 Hz)  

and the system is well away from resonance.  Referring to equation (2.13), the amplitude 

for zero initial conditions is (converting the driving frequency from 2 Hertz to 2(2π) 

rad/s): 

   

! =
2 f

0

"
n

2 #" 2
=

2
3F

0
!

m!
2

$

%&
'

()

3g

2!
# (2 *2+ )

2

= 0.182 rad  

Note that sin(0.182) = 0.181 so the approximation made above is valid.  The maximum 

linear displacement of the hand end of the arm  is just 

 

  
X = r ! = 0.442 "0.182 = 0.08 m  

 

2.14 Consider again the camera problem of Example 2.1.3 depicted in Figure P2.14, and 

determine the torsional natural frequency, the maximum torsional deflection experienced 

by the camera due to the wind and the linear displacement corresponding to the computed 

torsional deflection.  Model the camera in torsional vibration as suggested in the figure 

where JP = 9.817x10
-6

 m
4
 and L = 0.2 m.  Use the values computed in Example 2.1.3 for 

the mass (m =3 kg), shaft length (  ! = 0.55 m), torque (M0 = 15 x L Nm) and frequency (ω 

= 10 Hz).  Here G is the shear modulus of aluminum and the rotational inertia of the 

camera is approximated by J = mL
2
.  In the example, torsion was ignored.  The purpose 

of this problem is to determine if ignoring the torsion is a reasonable assumption or not. 

Please comment on this assumption based on the results of the requested calculation. 

 

Figure P2.14 Torsional vibration of a camera 

 

Solution: First calculate the rotational stiffness and inertia from the data given: 

   
k =

GJ
p

!
=

2.67 !10
10
! 9.817 !10

"6

0.55
= 4.766 !10

5
 N #m  

where the modulus is taken from Table 1.2 for aluminum.  The inertia is approximated by 

  J = mL
2

= 3(0.2)
2

= 0.12 kg !m
2
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The torsional natural frequency is thus 

  

!
n

=
k

J
= 1.993"10

3
 rad/s  

This is well away from the driving frequency.  To see the effect, recall equation 

magnitude of the forced response given in Example 2.1.2: 

  

2 f
0

!
n

2
"!

2
=

2M
0

/ J

!
n

2
"!

2
= 1.26 #10

"5
 rad  

Clearly this is very small.  To change this to a linear displacement of the camera tip, use  

  X = r! = (0.2)(1.26 "10
#5

) = 2.52 "10
#6

 m  

well within the limit imposed on the camera’s vibration requirement of 0.01 m.  Thus, the 

assumption to ignore torsional vibration in designing the length of the mounting bracket 

made in example 2.1.3 is justified. 

 

 

2.15 An airfoil is mounted in a wind tunnel for the purpose of studying the aerodynamic 

properties of the airfoil’s shape.  A simple model of this is illustrated in Figure P2.15 as a 

rigid inertial body mounted on a rotational spring, fixed to the floor with a rigid support. 

Find a design relationship for the spring stiffness k in terms of the rotational inertia, J, the 

magnitude of the applied moment, M0, and the driving frequency, ω, that will keep the 

magnitude of the angular deflection less then 5°.  Assume that the initial conditions are 

zero and that the driving frequency is such that 
  
!

n

2
"!

2
> 0 . 

 
Figure P2.15 Vibration model of a wing in a wind tunnel 

 
Solution: Assuming compatible units, the equation of motion is: 

   
J !!!(t) + k!(t) = M

0
cos"t # !!!(t) +

k

J
!(t) =

M
0

J
cos"t  

From equation (2.12) the maximum deflection for zero initial conditions is 
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!
max

=

2M
0

J

k

J
"# 2

< 5°
$rad

180°
=

$
36

rad

             %
2M

0

J
< (

k

J
"# 2

)
$
36

rad %
36J

$
2M

0

J
+
$# 2

36

&

'(
)

*+
< k

 



Problems and Solutions Section 2.2 (2.16 through 2.31) 
  

2.16 Calculate the constants A and !  for arbitrary initial conditions, x
0
 and v

0
, in the     case 

of the forced response given by Equation (2.37).  Compare this solution to the transient 

response obtained in the case of no forcing function (i.e. F
0
 = 0). 

 

Solution: From equation (2.37)  
 

x(t) = Ae
!"#nt

sin(# dt + $) + X cos(#t !%) &

˙ x (t) = !"# nAe
!"# nt

sin(#dt +$) + A#de
!"#nt

cos(#dt + $) ! X# sin(#t !% )

 

Next apply the initial conditions to these general expressions for position and 

velocity to get:  

x(0) = A sin! + X cos"

˙ x (0) = #$%n Asin! + A%d cos! + X% sin"
 

Solving this system of two equations in two unknowns yields:  

  

! = tan
"1

(x
0
" X cos#)$

d

v
0

+ (x
0
" X cos#)%$

n
" X$ sin#

&

'(
)

*+

A =
x

0
" X cos#
sin!

 

Recall that X has the form 

 

X =
F

0
/ m

(!n

2 "! 2
)

2
+ (2#!n! )

2
   and   $ = tan

"1 2#!n!
!n

2 "! 2

% 

& 

' 
( 

) 

*  

Now if F0 = 0, then X = 0 and A and φ from above reduce to: 

 

! = tan
"1 x

0
#d

v
0

+ x
0
$#n

% 

& 

' ( 

) 

* 

A =
x

0

sin!
=

(v
0

+$#n x
0
)

2
+ (x

0
#d )

2

#d

2

 

These are identical to the values given in equation (1.38). 



2.17  Show that Equations (2.28) and (2.29) are equivalent by verifying Equations 

(2.29) and (2.30).  

 

 

Solution: From equation (2.28) and expanding the trig relation yields 

 

xp = X cos(!t "#) = X cos!t cos# + sin!t sin#[ ]

                       = (X cos#)

As

!"# $#
cos!t + (X sin#)

Bs

!"# $#
sin!t  

 Now with As and Bs defined as indicated, the magnitude is computed: 

X = As

2
+ Bs

2
 

 and  

Bs

As

=
X sin!
X cos!

"! = tan
#1

Bs

As

$

%&
'

()
 

2.18 Plot the solution of Equation (2.27) for the case that m = 1 kg, !  = 0.01, !n
 = 2 

rad/s.  F
0
 = 3 N, and !  = 10 rad/s, with initial conditions x

0
 = 1 m and v

0
 = 1 

m/s. 

 

Solution: The particular solution is given in equations  (2.36) and (2.37).  

Substitution of the values given yields: xp = 0.03125cos(10t + 8.333!10
"3

) .  

Then the total solution has the form: 

x(t) = Ae
!0.02t

sin(2t + ") + 0.03125cos(10t + 0.008333)

= e
!0.02t

Asin2t + Bcos2t( ) + 0.03125cos(10t + 0.008333)
 

Differentiating then yields 

 

!x(t) = !0.02e
!0.02t

Asin2t + Bcos2t( ) + sin(2t + ")

       + 2e
!0.02t

Acos2t ! Bsin2t( ) ! 0.3125sin(10t + 0.008333)
 

Apply the initial conditions to get: 

 

x(0) = 1 = B + 0.03125cos(0.00833)! B = 0.969

!x(0) = 1 = "0.02B + 2A " 0.3125sin(0.00833)! A = 0.489
 

So the solution and plot become (using Mathcad): 



 

 



2.19 A 100 kg mass is suspended by a spring of stiffness 30 × 10
3
 N/m with a viscous 

damping constant of 1000 Ns/m.  The mass is initially at rest and in equilibrium.  

Calculate the steady-state displacement amplitude and phase if the mass is excited 

by a harmonic force of 80 N at 3 Hz. 

 

Solution: Given m = 100kg, k =30,000 N/m, c = 1000 Ns/m, F0 = 80 N and ω = 

6π rad/s: 

f
0

=
F

0

m
=

80

100
= 0.8 m/s

2
,     !n =

k

m
= 17.32 rad/s

" =
c

2 km
= 0.289

X =
0.8

17.32
2

+ 36# 2

( )
2

+ 2(0.289)(17.32)(6# )( )
2

= 0.0041 m

 

Next compute the angle from 

! = tan
"1

188.702

"55.323

#
$%

&
'(

 

Since the denominator is negative the angle must be found in the 4
th
 quadrant.  To 

find this use Window 2.3 and then in Matlab type atan2(188.702,-55.323) or use 

the principle value and add π to it.  Either way the phase is  θ =1.856 rad. 

 

2.20 Plot the total solution of the system of Problem 2.19 including the transient. 

 

Solution: The total response is given in the solution to Problem 2.16.  For the 

values given in the previous problem, and with zero initial conditions the response 

is determined by the formulas: 



X = 0.0041,     ! = 1.856  

 

Plotting the result in Mathcad yields 

 

2.21 Consider the pendulum mechanism of Figure P2.21 which is pivoted at point O.  

Calculate both the damped and undamped natural frequency of the system for small 

angles.  Assume that the mass of the rod, spring, and damper are negligible.  What 

driving frequency will cause resonance? 



 
 
Solution: Assume the driving frequency to be harmonic of the standard form. To get the 

equation of motion take the moments about point O to get: 

  

M
0! = J ˙ ̇ " (t) = m!

2˙ ̇ " (t)

                     = #k!
1
sin"(!

1
cos" ) # c!

2

˙ " (!
2
cos")

                                   # mg(!sin" ) + F
0
cos$t(! cos" )

 

Rearranging and approximating sinθ ~ θ and cosθ ~1 yields: 

  
m!

2˙ ̇ ! (t) + c!
2

2 ˙ ! (t) + (k!
1

2
+ mg!)!(t) = F

0
!cos"t  

Dividing through by the coefficient of the inertia term and using the standard definitions for ζ 

and ω yields: 

  

!n =
k!

1

2
+ mg!

m! 2
 which is the resnonant frequency

" =
c!

2

2

2 (k!
1

2
+ mg!)mg!

!d = !n 1 #" 2
=

k!
1

2
+ mg!

m!
2

1 # c
2
!

2

4

4(k!
1

2
+ mg!)mg!

$ 

% 

& 
' 

( 

) 

 



2.22 Consider the pivoted mechanism of Figure P2.21 with k = 4 x 10
3
 N/m.  l

1
 = 0.05 

m. l
2

 = 0.07   m. and l = 0.10 m. and m = 40 kg.  The mass of the beam is 40 kg;  it is 

pivoted at point 0 and assumed to be rigid.  Design the dashpot (i.e. calculate c) so that 

the damping ratio of the system is 0.2.  Also determine the amplitude of vibration of the 

steady-state response if a 10-N force is applied to the mass, as indicated in the figure, at a 

frequency of 10 rad/s. 

 

Solution: This is similar to the previous problem with the mass of the beam included this 

time around.  The equation of motion becomes: 

  
meq

˙ ̇ ! + ceq
˙ ! + keq! = F

0
!cos"t  

 Here: 

  

meq = m!2
+

1

3
(!

3
+ !

1

3
)

mb

!+ !
1

= 0.5 kg !m
2

ceq = c!
2

2
= 0.25c

keq = k!
1

2
+ mg! +

1

2
(! " !

1
)mbg = 4.326 #10

3
 Nm

 

Using the formula the damping ratio and these numbers: 

  

! =
!

2

2c

2 meq keq

= 0.2 " c = 3.797 #10
3
 kg/s  

Next compute the amplitude: 

X =
10 / 0.5

(keq / meq !10
2
)

2
+ (2 " 0.2 "10 "#n )

2
= 2.336 $10

3
  rad  



2.23   In the design of Problem 2.22, the damping ratio was chosen to be 0.2 because 

it limits the amplitude of the forced response.  If the driving frequency is shifted 

to 11 rad/s, calculate the change in damping coefficient needed to keep the 

amplitude less than calculated in Problem 2.22. 

 

Solution: In this case the frequency is far away from resonance so the change in 

driving frequency does not matter much.  This can also be seen numerically by 

the following Mathcad session.  

 

 

The new amplitude is only slightly larger in this case.  The problem would be more 

meaningful if the driving frequency is near resonance.  Then the shift in amplitude will be 

more substantial and added damping may improve the response. 

 

2.24 Compute the forced response of a spring-mass-damper system with the following 

values: c = 200 kg/s, k = 2000 N/m, m = 100 kg, subject to a harmonic force of 

magnitude F
0
  = 15 N and frequency of 10 rad/s and initial conditions of x

0
  = 

0.01 m and v
0
 = 0.1 m/s.  Plot the response.  How long does it take for the 

transient part to die off? 

 
Solution: 
Calculate the parameters 



!n =
k

m
=

2000

100
= 4.472  rad/s       f

0
=

F
0

m
=

15

100
= 0.15  N/kg  

!d = !n 1"# 2
= 4.472 1" 0.224

2
= 4.359  rad/s          

! =
c

2m" n

=
200

2 #100 # 4.472
= 0.224  

Initial conditions:  x0 = 0.01 m,  v0 = 0.1 m/s 

Using equation (2.38) and working in Mathcad yields 

x(t) = e
! t

(0.0104 cos4.359t + 0.025sin 4.359t) +1.318 "10
!6

(0.335cos10t + 37.7sin10t)

  

 

 

 

a plot of m vs seconds. The time for the amplitude of the transient response to be 

reduced, for example, to 0.1 % of the initial (t = 0) amplitude can be determined by: 

e
! t

= 0.001 ,  then t = ! ln0.001 = 6.908sec  



2.25 Show that Equation (2.38) collapses to give Equation (2.11) in the case of zero damping.  
 

Solution: 
Eq. (2.38): 

  

x(t) = e
!"#

n
t

(x
0
!

f
0
(#

n

2 !# 2
)

(#
n

2 !# 2
)

2
+ (2"#

n
# )

2
)cos#

d
t

$
%
&

'&

                    +

"#
n

#
d

(x
0
!

f
0
(#

n

2 !# 2
)

(#
n

2 !# 2
)

2
+ (2"#

n
# )

2
)

!
2"#

n
# 2

f
0

#
d

(#
n

2 !# 2
)

2
+ (2"#

n
# )

2() *+
+

v
0

#
d

,

-

.

.

.

.

.

/

0

1
1
1
1
1

sin#
d
t

$

%

&
&
&
&

'

&
&
&
&

2

3

&
&
&
&

4

&
&
&
&

+
f

0

(#
n

2 !# 2
)

2
+ (2"#

n
# )

2
(#

n

2 !# 2
)cos#t + 2"#

n
# sin#t() *+

 

In case of ζ = 0, this equation becomes: 

  

x(t) = 1!

(x
0
"

f
0

(#
n

2 "# 2
) + 0

)cos#
d
t

$
%
&

'&

+ 0 " 0 +
v

0

#
d

(

)*
+

,-
sin#

d
t

$

%

&
&

'

&
&

.

/

&
&

0

&
&

+
f

0

(#
n

2 "# 2
)
cos#t

=
v

0

#
n

sin #
n
t + (x

0
"

f
0

#
n

2 "# 2
)cos#

n
t +

f
0

#
n

2 "# 2
cos#t

 

(Note: ωd = ωn for ζ = 0) 

 

 

2.26 Derive Equation (2.38) for the forced response of an underdamped system. 
 

Solution: 
From Sec. 1.3, the homogeneous solution is: 

xh (t) = e
!"# nt

(A
1
sin#dt + A

2
cos#dt)  

From equations (2.29) and (2.35), the particular solution is: 

xp(t) =
(! n

2 "! 2
) f

0

(!n
2 " ! 2

)
2

+ (2#! n! )
2

cos!t +
2#! n!f

0

(! n
2 "! 2

)
2

+ (2#!n! )
2

sin!t  

Then the general solution is: 

x(t) = xh (t) + xp (t) = e
!"# nt

(A
1
sin#d t + A

2
cos#dt)

+
(#n

2 ! #2
) f

0

(#n

2
! # 2

)
2

+ (2"# n#)
2

cos#t +
2"# n#f

0

(# n

2
!# 2

)
2

+ (2"# n# )
2

sin#t
 

Using the initial conditions, x(0) = x0 and ˙ x (0) = v
0
, the constants, A1 and A2, are 

determined: 



A
2

=x
0
!

("n

2 ! "2
) f

0

("n

2 ! "2
)

2
+ (2#" n")

2

A
1

=
v

0

"d

+
"

" d

$
2#" n"f

0

(" n

2 !" 2
)

2
+ (2#" n" )

2
+#

"n

" d

(x
0
!

(" n

2 !" 2
) f

0

("n

2 ! "2
)

2
+ (2#" n" )

2
)

 

Then, Eq. (2.30) is obtained by substituting the expressions for A1 and A2 into the general 

solution and simplifying the resulting equation. 

 

 

2.27 Compute a value of the damping coefficient c such that the steady state response 

amplitude of the system in Figure P2.27 is 0.01 m. 

 
Figure P2.27 

Solution: 
From Eq. (2.39), the amplitude of the steady state response is given by 

X =
f
0

(!n

2 "! 2
)

2
+ (2#!n! )

2
 

Then substitute, 2ζωn = c/m, c =
F

0

2

!
2
"X

2
# m

2 (!n

2
# !

2
)

2

!
2

 into this equation 

and solve for c: 

 

Given: 

X = 0.01m                     s/rad3.6=!        F
0

= 20N       m = 100kg  

 

  
!

n

2
=

k

m
=

2000

100
= 20 (rad/s)

2
" c = 55.7 kg/s  

 

 

2.28 Compute the response of the system in Figure P2.28 if the system is initially at 

rest for the values k
1
 = 100 N/m, k

2
 = 500 N/m, c = 20 kg/s and m = 89 kg. 

 

Solution: 
The equation of motion is: 

m˙ ̇ x + c ˙ x + kx = 25cos3t          where   k =
1

1/ k
1
+ 1/ k

2

 

Using Eq. (2.37) in an alternative form, the general solution is: 



  
x(t) = e

!"#
n
t
( A

1
sin#

d
t + A

2
cos#

d
t) + X cos(#t !$)  

where 

X =
f
0

(!n

2 "! 2
)

2
+ (2#!n! )

2

=
25 / 89

(0.966
2 " 3

2
)

2
+ (2 $0.116 $0.966 $ 3)

2

= 0.0347 m

 

! = tan
"1
#

2$% n%

%n

2
"% 2

= tan
"1
#
2 # 0.116 # 0.966 # 3

0.966
2
" 3

2
= 3.058rad        (see Window 2.3) 

Using the initial conditions, x(0) = 0 and ˙ x (0) = 0 , the constants, A1 and A2, are 

determined: 

A2 = 0.0345                A1 = −0.005 

Given:  c = 20 kg/sec,  m = 89 kg 

k =
1

1/ k
1
+ 1/ k

2

=
1

1/100 +1/ 500
= 83N/m  

!n =
k

m
=

83

89
= 0.966 rad/s                       ! =

c

2m" n

=
20

2 #89 #0.966
= 0.116  

!d = !n 1 "# 2
= 0.966 1 " 0.116

2
= 0.9595rad/s  

Substituting the values into the general solution: 

x(t) = e
!0.112t

(!0.005sin0.9595t + 0.0345cos0.9595t) + 0.0347cos(3t ! 3.058)  

 

2.29 Write the equation of motion for the system given in Figure P2.29 for the case 

that F(t) = F cos! t and the surface is friction free.  Does the angle!  effect the 

magnitude of oscillation? 

 

Solution: 
Free body diagram: 

m 

x 

mg sin!  

F(t)=F cos "t 
(Forces that are normal 

to the x direction are 
neglected) 

! 

Fs 

 

 
Assuming x = 0 to be at the equilibrium: 
 

Fx = F + mgsin! " Fs = m˙ ̇ x #  



where )
sin

(
k

mg
xkF

s

!
+=      and        F(t ) = F cos! t  

 

Then the equation of motion is: 

m ˙ ̇ x + k x = F cos! t  

Note that the equation of motion does not contain θ which means that the 

magnitude of the response is not affected by the angle of the incline. 

 

2.30 A foot pedal for a musical instrument is modeled by the sketch in Figure P2.30.  

With k = 2000 N/m, c = 25 kg/s, m = 25 kg and F(t) = 50 cos 2! tN, compute the 

steady state response assuming the system starts from rest.  Also use the small 

angle approximation.  

 

Solution: Free body diagram of pedal follows: 

 

Summing the moments with respect to the point, O: 

   
M

0
= F(3 ! a) " F

c
(2 ! a) " F

s
(a) = I

o
!!#$  

where   
  
I

o
= m(3a)

2
= 9a

2
m  ,  

  
F

s
= kasin!                            

   
F

c
= c(2 ! a ! sin" #) = 2cacos" !"  

Substituting these equations and simplifying (sin! "!  , cosθ =1,for small θ): 

   9a
2
m !!! + 4a

2
c !! + a

2
k! = 3a F(t)  

Given: k = 2000 N/m, c = 25kg/s  , m = 25 kg , F(t ) = 50cos2!t  ,    a = 0.05 m 

The equation of motion becomes: 
   0.5625!!! + 0.25 !! + 5! = 7.5cos2"t  

Observing the equation of motion, equivalent mass, damping and stiffness 

coefficients are: 

  ceq = 0.25,     meq = 0.5625,       keq = 5 ,   

  

f
0

=
F

0

m
eq

=
7.5

0.5625
= 13.33  ,  !=" 2  

!n =
keq

meq

=
5

0.5625
= 2.981                        ! =

ceq

2meq"n

= 0.0745  



From Eq. (2.36), the steady-state response is: 

  

!(t) =

f
0eq

("
n

2 #" 2
)

2
+ (2$"

n
" )

2

cos("t # tan
#1

2$
eq
"

n
"

"
n

2 #" 2
)

       %!(t) = 0.434cos(2& t # 3.051)  rad

 

 

2.31 Consider the system of Problem 2.15, repeated here as Figure P2.31 with the 

effects of damping indicated. The physical constants are J =25 kg m
2
, k = 2000 

N/m, and the applied moment is 5 Nm at 1.432 Hz acting through the distance r = 

0.5 m.  Compute the magnitude of the steady state response if the measured 

damping ratio of the spring system is ζ = 0.01.  Compare this to the response for 

the case where the damping is not modeled (ζ = 0). 

 

 
Figure P2.31 Model of an airfoil in at wind tunnel including the effects of damping. 

 

 Solution From equation (2.39) the magnitude of the steady state response for an 

underdamped system is 

  

! =
M

0
/ J

k

J
"# 2

$
%&

'
()

2

+ 2*#
n
#( )

2

 

Substitution of the given values yields (here X = rθ) 

  

! = 0.2 rad and X = 0.1 m for "= 0

! = 0.106 rad and X = 0.053 m for "= 0.01

 

where X is the vertical displacement of the wing tip.  Thus a small amount of 

damping can greatly reduce the amplitude of vibration. 
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Problems and Solutions Section 2.3 (2.32 through 2.36) 
 

2.32 Referring to Figure 2.10, draw the solution for the magnitude X for the case m = 100 kg, c 

= 4000 N s/m, and k = 10,000 N/m.  Assume that the system is driven at resonance by a 

10-N force. 

 

Solution: 
Given:  m = 100 kg, c = 4000 N s/m, k = 10000 N/m, 

o
F = 10 N, 

! = !n =
k

m
= 10 rad/s 

!  

  

= tan
!1

cw

k ! m" 2

#

$
%

&

'
( = tan

!1
(40,000)

(10,000 !10,000)

#

$
%

&

'
( = 90° =

)

2
rad 

 

 
 

From the figure: 

X =
Fo

(k ! m" 2
)
2

+ (c")
2

=
10

(10,000 !10,000)
2

+ (40,000)
2

  

X = 0.00025 m 

 

cωX 

F0 

(k-mω2
)X 

φ 
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2.33 Use the graphical method to compute the phase shift for the system of Problem 2.32 if ω 

= ωn/2 and again for the case ω = 2ωn. 

 

Solution: 
From Problem 2.32 !n= 10 rad/s 

(a) ! =
!n

2
= 5 rad/s 

 X =
10

(10,000 ! 2500)
2

+ (20,000)
2

= .000468 m 

 kX = (10,000)(.000468) = 4.68 N 

 cωX = (4000)(5)(.000468) = 9.36 N 

 m!
2
X = (100)

2
)5( (.000468) = 1.17 N 

 

From the figure given in problem 2.32: 

 !  = tan
!1 9.36

4.68 !1.17

" 

# 

$ 

% 
= 69.4° = 1.21rad 

 

(b) ! = 2!n = 20  rad/s 

 X =
10

(10000 ! 40000)
2

+ (80000)
2

= .000117 m 

 kX = (10000)(.000117) = 1.17 N 

 cωX = (4000)(20)(.000117) = 9.36 N 

 m!
2
X =(100)

2
)20( (.000117) = 4.68 N 

From the figure: 

 

  !  

 

= tan
!1

9.36

1.17 ! 4.68

"

#
$

%

&
' = !69.4° = !1.21rad 
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2.34 A body of mass 100 kg is suspended by a spring of stiffness of 30 kN/m and dashpot of 

damping constant 1000 N s/m.  Vibration is excited by a harmonic force of amplitude 80 

N and a frequency of 3 Hz.  Calculate the amplitude of the displacement for the vibration 

and the phase angle between the displacement and the excitation force using the graphical 

method. 

 

 Solution: 
Given: m = 100kg, k = 30 kN/m, 

o
F = 80 N, c = 1000 Ns/m,  

! = 3(2" )= 18.85 rad/s 

 kX = 30000 X 

 cωX = 18850 X 

 m!
2
X =35530 X 

 

Following the figure given in problem 2.32: 

 

  

! = tan
"1

c# X

k " m# 2

( ) X

$

%

&
&

'

(

)
)

 

!  = tan
!1 (18850)X

(30000 ! 35530)X

" 

# 
$ 

% 

& 
' 

= 106.4° = 1.86 rad 

Also from the figure,  

  

X =
F

0

k ! m"
2

( )
2

+ c"( )
2

 

22
)18850()3553030000(

80

+!

=X = 0.00407 m 
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2.35 Calculate the real part of equation (2.55) to verify that it yields equation (2.36) and hence 

establish the equivalence of the exponential approach to solving the damped vibration 

problem. 

 
Solution: 
Equation (2.55)  xp(t) =

Fo

(k ! m" 2
)

2
+ (c")

2
e

j("t!# )  

where θ 

  

= tan
!1

c"

k ! m" 2

#

$
%

&

'
(  

 Using Euler’s Rule: xp(t) =
Fo

(k ! m" 2
)

2
+ (c")

2
[cos("t !# ) + j sin("t !# )] 

 The real part is:  xp(t) =
Fo

(k ! m" 2
)

2
+ (c")

2
cos("t !# )  

 Rearranging:  xp (t) =
Fo /m

(!2 "! 2
)

2
+ (2#!n! )

2
cos !t " tan

"1 2#!n!
!n

2 "! 2

$ 

% 
& 

' 

( 
) 

* 

+ 

, 
- 

. 

/  

 which is Equation (2.36). 

 
 
 
 
 
2.36 Referring to equation (2.56) and Appendix B, calculate the solution x(t) by using a table 

of Laplace transform pairs and show that the solution obtained this way is equivalent to 

(2.36). 

 

Solution: Taking the Laplace transform of the equation of motion is given in Equation 

(2.56):  Xp = (ms
2

+ cs + k)X (s) =
Fos

s
2

+ !
2

 

Solving this expression algebraically for X yields 

X(s) =
F

0
s

(ms
2

+ cs + k)(s
2

+! 2
)

=
f
0
s

(s
2

+ 2"!ns +! 2
)(s

2
+! 2

)
 

 Using Laplace Transform pairs from the table, this last expression is changed into the 

time domain to get: 

    x(t) =
f
0

(!n

2 "! 2
)

2
+ (2#!n! )

2

 cos (ωt-! ) 
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Problems and Solutions Section 2.4 (2.37 through 2.50) 
 

2.37 A machine weighing 2000 N rests on a support as illustrated in Figure P2.37.  The 

support deflects about 5 cm as a result of the weight of the machine.  The floor under the 

support is somewhat flexible and moves, because of the motion of a nearby machine, 

harmonically near resonance (r =1) with an amplitude of 0.2 cm.  Model the floor as base 

motion, and assume a damping ratio of ! = 0.01, and calculate the transmitted force and 

the amplitude of the transmitted displacement. 

 

Figure P2.37 
Solution: 

 
Given:  Y = 0.2 cm, ! = 0.01, r = 1, mg = 2000N.  The stiffness is computed from the 

static deflection and weight: 

 Deflection of 5 cm implies:  k = 

  

mg

!
=

mg

5cm
 = 

2000

0.05
 = 40,000 N/m 

Transmitted displacement from equation (2.70):    X = Y 

  

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

= 10 cm 

Transmitted force from equation (2.77): F T = kYr
2

  

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

= 4001N 

 

 

 

 

2.38 Derive Equation (2.70) from (2.68) to see if the author has done it correctly. 

 

Solution: 
 

Equation (2.68) states:   

x p  (t) = ! nY 

  

!
n

2
+ (2"!

b
)

2

(!
n

2 #!
b

2
)

2
+ (2"!

n
!

b
)

2

$

%
&
&

'

(
)
)

1/ 2

 cos(!bt "#1
"#

2
) 

The magnitude is:    X  = ! nY 

  

!
n

2
+ (2"!

b
)

2

(!
n

2 #!
b

2
)

2
+ (2"!

n
!

b
)

2

$

%
&
&

'

(
)
)

1/ 2
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    = ! nY 

  

(!
n

"4
)(!

n

2
+ (2#!

b
)

2
)

(!
n

"4
)((!

n

2 "!
b

2
)

2
+ (2#!

n
!

b
)

2
)

$

%
&
&

'

(
)
)

1/ 2

 

    = ! nY  

  

(!
n

"2
)(1+ (2#r)

2
)

(1" r
2
)

2
+ (2#r)

2

$

%
&
&

'

(
)
)

1/ 2

*  

    = ! nY  

  

1

!
n

1+ (2"r)
2

(1# r
2
)

2
+ (2"r)

2

$

%
&

'

(
)

1/ 2

*  

           X  = Y 

  

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

 

This is equation (2.71). 

 

2.39 From the equation describing Figure 2.13, show that the point ( 2 , 1) 

corresponds to the value TR > 1 (i.e., for all r < 2 , TR > 1). 

 

Solution: 
 

Equation (2.71) is TR = 
X

Y
 =

  

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

  

 Show TR > 1 for r < 2  

    TR = 
X

Y
 = 

  

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

> 1 

     
1+ (2!r)

2

(1" r
2
)

2
+ (2!r)

2
> 1 

      

     1 + (2!r)
2

> (1" r
2
)

2
+ (2!r)

2
  

      

     1 > (1! r
2
)

2
 

 

 Take the real solution:  

  

1! r
2

< +1 or  1! r
2

< !1"

!r
2

> !2 " r
2

< 2 " r < 2
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2.40 Consider the base excitation problem for the configuration shown in Figure P2.40.  In this 

case the base motion is a displacement transmitted through a dashpot or pure damping 

element.  Derive an expression for the force transmitted to the support in steady state.   

 

Figure P2.40 
Solution: The entire force passes through the spring. Thus the support sees the force FT = 

kX where X is the magnitude of the displacement. From equation (2.65) 

FT = kX =
2!"n"bkY

("n

2 #"b

2
)

2
+ (2!"n"b )

2

             =
2!rkY

(1# r
2
)

2
+ (2!r)

2

 

 

 
2.41   A very common example of base motion is the single-degree-of-freedom model of an 

automobile driving over a rough road.  The road is modeled as providing a base motion 

displacement of y(t) = (0.01)sin (5.818t) m.  The suspension provides an equivalent 

stiffness of k = 4 x 10
5
 N/m, a damping coefficient of c = 40 x 10

3
 kg/s and a mass of 

1007 kg.  Determine the amplitude of the absolute displacement of the automobile mass. 

 

Solution:  
From the problem statement we have (working in Mathcad) 
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2.42 A vibrating mass of 300 kg, mounted on a massless support by a spring of stiffness 

40,000 N/m and a damper of unknown damping coefficient, is observed to vibrate with a 

10-mm amplitude while the support vibration has a maximum amplitude of only 2.5 mm 

(at resonance).  Calculate the damping constant and the amplitude of the force on the 

base. 

 

Solution: 
 

Given:  m = 300 kg, k = 40,000 N/m, !b = !n (r = 1) , X = 10 mm, Y = 2.5 mm. 

 Find damping constant (Equation 2.71) 

 

   

  

X

Y
=

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

)
 

10

2.5
=

1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

(  

   16 = 

 

1+ 4! 2

4! 2
" ! 2

=
1

60
=

c
2

4km
    or 

   c =

 

4(40,000)(300)

60
=  894.4 kg/s 

 

 Amplitude of force on base: (equation (2.76)) 

 

   

  

F
T

= kYr
2

1+ (2!r)
2

1" r
2

( )
2

+ 2!r( )
2

#

$

%
%
%

&

'

(
(
(

1/ 2

)

F
T

= (40,000)(0.0025)(1)
2

1+ 4
1

60

*
+,

-
./

4
1

60

*
+,

-
./

#

$

%
%
%
%

&

'

(
(
(
(

1/ 2

)

F
T

= 400 N
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 2.43 Referring to Example 2.4.1, at what speed does car 1 experience resonance?  At what 

speed does car 2 experience resonance?  Calculate the maximum deflection of both cars 

at resonance. 

 

Solution: 
 

Given:  m
1
 = 1007 kg, m

2
 =1585 kg, k = 4x10

5
 N/m; c = 2,000 kg/s, Y = 0.01m 

 Velocity for resonance: (from Example 2.4.1) 

   !b = 0.2909v (v in km/h) 

 Car 1: !
1

=
k

m
=

4 "10
4

1007
= !b = 0.2909v

1
  

   v
1
 = 21.7 km/h 

 

 Car 2: !
2

=
k

m
=

4 "10
4

1585
= !b = 0.2909v

2
 

   v
2

 = 17.3 km/h 

 

 Maximum deflection: (Equation 2.71 with r = 1) 

  X = Y 

 

1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

(  

 Car 1: !
1

=
c

2 km
1

=
2000

2 (4 "10
5
)(1007)

= 0.158  

  X
1
 = (0.01) 

 

1+ 4(0.158)
2

4(0.158)
2

!

"
#

$

%
&

1/ 2

= 0.033 m 

  

 Car 2: !
2

=
c

2 km
2

=
2000

2 (4 "10
4
)(1585)

= 0.126  

  X
2

 = (0.01) 

 

1+ 4(0.126)
2

4(0.126)
2

!

"
#

$

%
&

1/ 2

= 0.041 m 
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2.44 For cars of Example 2.4.1, calculate the best choice of the damping coefficient so that the 

transmissibility is as small as possible by comparing the magnitude of !  = 0.01, ! = 0.1 

and ! = 0.2 for the case r = 2.  What happens if the road “frequency” changes? 

 

Solution:   
 

From Equation 2.62, with r = 2, the displacement transmissibility is: 

  

  

X

Y
=

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

=
1+ 16! 2

9 + 16! 2

#

$
%

&

'
(

1/ 2

  

  For ! = 0.01, 
X

Y
= 0.334 

  For ! = 0.1, 
X

Y
= 0.356 

  For ! = 0.2, 
X

Y
= 0.412 

  The best choice would be ! = 0.01. 

 

If the road frequency increases, the lower damping ratio would still be the best choice.  

However, if the frequency decreases, a higher damping ratio would be better because it 

would approach resonance. 

 

 

2.45 A system modeled by Figure 2.12, has a mass of 225 kg with a spring stiffness of 3.5 

× 10
4
 N/m.  Calculate the damping coefficient given that the system has a deflection (X) 

of 0.7 cm when driven at its natural frequency while the base amplitude (Y) is measured 

to be 0.3 cm. 

 

Solution: 
 

Given: m = 225 kg, k = 3.5x10
4
 N/m, X = 0.7 cm, Y = 0.3 cm,! = !b . 

 Base excitation: (Equation (2.71) with r = 1) 

  

  

X

Y
=

1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

(
 

0.7

0.3
=

1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

(  

  ! = 0.237 =
c

2 km
 

  c = (0.237)(2)[(3.5x10
4
)(225)]

1/2
  

      c = 1331 kg/s 
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2.46 Consider Example 2.4.1 for car 1 illustrated in Figure P2.46, if three passengers totaling 

200 kg are riding in the car.  Calculate the effect of the mass of the passengers on the 

deflection at 20, 80, 100, and 150 km/h.  What is the effect of the added passenger mass 

on car 2? 

 
Figure P2.46 Model of a car suspension with the mass of the occupants, mp, included. 

 
Solution: 

 

Add a mass of 200 kg to each car.  From Example 2.4.1, the given values are:   

m
1
 = 1207 kg, m

2
= 1785 kg, k = 4x10

4
 N/m; c = 2,000 kg/s, !b = 0.29v. 

 Car 1: !
1

=
k

m
=

4 "10
4

1207
= 5.76 rad/s 

  !
1

=
c

2 km
1

=
2000

2 (4 "10
5
)(1207)

= 0.144  

 Car 2: !
2

=
k

m
=

4 "10
4

1785
= 4.73 rad/s 

  !
2

=
c

2 km
2

=
2000

2 (4 "10
5
)(1785)

= 0.118  

 Using Equation (2.71): 

  

X = Y
1+ (2!r)

2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

produces the following: 

 

Speed (km/h) !b  

(rad/s) 

r
1
 r

2
 x

1
 

(cm) 

x
2

 

(cm) 

20 5.817 1.01 1.23 3.57 1.77 

80 23.271 3.871 4.71 0.107 0.070 

100 29.088 5.05 6.15 0.072 0.048 

150 2.40 7.58 9.23 0.042 0.028 

 

At lower speeds there is little effect from the passengers weight, but at higher speeds the 

added weight reduces the amplitude, particularly in the smaller car.
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2.47 Consider Example 2.4.1.  Choose values of c and k for the suspension system for 

car 2 (the sedan) such that the amplitude transmitted to the passenger compartment is as 

small as possible for the 1 cm bump at 50 km/h.  Also calculate the deflection at 100 

km/h for your values of c and k. 

 

Solution: 
 

For car 2, m = 1585 kg. 

 Also, !b = 0.2909(50) = 14.545 rad/s and Y = 0.01 m. 

 From equation (2.70), 

   

  

X = Y
1+ (2!r)

2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

 

From Figure 2.9, we can choose a value of r away from resonance and a low damping 

ratio.  Choose r = 2.5 and ! =0.05. 

  

So, r = 2.5 = 
!b

!
=

14.545

k / 1585
 

  k = 53,650 N/m 

  ! = 0.05 = 
c

2 km
 

c = 922.2 kg/s 

 So, 

  

X = (0.01)
1+ [2(0.05)(2.5)]

2

1! 2.5( )
2

( )
2

+ [2(0.05)(2.5)]
2

"

#

$
$
$
$

%

&

'
'
'
'

1/ 2

= 0.00196 m  

 

 At 100 km/h, ωb = 29.09 rad/s and r =
!b

k / m
= 5.  
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2.48  Consider the base motion problem of Figure 2.12. a) Compute the damping ratio needed 

to keep the displacement magnitude transmissibility less then 0.55 for a frequency ratio 

of r = 1.8.  b) What is the value of the force transmissibility ratio for this system? 

 

 Solution: Working with equation (2.71), make a plot of TR versus ζ and use equation 

(2.77) to compute the value of the force transmissibility.  The following Mathcad session 

illustrates the procedure.  

 
 From the plot a value of ζ = 0.2 keeps the displacement transmissibility less then 0.55 as 

desired.  The value of the force transmissibility is then 1.697.  Precise values can be 

found by equating the above expression to 0.55. 

 

2.49  Consider the effect of variable mass on an aircraft landing suspension system by 

modeling the landing gear as a moving base problem similar to that shown in Figure 

P2.46 for a car suspension.  The mass of a regional jet is 13, 236 kg empty and its 

maximum takeoff mass is 21,523 kg.  Compare the maximum deflection for a wheel 

motion of magnitude 0.50 m and frequency of 35 rad/s, for these two different masses.  

Take the damping ratio to be ζ = 0.1 and the stiffness to be 4.22 x 10
6
 N/m. 

    

Solution: Using a Mathcad worksheet the following calculations result: 
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Note that if the suspension stiffness were defined around the full case, when empty the 

plane would bounce with a larger amplitude then when full.  Note Mathcad does not have 

a symbol for a Newton so the units on stiffness above are kg/sec
2
 in order to allow 

Mathcad to compute the units. 

 
2.50  Consider the simple model of a building subject to ground motion suggested in Figure 

P2.50. The building is modeled as a single degree of freedom spring-mass system where 

the building mass is lumped atop of two beams used to model the walls of the building in 

bending.  Assume the ground motion is modeled as having amplitude of 0.1 m at a 

frequency of 7.5 rad/s.  Approximate the building mass by 10
5
 kg and the stiffness of 

each wall by 3.519 x 10
6
 N/m. Compute the magnitude of the deflection of the top of the 

building. 

 

Figure P2.50 A simple model of a building subject to ground motion, such as an 

earthquake. 

 

Solution: The equation of motion is  

   m
!!x(t) + 2kx(t) = 0.1cos7.5t  

The natural frequency and frequency ratio are 

  

!
n

=
2k

m
= 8.389  rad/s    and   r =

!

!
n

=
7.5

8.389
= 0.894  
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The amplitude of the steady state response is given by equation (2.70) with ζ = 0 in this 

case: 

  

X = Y
1

1! r
2

= 0.498 m  

Thus the earthquake will cause serious motion in the building and likely break. 
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 Problems and Solutions Section 2.5 (2.51 through 2.58) 
 
 

2.51 A lathe can be modeled as an electric motor mounted on a steel table.  The table plus the 

motor have a mass of 50 kg.  The rotating parts of the lathe have a mass of 5 kg at a 

distance 0.1 m from the center.  The damping ratio of the system is measured to be ! = 

0.06 (viscous damping) and its natural frequency is 7.5 Hz.  Calculate the amplitude of 

the steady-state displacement of the motor, assuming 
r

!  = 30 Hz. 

 

 Soltuion:   
Given: m = 50 kg, 5=

o
m , e = 0.1m, 06.0=! , !n = 7.5Hz 

 Let !r =30 Hz 

 So, r =
!r

!n

= 4  

 From Equation (2.84), 

  
222

2

222

2

)]4)(06.0(2[)41(

4

50

)1.0)(5(

)2()1(
!

+!
=

+!
=

rr

r

m

em
X o

"
 

  X = 0.011m 

  X = 1.1 cm 

 

 

2.52 The system of Figure 2.18 produces a forced oscillation of varying frequency.  As the 

frequency is changed, it is noted that at resonance, the amplitude of the displacement is 

10 mm.  As the frequency is increased several decades past resonance the amplitude of 

the displacement remains fixed at 1 mm.  Estimate the damping ratio for the system. 

 

Solution: Equation (2.84) is 

222

2

)2()1( rr

r

m

em
X o

!+"
=  

 At resonance,   X = 10 mm = 
!2

1

m

em
o

 

   
!2

110
=

em

m

o

  

 When r is very large, 1=
em

Xm

o

 and X = 1 mm, so  

   1=
em

m

o

 

 Therefore, 10(1) = 
!2

1
 

   05.0=!  



 2- 40    

 

2.53 An electric motor (Figure P2.53) has an eccentric mass of 10 kg (10% of the total mass) 

and is set on two identical springs (k = 3200 /m).  The motor runs at 1750 rpm, and the 

mass eccentricity is 100 mm from the center.  The springs are mounted 250 mm apart 

with the motor shaft in the center.  Neglect damping and determine the amplitude of the 

vertical vibration. 

 
Solution: 
Given m0 = 10 kg, m= 100 kg,  k = 2x3.2 N/mm, ,  e = 0.1 m  

  
!

r
= 1750

rev

min
(

min

60sec

2"  rad

rev
) = 183.26

rad

s
 rad/s 

Vertical vibration: 

 

 

  

!
n

=
2(3.2)(1000)

100
= 8 rad/s 

 

  

r =
!

r

!
n

=
183.3

8
= 22.9 

From equation (2.84) 

 

  

X = e
m

0

m

r
2

|1! r
2

|
== 0.01 m  

 
2.54 Consider a system with rotating unbalance as illustrated in Figure P2.53.  Suppose the 

deflection at 1750 rpm is measured to be 0.05 m and the damping ratio is measured to be 

! = 0.1.  The out-of-balance mass is estimated to be 10%.  Locate the unbalanced mass 

by computing e.  

 

Solution:  Given:  X = 0.05 m, ,1.0=!  ,1.0 mm
e

=  and from the solution to problem 

2.53 the frequency ratio is calculated to be r = 22.9.  Solving the rotating unbalance 

Equation (2.84) for e yields: 

 

  

X =
m

0
e

m

r
2

(1! r
2
)

2
+ (2"r)

2

# e =
mX

m
0

(1! r
2
)

2
+ (2"r)

2

r
2

= 0.499 m  

This sort of calculation can be introduced to discuss the application of machinery 

diagnostics if time permits.  Machinery diagnostics deals with determining the location 

and extend of damage from measurements of the response and input. 

 

2.55 A fan of 45 kg has an unbalance that creates a harmonic force.  A spring-damper system 

is designed to minimize the force transmitted to the base of the fan. A damper is used 

having a damping ratio of ! = 0.2.  Calculate the required spring stiffness so that only 

10% of the force is transmitted to the ground when the fan is running at 10,000 rpm.  

  

 Solution: The equation of motion of the fan is 

m˙ ̇ x + c ˙ x + kx = m
0
e!

2
sin(!t + ")  

 The steady state solution as given by equation (2.84) is 
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x(t) =
m

0
e

m

r
2

(1! r
2
)

2
+ (2"r)

2

sin#t  

where r is the standard frequency ratio.  The force transmitted to the ground is 

 

F(t) = kx + c!x =
m

0
e

m

kr
2

(1! r
2
)

2
+ (2"r)

2

sin#t +
m

0
e

m

c#r
2

(1! r
2
)

2
+ (2"r)

2

cos#t  

Taking the magnitude of this quantity, the magnitude of the force transmitted becomes 

F
0

=
m

0
e

m

r
2

k
2

+ c
2! 2

(1" r
2
)

2
+ (2#r)

2

= m
0
e!

1+ (2#r)
2

(1" r
2
)

2
+ (2#r)

2

 

From equation (2.81) the magnitude of the force generated by the rotating mass Fr is 

Fr = m
0
e!

2
 

The limitation stated in the problem is that F0 = 0.1Fr, or 

m
0
e! 2

1+ (2"r)
2

(1# r
2
)

2
+ (2"r)

2

= 0.1m
0
e! 2

 

Setting ζ =  0.2 and solving for r yields: 

r
4
!17.84r

2
! 99 = 0  

which yields only one positive solution for r
2
, which is   

  

r
2

= 22.28 =
! 2

k
m

"
k

m
=

10000 # 2$
60

%
&'

(
)*

2

1

22.28

     " k = 45
10000 # 2$

60

%
&'

(
)*

2

1

22.28
= 2.21#10

6
 N/m
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2.56 Plot the normalized displacement magnitude versus the frequency ratio for the out of 

balance problem (i.e., repeat Figure 2.20) for the case of ! = 0.05. 

 

 Solution:  Working in Mathcad using equation (2.84) yields: 
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 2.57  Consider a typical unbalanced machine problem as given in Figure P2.57 with a machine 

mass of 120 kg, a mount stiffness of 800 kN/m and a damping value of 500 kg/s.  The out 

of balance force is measured to be 374 N at a running speed of 3000 rev/min.  a) 

Determine the amplitude of motion due to the out of balance.  b) If the out of balance 

mass is estimated to be 1% of the total mass, estimate the value of the e.  

 

 

Figure P2.57 Typical unbalance machine problem. 

Solution: 
a) Using equation (2.84) with m0e = F0/ωr

2
 yields: 

 

b) Use the fact that F0= m0eωr
2
 to get 

in meters. 



 2- 44    

2.58 Plot the response of the mass in Problem 2.57 assuming zero initial conditions. 

 

Solution:   The steady state response is the particular solution given by equation (2.84) 

and is plotted here in Mathcad: 
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Problems and Solutions Section 2.6 (2.59 through 2.62) 
 

2.59 Calculate damping and stiffness coefficients for the accelerometer of Figure 2.23 with 

moving mass of 0.04 kg such that the accelerometer is able to measure vibration between 

0 and 50 Hz within 5%.  (Hint:  For an accelerometer it is desirable for YZ
b

2
/! = 

constant.) 

 

Solution: Use equation (2.90): 

 

Given:  m = 0.04 kg with error < 5% 

  0.2f = 50 Hz !  f = 250 Hz !  ω = 2 f! = 1570.8 rad/s 

Thus,    k = 
2

!m = 98,696 N/m 

When r = .2,   0.95 < 
222

)2()1(

1

rr !+"
<1.05 (± 5% error) 

This becomes  0.8317+0.1444
2! <1<1.016+0.1764

2!  

Therefore,   

  

! = 0.7 =
c

2 km
 

   )04)(.98696()7(.2=c  

   c = 87.956 Ns/m 

 

 

2.60 The damping constant for a particular accelerometer of the type illustrated in Figure 2.23 

is 50 N s/m.  It is desired to design the accelerometer (i.e., choose m and k) for a 

maximum error of 3% over the frequency range 0 to 75 Hz. 

 

Solution: Given 0.2f = 75 Hz !  f = 375 Hz !  ω n= 2 f! = 2356.2 rad/s.  Using 

equation (2.93) when r = 0.2: 

0.97 < 
222

)2()1(

1

rr !+"
<1.03 (± 3% error) 

This becomes  0.8671 + 0.1505
2! <1<0.9777+0.1697

2!  

Therefore,   0.3622 < ! <0.9395 

Choose  

  

! = 0.7 =
c

2m"
=

50

2m(2356.2)
 

   m = 0.015 kg 

   k = m! n

2
 = 8.326 × 10

4
 N/m 
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2.61 The accelerometer of Figure 2.23 has a natural frequency of 120 kHz and a damping ratio 

of 0.2.  Calculate the error in measurement of a sinusoidal vibration at 60 kHz. 

 

Solution: 
 

Given: ω = 120 kHz, ,2.=!  
b

! = 60 kHz 

 So,  1288.1

))5)(.2(.2()5.1(

1

)2()1(

1

222222

>=

+!
=

+! rr "
 

The error is 
1

1288.1 !
 × 100% = 28.8% 

 
 
2.62 Design an accelerometer (i.e., choose m, c and k) configured as in Figure 2.23 with very 

small mass that will be accurate to 1% over the frequency range 0 to 50 Hz. 

 

Solution: 
 

Given: error < 1% , 0.2f = 50 Hz !  f = 250 Hz !  ω = 2 f! = 1570.8 rad/s 

When r =0.2,   0.99 < 
222

)2()1(

1

rr !+"
<1.01 (± 1% error) 

This becomes  0.9032 + 0.1568
2! <1<0.9401 + 0.1632

2!  

Therefore,   0.6057 < ! <0.7854 

Choose  m = 0.01 kg , then 
2

!mk =  = 24,674 N/m  

Thus   

  

! = 0.7 =
c

2 km
 implies that: c = 21.99 Ns/m 
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Problems and Solutions Section 2.7 (2.63 through 2.79) 
 

2.63 Consider a spring-mass sliding along a surface providing Coulomb friction, with stiffness 

1.2 × 10
4
N/m and mass 10 kg, driven harmonically by a force of 50 N at 10 Hz.  

Calculate the approximate amplitude of steady-state motion assuming that both the mass 

and the surface that it slides on, are made of lubricated steel. 

 

Solution: Given: m = 10 kg, k = 1.2x10
4
N/m, Fo = 50 N, ω =10(2! ) = 20!  rad/s 

  ω = 
k

m
= 34.64 rad/s 

  for lubricated steel, µ = 0.07 

 

 From Equation (2.109) 

  

X =
F

o

k

1!
4µmg

" (F
o)

#

$
%
%

&

'
(
(

2

(1! r
2
)

 

    

  

X =
50

1.2 !10
4

1"
4(.07)(10)(9.81)

# (50)

$

%
&

'

(
)

2

(1"
20#

34.64

*
+,

-
./

2

)

 

    X =1.79 × 10
!3

m 

 

 

2.64 A spring-mass system with Coulomb damping of 10 kg, stiffness of 2000 N/m, and 

coefficient of friction of 0.1 is driven harmonically at 10 Hz.  The amplitude at steady 

state is 5 cm.  Calculate the magnitude of the driving force. 

 

Solution:   
Given: m = 10 kg, k = 2000 N/m, µ = 0.1, ω =10(2! ) = 10(2! ) = 20!  rad/s, 

  ωn= 
k

m
= 14.14 rad/s, X = 5 cm 

 Equation (2.108) 

  

X =

F
0

k

(1! r
2
)

2
+

4µmg

"kX

#

$
%

&

'
(

2

) F
0

= Xk (1! r
2
)

2
+

4µmg

"kX

#

$
%

&

'
(

2

 

     

   

 

  

F
0

= (0.05)(2000) 1!
20"

14.14

#

$
%

&

'
(

2)

*
+
+

,

-
.
.

2

+
4(0.1)(10)(9.81)

" (2000)(.05)

)
*+

,
-.

2

= 1874 N  
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2.65 A system of mass 10 kg and stiffness 1.5 × 10
4
 N/m is subject to Coulomb damping.  If 

the mass is driven harmonically by a 90-N force at 25 Hz, determine the equivalent 

viscous damping coefficient if the coefficient of friction is 0.1. 

 

Solution: 
Given: m = 10 kg, k = 1.5x10

4
 N/m, 

  
F

0
= 90 N, ω  = 25(2! ) = 50!  rad/s, 

  ωn= 
k

m
= 38.73 rad/s, µ = 0.1 

 Steady-state Amplitude using Equation (2.109) is 

  

  

X =
F

0

k

1!
4µmg

" (F
o
)

#

$
%

&

'
(

2

(1! r
2
)

=
90

1.5)10
4

1!
4(0.1)(10)(9.81)

" (90)

#

$
%

&

'
(

2

1!
50"

38.73

*
+,

-
./

2
= 3.85)10

!4
 m  

 From equation (2.105), the equivalent Viscous Damping Coefficient becomes: 

  

  

c
eq

=
4µmg

!" X
=

4(0.1)(10)(9.81)

! (50! )(3.85#10
$4

)
= 206.7 Ns/m  
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2.66 a.  Plot the free response of the system of Problem 2.65 to initial conditions of x(0) = 0 

and  !x (0) = |F
0

/m| = 9 m/s using the solution in Section 1.10. 
b. Use the equivalent viscous damping coefficient calculated in Problem 2.65 and plot 

the free response of the “equivalent” viscously damped system to the same initial 

conditions. 

 

Solution: See Problem 2.65 

(a) x(0) = 0 and  !x (0) = 
Fo

m
= 9 m/s 

! =
k

m
=

1.5x10
4

10
=38.73 rad/s 

 

  From section 1.10: 

 

   
 
m!!x + kx = µmg for  !x < 0  

   
 
m!!x + kx = !µmg for  !x > 0  

 

  Let Fd = µmg = (0.1)(10)(9.81) = 9.81 N 

 

  To start, 
 
!x(0) = !nB1

= 9  

  Therefore, A
1

=
Fd

k
and B

1
=

9

!n

 

  So, x(t) = 
Fd

k
cos!nt +

9

!
sin!nt "

Fd

k
 

  This will continue until  !x  = 0, which occurs at time t
1
: 

   x(t) = A
2
cos!nt + B

2
sin!nt +

Fd

k
 

    !x  (t) = !"nA2
sin"nt +"nB2

cos"nt  

   x(t
1
) = A

2
cos!nt1 + B

2
sin!nt1 +

Fd

k
 

   
 
!x(t

1
) = 0 = !"nA2

sin"nt1 +"nB2
cos"nt1  

  Therefore,  A
2

= x(t
1
) ! Fd / k( )cos"nt1 and B

2
= x(t

1
) ! Fd / k( )sin"nt1  

  So, x(t) = x(t
1
) ! Fd / k( )cos"nt1#$ %&cos"nt + x(t

1
) ! Fd / k( )sin"nt1#$ %&sin"nt +

Fd

k
 

   

Again, when  !x = 0 at time t
2
, the motion will reverse: 

 

   x(t) = A
3
cos!nt + B

3
sin!nt "

Fd

k
 

    !x  (t) = !"nA3
sin"nt +"nB3

cos"nt  

   x(t
2
) = A

3
cos!nt2

+ B
3
sin!nt2

"
Fd

k
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!x(t

2
) = 0 = !"nA3

sin"nt2
+"nB3

cos"nt2
 

  Therefore,  A
3

= x(t
2
) + Fd / k( )cos!nt2

and B
3

= x(t
2
) ! Fd / k( )sin"nt2

 

  So, x(t) = x(t
2
) + Fd / k( )cos!nt2

"# $%cos!nt + x(t
2
) + Fd / k( )sin!nt2

"# $%sin!nt &
Fd

k
 

  This continues until  !x = 0 and kx < µmg = 9.81 N 

 

 
 

(b) From Problem 2.65, 
 
c

eq
= 206.7 kg/s 

The equivalently damped system would be: 

 
   
m!!x + c

eq
!x + kx = 0  

Also,  !n =
k

m
=

1.5x10
4

10
= 38.73 rad/s 

 

  

! =

c
eq

2 km
=

206.7

2 (1.5x10
4
)(10)

0.2668 

 !d = !n 1"# 2
= 37.33 rad/s 

 

The solution would be found from Equation 1.36: 

 

 x(t) = Ae
!"#nt

sin(#dt + $)  

 
 
!x(t) = !"#nAe

!"#nt
sin(#dt + $) +#d Ae

!"#nt
cos(#dt + $)  

 x(0) = Asin! = 0  

 
 
!x(0) = !"#nAsin$ +#d Acos$ = 9 
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Therefore,  A =
9

!d

= 0.2411m and !  = 0 rad 

So,
  x(t) = 0.2411e

!10.335t
sin(37.33t)   

 

 

 

 

 

2.67 Referring to the system of Example 2.7.1, calculate how large the magnitude of the 

driving force must be to sustain motion if the steel is lubricated.  How large must this 

magnitude be if the lubrication is removed? 

 

Solution:   
 

From Example 2.7.1 m = 10 kg, k = 1.5 × 10
4
 N/m, Fo = 90 N, 

    ! = 25(2" ) = 50" rad/s 

 Lubricated Steel µ = 0.07  

 Unlubricated Steel µ = 0.3  

 Lubricated:  Fo >
4µmg

!
=

4(0.07)(10)(9.81)

!
 

    Fo = 8.74 N 

 Unlubricated:  Fo >
4µmg

!
=

4(0.3)(10)(9.81)

!
 

    Fo = 37.5 N  
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2.68 Calculate the phase shift between the driving force and the response for the system of 

Problem 2.67 using the equivalent viscous damping approximation. 

 

Solution: 
 

From Problem 2.67: m = 10 kg, k = 1.5 × 10
4
 N/m, Fo = 90 N, 

    ! = 25(2" ) = 157.1 rad/s 

    !n =
k

m
= 38.73 rad/s 

 From Equation (2.111), and since r>1 

    

  

! = tan
"1

"4µmg

#F
0

1"
4µmg

#F
o

$

%&
'

()

2

*

+

,
,
,
,
,
,

-

.

/
/
/
/
/
/

 

 Since in Problem 2.67, !Fo = 4µmg , this reduces to  

    

 

! = tan
"1

"1

0

#

$
%

&

'
( =

")

2
rad = -90˚ 
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2.69 Derive the equation of vibration for the system of Figure P2.69 assuming that a viscous 

dashpot of damping constant c is connected in parallel to the spring.  Calculate the energy 

loss and determine the magnitude and phase relationships for the forced response of the 

equivalent viscous system. 

 

 

Solution: Sum of the forces in Figure P2.69 

 
m!!x = !kx ! c!x ! µmg sgn

 
( !x)  

 
m!!x + c!x + µmg sgn 

 
( !x) + kx = 0 

Assume the mass is moving to the left 
 
( !x(0) = 0, x(0) = x

0
)  

   
 
m!!x ! c!x + µmg + kx = 0  

   
 
!!x + 2!"n

!x # µg +"n

2
x = 0  

  The solution of the form: 

   x(t) = ae
rt

+
µg

!n

2
 

  Substituting:  

   ar
2
e

rt
+ 2!"nare

rt # µg +"n

2
ae

rt
+ µg = 0  

   r
2

+ 2!"nr +"n

2
= 0  

   r =
!2"#n ± 4" 2#n

2 ! 4#n

2

2
= !"#n ±#n " 2 !1  

  So,  x(t) = a
1
e

(!"#n +#n " 2 !1)t
+ a

1
e

(!"#n !#n " 2 !1)t
+

µg

#n

2
 

   

  

x(t) = e
!"#

n
t
(a

1
e
!"#

d
t
+ a

2
e
!"#

d
t
) +

µg

#
n

2
 

   x(t) = Xe
!"#nt

sin(#dt +$) +
µg

#n

2
 

  Initial conditions 

   x(0) = X sin(!) +
µg

"n

2
= xo  

   
 
!x(0) = X(!"#n )(sin$) + X#d cos$ = 0  

    !X"#n sin$ + X#d cos$ = 0  

    

  

tan! =
"

d

#"
n

$! = tan
%1

"
d

#"
n

&

'
(

)

*
+  
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    X =

xo !
µg

"n

2

#
$%

&
'(

"d

2
+ ()"n )

2

"d

 

 

  

x(t) =

x(0) !
µg

"
n

2

#

$
%

&

'
( "

d

2
+ ()"

n
)

2

"
d

e
!)"

n
t
sin "

d
t + tan

!1
"

d

)"
n

*

+
,

-

.
/

#

$
%

&

'
( +

µg

"
n

2
(1) 

           

  This will occur until
 
!x(t) = 0 :    

   
 
!x(t) = X(!"#n )e

!"#nt
sin(#dt +$) + A

0
e
!"#nt#d cos(#dt +$) = 0  

    !"#n sin(#dt +$) +#d cos(#dt +$) = 0  

   ! tan("dt +#) =
"d

$"n

 

   t =
!

"d

  

  So Equation (1) is valid from0 ! t !
"

#d

  

  For motion to the right 

 

   Initial conditions (From Equation (1)): 

   x
!
"d

#

$%
&

'(
= Xe

)*"n

!
"d

#
$%

&
'(
cos+ +

µg

"n

2
=

x(0) )
µg

"n

2

#
$%

&
'(
*"n

"d

e
)*"n

!
"d( )

+
µg

"n

2
 

   

 

!x
!
"d

#

$%
&

'(
= 0  

   x(t) = A
1
e !!"#nt

sin(#dt +$
1
) !

µg

#n

2
 

   x(0) = A
1
sin!

1
"

µg

#n

2
=

x(0) "
µg

#n

2

$
%&

'
()
*#

#d

e
"*#n

+
#d

$
%&

'
()

+
µg

#n

2
 

   
 
!x(0) = A

1
(!"#n )sin$

1
+ X#d cos$

1
= 0  

 

  Solution: x(t) = A
1
e
!"#nt

sin(#dt +$
1
) !

µg

#n

2
 

    

  

A
1

=
!

d

2
+ ("!

n
)

2

!
d

x(0) #
µg

!
n

2

$

%
&

'

(
) "! n

!
d

e
#"!

n

*
!

d

$

%
&

'

(
)

+
µg

!
n

2

+

,

-
-
-
-
-

.

/

0
0
0
0
0
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! = tan
"1

#
d

$#
n

%

&
'

(

)
*  

  Forced Case: 

    
 
m!!x ! c!x + µmg sgn

 
( !x) + kx = Fo cos(!t)  

   

Approximate Steady-state Response: 

    xss (t) = X sin(!t "#)  

   

Energy Dissipated per Cycle: 

  

 

!E = Fddx = c!x
dx

dt
+ µmgsgn !x

dx

dt

"

#$
%

&'
dt

2(

2(

)

**  

  

 

= (c!x
2
dt) + µmg sgn( !x) !xdt

2!

2!

"

#
2!

2!

"

#  

  !E = "c#X
2

+ 4µmgX  

 

This results in an equivalent viscously damped system: 

  
 
!!x + 2(! +!eq )"n

!x +"n

2
x = Fo cos"t  

    where !eq =
2µg

"#n#X
 

  The magnitude is: 

    

  

X =

F
0

k

(1! r)
2

+ (2(" +"
eq

)r)
2

 

 

  Solving for X: 

  

  

X =

8µgcr
2

!k"
#

$%
&

'(
+

8µgcr
2

!k"
#

$%
&

'(
) 2 (1) r

2
)

2
+

c
2
r

2

km

*

+
,

-

.
/

4µgr

!"
n
"

#

$%
&

'(

2

)
F

0

k

#

$%
&

'(

2*

+

,
,

-

.

/
/

4 (1) r
2
)

2
+

c
2
r

2

km

*

+
,

-

.
/

 

  The phase is: 

    

  

! = tan
"1

2(# +#
eq

)r

1" r
2

$

%
&
&

'

(
)
)

= tan
"1

2#r +
4µgr

*+
n
+ X

1" r
2

$

%

&
&
&
&

'

(

)
)
)
)
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2.70 A system of unknown damping mechanism is driven harmonically at 10 Hz with an 

adjustable magnitude.  The magnitude is changed, and the energy lost per cycle and 

amplitudes are measured for five different magnitudes.  The measured quantities are: 

 

! E(J) 0.25 0.45 0.8 1.16 3.0 

X (M) 0.01 0.02 0.04 0.08 0.15 

 Is the damping viscous or Coulomb? 
Solution: 

 

For viscous damping, !E = "c#X
2
 

 For Coulomb damping, !E = 4µmgX  

 

For the data given, a plot of !E  vs X
2
 yields a curve, while !E  vs X yields a straight 

line. Therefore, the damping is likely  Coulomb in nature 
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2.71 Calculate the equivalent loss factor for a system with Coulomb damping. 

 

Solution: 
 

Loss Factor:   ! =
"E

2#U
max

 

 For Coulomb damping: !E = 4µmgX  

     U
max

=
1

2
kX

2
 

     ! =
4µmgX

2"
1

2
kX

2#
$%

&
'(

=
4µmg

"kX
 

 Substituting for X (from Equation 2.109): 

     ! =
4µmg

"Fo

1# r
2

1#
4µmg

"Fo

$
%&

'
()

2

     

 

 

 

2.72 A spring-mass system (m = 10 kg, k = 4 × 10
3
 N/m) vibrates horizontally on a surface 

with coefficient of friction µ  = 0.15.  When excited harmonically at 5 Hz, the steady-

state displacement of the mass is 5 cm.  Calculate the amplitude of the harmonic force 

applied. 

 

Solution: Given: m = 10 kg, k = 4 × 10
3
N/m, µ = 0.15, X = 5 cm = 0.05 m, 

   ! = 5(2" ) = 10" rad/s, !n =
k

m
= 20 rad/s 

 Equation (2.109) 

  

X =

F
0

k

(1! r
2
)

2
+

4µmg

"kX

#
$%

&
'(

2

)

Fo = kX (1! r
2
)

2
+

4µmg

"kX

#
$%

&
'(

2

= (0.05)(4 )10
3
) 1!

10"
20

#
$%

&
'(

2#

$
%

&

'
(

2

+
4(0.15)(10)(9.81)

" (4x10
3
)(0.05)

#
$%

&
'(

2

 

Fo = 294 N 
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2.73 Calculate the displacement for a system with air damping using the equivalent viscous 

damping method.  

 

Solution: 
 

The equivalent viscous damping for air is given by Equation (2.131): 

ceq =
8

3!
"#X  

 

 From Equation 2.31: 

   X =
Fo

!n

2 "! 2

( )
2

+ 2#!n!( )
2

=
Fo

!n

2 "! 2

( )
2

+
ceq

m
!n

$
%&

'
()

2
 

  X =
Fo

!n

2 "! 2

( )
2

+
8

3#m
$!X

%
&'

(
)*

2

=
Fom

k (1" r
2
)

2
+

8

3#m
$r

2
X

%
&'

(
)*

2

 

 

 Solving for X and taking the real solution: 

   X =

!
1

2
(1! r

2
)

2
+

1

2
(1! r

2
)

2
+

16Fo"r
2

3#km

$
%&

'
()

2

8"r
2

3#m

$
%&

'
()
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2.74 Calculate the semimajor and semiminor axis of the ellipse of equation (2.119).  Then 

calculate the area of the ellipse.  Use c = 10 kg/s, ω = 2 rad/s and X = 0.01 m. 

 

Solution: The equation of an ellipse usually appears when the plot of the ellipse is 

oriented along with the x axis along the principle axis of the ellipse.  Equation (2.1109) is 

the equation of an ellipse rotated about the origin.  If k is known, the angle of rotation can 

be computed from formulas given in analytical geometry.   However, we know from the 

energy calculation that the stiffness does not effect the amount of energy dissipated. Thus 

only the orientation of the ellipse is effected by the stiffness, not its area or axis.  Thus we 

can use this fact to answer the question.  First re-write equation (2.119) with k = 0 to get: 

F
2

+ c
2! 2

x
2

= c
2! 2

X
2

"
F

c!X

#
$%

&
'(

2

+
x

X

#
$%

&
'(

2

= 1

 

This is the equation of an ellipse with major axis a and minor axis b given by  

a = X = 0.01 m,   and   b = c!X = 0.2 kg m/s
2
 

The area, and hence energy lost per cycle through the damper then becomes 

!c"n X
2
= (3.14159)(10)(2)(.0001) = 0.006283 Joules. 

Alternately, realized that Equation 2.119 is that of ellipse rotated by an angle !  defined 

by tan2!  = -2k/( c
2
!n

2
+ k

2
"1).  Then match the ellipse to standard form, read off the 

major and minor axis (say a and b) and calculate the area from!ab .  See the following 

web site for an elipse http://mathworld.wolfram.com/Ellipse.html  

 

 
 

2.75 The area of a force deflection curve of Figure P2.28 is measured to be 2.5 N- m, and the 

maximum deflection is measured to be 8 mm.  From the “slope” of the ellipse the 

stiffness is estimated to be 5 × 10
4
 N/m.  Calculate the hysteretic damping coefficient.  

What is the equivalent viscous damping if the system is driven at 10 Hz? 

 

 

Solution: 
 

Given: Area = 2.5N • m , k = 5x10
4
 N/m, X = 8 mm, ! = 10(2" ) = 20" rad/s 

  

Hysteric Damping Coefficient: 

   !E  = Area =!k"X
2
  

   2.5 = ! (5 "10
4
)#(0.008)

2
 

   ! = 0.249  

 

 Equivalent Viscous Damping: 

   ceq =
k!

"
=

(5 #10
4
)(0.249)

20$
 

   ceq = 198 kg/s 
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2.76 The area of the hysteresis loop of a hysterically damped system is measured to be 5 

N • m and the maximum deflection is measured to be 1 cm. Calculate the equivalent 

viscous damping coefficient for a 20-Hz driving force.  Plot c eq versus ω for 2!  !  ω !  

100!  rad/s. 

 

Solution: 
 

Given: Area = 5N • m , X = 1 cm, ! = 20(2" ) = 40" rad/s 

  

Hysteric Damping Coefficient: 

   !E  = Area =!k"X
2
  

   5 = !k"(0.01)
2
 

   k! = 15,915 N/m 

 

 Equivalent Viscous Damping: 

   ceq =
k!

"
=

15915

40#
 

   ceq = 126.65 kg/s 

 

 To plot, rearrange so that 

   !ceq"X
2

= #E    

   ceq =
!E

"#X
2

=
5

"# (.01)
2

=
50,000

"#
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2.77 Calculate the nonconservative energy of a system subject to both viscous and hysteretic 

damping. 

 

Solution: 
 

!E = !Ehys + !Evisc   

  !E = "c#X
2

+ k"$X
2

 

  !E = (c" + k#)$X
2
 

 

 
 

2.78 Derive a formula for equivalent viscous damping for the damping force of the form, F d  = 

c( !x )
n

where n is an integer.   

 

Solution: 
 

Given:  
 
Fd = c( !x)

n
 

 Assume the steady-state response x = X sin!t.  

 The energy lost per cycle is given by Equation (2.99) as: 

   

 

!E = Fddx = c( !x)
n
!xdt = c ( !x)

n+1
dt

0

2"

#

$
0

2"

#

$"$  

 Substituting for  !x : 

   !E = " n+1
X

n+1
cos

n+1
("t)#$ %&dt

0

2'

"

(  

   Letu = !t : 

   !E = cX
n+1" n

cos
n+1

u( )du
0

2#

$  

 Equating this to Equation 2.91 yields: 

   !ceq"X
2

= cX
n+1" n

(cos
n+1

u)du
0

2!

#  

   ceq =
cX

n!1" n!1

#
(cos

n+1
u)du

0

2#

$  
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2.79 Using the equivalent viscous damping formulation, determine an expression for the 

steady-state amplitude under harmonic excitation for a system with both Coulomb and 

viscous damping present.   

 

Solution: 
 

!E = !Evisc + !Ecoul   

   !E = "c#X
2

+ 4umgX  

 

 Equate to Equivalent Viscously Damped System 

   !ceq"X
2

= !c"X
2

+ 4µmg  

   ceq =
!c"X + 4µmg

!"X
= c +

4µmg

!"X
= 2#eq"nm  

   !eq = ! +
2µg

"##n X
 

 Amplitude:  

   X =

Fo

k

(1! r
2
)

2
+ (2"eqr)

2

=

Fo

k

(1! r
2
)

2
+ 2"r +

4µmg

#kX

$
%&

'
()

2

 

 Solving for X: 

 X =

!
8µgcr

2

"k#
$
%&

'
()

+
8µgcr

2

"k*#
$
%&

'
()

2

! 4 (1! r
2
)

2
+

c
2

r
2

km

+

,
-

.

/
0

4µgr

"#n#
$
%&

'
()

2

!
Fo

k

$
%&

'
()

2+

,
-
-

.

/
0
0

2 (1! r
2
)

2
+

c
2
r

2

km

+

,
-

.

/
0
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Problems and Solutions Section 2.8 (2.80 through 2.86) 

 

2.80*.  Numerically integrate and plot the response of an underdamped system 

determined by m = 100 kg, k = 20,000 N/m, and c = 200 kg/s, subject to the initial 

conditions of x0 = 0.01 m and v0 = 0.1 m/s, and the applied force F(t) = 150cos5t.  Then 

plot the exact response as computed by equation (2.33).  Compare the plot of the exact 

solution to the numerical simulation. 

 

Solution: The solution is presented in Matlab: 

 
 

First the m file containing the state equation to integrate is set up and saved as ftp2_72.m 

 
 
function xdot=f(t, x) 
xdot=[-(200/100)*x(1)-(20000/100)*x(2)+(150/100)*cos(5*t); x(1)]; 
% xdot=[x(1)'; x(2)']=[-2*zeta*wn*x(1)-wn^2*x(2)+fo*cos(w*t) ; x(1)] 
% which is a state space form of 
% x" + 2*zeta*wn*x' + (wn^2)*x = fo*cos(w*t)    (fo=Fo/m) 
 
clear all; 
 

Then the following m file is created and run: 

 
%---- numerical simulation --- 
x0=[0.1; 0.01];          %[xdot(0); x(0)] 
tspan=[0 10]; 
[t,x]=ode45('fp2_72',tspan,x0);          
plot(t, x(:,2), '.'); 
hold on; 
 
%--- exact solution ---- 
t=0: .002: 10; 
m=100; k=20000; c=200; Fo=150 ; w=5 
wn=sqrt(k/m); zeta=c/(2*wn*m); fo=Fo/m; wd=wn*sqrt(1-zeta^2)     
x0=0.01; v0= 0.1; 
xe= exp(-zeta*wn*t) .* ( (x0-fo*(wn^2-w^2)/((wn^2-w^2)^2 ...  
 +(2*zeta*wn*w)^2))*cos(wd*t) ... 
 + (zeta*wn/wd*( x0-fo*(wn^2-w^2)/((wn^2-w^2)^2+(2*zeta*wn*w)^2)) ... 
 - 2*zeta*wn*w^2*fo/(wd*((wd^2-w^2)^2  ... 
 + (2*zeta*wn*w)^2))+v0/wd)*sin(wd*t) ) ... 
 + fo/((wn^2-w^2)^2+(2*zeta*wn*w)^2)*((wn^2-w^2)*cos(w*t) ... 
 + 2*zeta*wn*w*sin(w*t)) 
 
plot(t, xe, 'w');  
hold off;  
 

This produces the following plot: 
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2.81*.  Numerically integrate and plot the response of an underdamped system 

determined by m = 150 kg, and k = 4000 N/m subject to the initial conditions of x0 = 0.01 

m and v0 = 0.1 m/s, and the applied force F(t) = 15cos10t , for various values of the 

damping coefficient.  Use this “program” to determine a value of damping that causes the 

transient term to die out with in 3 seconds.  Try to find the smallest such value of 

damping remembering that added damping is usually expensive. 

 

Solution: The solution is given by the following Mathcad session.  A value of c = 350 

kg/s corresponding to ζ = 0.226 gives the desired result. 
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2.82*.  Solve Problem 2.7 by numerically integrating rather than using analytical 

expressions. 

 

 

Solution: The following session in Mathcad illustrates the solution: 

a) zero initial conditions 

 

 

 

b) Using and initial condition of x(0) = 0.05 m.   Note the difference in the response. 
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2.83*.  Numerically simulate the response of the system of Problem 2.30. 

 

 

Solution: From problem 2.30, the equation of motion is 

 
9a

2
m !!! + 4 a

2
ccos! !! + a

2
k sin! = "3a F(t)  

 where k = 2000 kg, c = 25kg/s  , m = 25 kg , F(t) = 50cos2!t  ,    a = 0.05 m 

Placing the equation of motion in first order form and numerically integrating 

using Mathcad yields 
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2.84*.  Numerically integrate the system of Example 2.8.1 for the following sets of initial 

conditions: 

a) x0 = 0.0 m and v0 = 0.1 m/s 

b) x0 = 0.01 m and v0 = 0.0 m/s 

c) x0 = 0.05 m and v0 = 0.0 m/s 

d) x0 = 0.0 m and v0 = 0.5 m/s 

Plot these responses on the same graph and note the effects of the initial conditions on the 

transient part of the response. 

 

Solution: The following are the solutions in Mathcad.  Of course the other codes and 

Toolbox will yield the same results. 

a) 

 

b) 
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c) 

  

d) 

 

Note the profound effect on the transient, but of course no effect on the steady state.
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2.85*.  A DVD drive is mounted on a chassis and is modeled as a single degree-degree-

of-freedom spring, mass and damper.  During normal operation, the drive (having a mass 

of 0.4 kg) is subject to a harmonic force of 1 N at 10 rad/s.  Because of material 

considerations and static deflection, the stiffness is fixed at 500 N/m and the natural 

damping in the system is 10 kg/s.  The DVD player starts and stops during its normal 

operation providing initial conditions to the module of x0 = 0.001 m and v0 = 0.5 m/s.  

The DVD drive must not have an amplitude of vibration larger then 0.008 m even during 

the transient stage.  First compute the response by numerical simulation to see if the 

constraint is satisfied.  If the constraint is not satisfied, find the smallest value of damping 

that will keep the deflection less then 0.008 m. 

 

Solution:  The solution is given by the following Mathcad session: 

 

 

This yields c =17 kg/s as a solution. 
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2.86  Use a plotting routine to examine the base motion problem of Figure 2.12 by 

plotting the particular solution (for an undamped system) for the three cases k = 

1500 N/m,  and k = 700 N/m.  Also note the values of the three frequency ratios 

and the corresponding amplitude of vibration of each case compared to the input.  

Use the following values: ωb  = 4.4 rad/s, m = 100 kg, and Y = 0.05 m. 

 

 Solution;  The following Mathcad worksheet shows the plotting: 

 

 Note that k2, the softest system (smallest k) has the smallest amplitude, smaller 

than the amplitude of the input as predicted by the magnitude plots in section 2.3.  

Thus when  r > 2 , the amplitude is the smallest.  
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Problems and Solutions Section 2.9 (2.87 through 2.93) 

 

2.87*.  Compute the response of the system in Figure 2.34 for the case that the damping 

is linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k
1
x

3
 

and the system is subject to a harmonic excitation of 300 N at a frequency of 

approximately one third the natural frequency (ω = ωn/3) and initial conditions of x0 = 

0.01 m and v0 = 0.1 m/s.  The system has a mass of 100 kg, a damping coefficient of 170 

kg/s and a linear stiffness coefficient of 2000 N/m.  The value of k1 is taken to be 10000 

N/m
3
.  Compute the solution and compare it to the linear solution (k1 = 0).  Which system 

has the largest magnitude? 

Solution: The following is a Mathcad simulation. The green is the steady state magnitude 

of the linear system, which bounds the linear solution, but is exceeded by the nonlinear 

solution. The nonlinear solution has the largest response. 
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2.88*.  Compute the response of the system in Figure 2.34 for the case that the damping 

is linear viscous and the spring is a nonlinear hard spring of the form 

k(x) = kx + k
1
x

3
 

and the system is subject to a harmonic excitation of 300 N at a frequency equal to the 

natural frequency (ω = ωn) and initial conditions of x0 = 0.01 m and v0 = 0.1 m/s.  The 

system has a mass of 100 kg, a damping coefficient of 170 kg/s and a linear stiffness 

coefficient of 2000 N/m.  The value of k1 is taken to be 10000 N/m
3
.  Compute the 

solution and compare it to the linear solution (k1 = 0).  Which system has the largest 

magnitude? 

Solution: The Mathcad solution appears below. Note that in this case the linear 

amplitude is the largest! 
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2.89*.  Compute the response of the system in Figure 2.34 for the case that the damping 

is linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k
1
x

3
 

and the system is subject to a harmonic excitation of 300 N at a frequency equal to the 

natural frequency (ω = ωn) and initial conditions of x0 = 0.01 m and v0 = 0.1 m/s.  The 

system has a mass of 100 kg, a damping coefficient of 15 kg/s and a linear stiffness 

coefficient of 2000 N/m.  The value of k1 is taken to be 100 N/m
3
.  Compute the solution 

and compare it to the hard spring solution (k(x) = kx + k
1
x

3
).   

Solution: The Mathcad solution is presented, first for a hard spring, then for a soft spring 

 

 

Next consider the result for the soft spring and note that the nonlinear response is higher 

in the transient then the linear case (opposite of the hardening spring), but nearly the 

same in steady state as the hardening spring. 
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2.90*.  Compute the response of the system in Figure 2.34 for the case that the damping 

is linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k
1
x

3
 

and the system is subject to a harmonic excitation of 300 N at a frequency equal to the 

natural frequency (ω = ωn) and initial conditions of x0 = 0.01 m and v0 = 0.1 m/s.  The 

system has a mass of 100 kg, a damping coefficient of 15 kg/s and a linear stiffness 

coefficient of 2000 N/m.  The value of k1 is taken to be 1000 N/m
3
.  Compute the solution 

and compare it to the quadratic soft spring (k(x) = kx + k
1
x

2
).  

 

Solution: The response to both the hardening and softening spring are given in the 

following Mathcad sessions.  In each case the linear response is also shown for 

comparison. With the soft spring, the response is more variable, whereas the hardening 

spring seems to reach steady state.   
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2.91*.  Compare the forced response of a system with velocity squared damping as 

defined in equation (2.129) using numerical simulation of the nonlinear equation to that 

of the response of the linear system obtained using equivalent viscous damping as 

defined by equation (2.131).  Use as initial conditions, x0 = 0.01 m and v0 = 0.1 m/s with a 

mass of 10 kg, stiffness of 25 N/m, applied force of 150 cos (ωnt) and drag coefficient of 

α = 250. 

Solution: 
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2.92*. Compare the forced response of a system with structural damping (see table 2.2) 

using numerical simulation of the nonlinear equation to that of the response of the linear 

system obtained using equivalent viscous damping as defined in Table 2.2.  Use as initial 

conditions, x0 = 0.01 m and v0 = 0.1 m/s with a mass of 10 kg, stiffness of 25 N/m, 

applied force of 150 cos (ωnt) and solid damping coefficient of b = 25. 

Solution: The solution is presented here in Mathcad 

 

 


