Problems and Solutions Section 1.1 (1.1 through 1.19)
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The spring of Figure 1.2 is successively loaded with mass and the corresponding (static)
displacement is recorded below. Plot the data and calculate the spring's stiffness. Note
that the data contain some error. Also calculate the standard deviation.

m(kg) 10 11 12 13 14 15 16
x(m) 1.14 1.25 1.37 1.48 1.59 1.71 1.82
Solution:
Free-body diagram: From the free-body diagram and static
equilibrium:
[/ kx ,
f kx=mg (g=9.81m/s)
k k=mg/x
=k
=—=286.164
m ¢ H "
mg
20 T+
The sample standard deviation in
computed stiffness is:
15 +
10 : |
0 1 2

X

Plot of mass in kg versus displacement in m

Computation of slope from mg/x

m(Kkg) x(m) K(N/m)
10 1.14 86.05
11 1.25 86.33
12 1.37 85.93
13 1.48 86.17
14 1.59 86.38
15 1.71 86.05
16 1.82 86.24




1.2 Derive the solution of mx + kx =0 and plot the result for at least two periods for the case
with @, = 2 rad/s, X, = 1 mm, and vo = +/5 mm/s.

Solution:
Given:
mx +kx =0 1)
Assume: x(t) =ae". Then: x=are™ and X =ar?e". Substitute into equation (1) to
get:
mar " + kae" =0
m?+k=0
k
r=d,/— i
m

Thus there are two solutions:

5} = cd )

X =Ce , and X, =c,e

where @, = \/E =2rad/s
m

The sum of x; and x5 is also a solution so that the total solution is:

2it —2it

X=X +X, =ce’ +c,e

Substitute initial conditions: xo =1 mm, vo = Jg mm/s

x(0)=¢ +c,=x,=1=¢,=1-¢, and v(0)=x(0) = 2ic, - 2ic, = v, =/5 mm/s
= —2¢, +2¢, =/5i. Combining the two underlined expressions (2 eqsin 2 unkowns):

—2cl+2—201:\/§i:>c1:%—§i, and C2:%+§i

Therefore the solution is:

_(1 \/gj 2it (1 \/gj -2it
X=|=——i|e"+| =+—i |€
2 4

2 4
Using the Euler formula to evaluate the exponential termsyields:
X = [%—?i](coﬁt +isin2t) +[% +§i)(0052t —isin2t)

= X(t) = cos2t + %sinZt = \/gsin(Zt +0.7297)




Using Mathcad the plot is:
\5
x(t) := cos(2-t) + 7-S|n(2-t)

2 T

o DAATS
VAR




1.3

Solve mx + kx =0 for k=4 N/m, m = 1 kg, Xo =1 mm, and vo = 0. Plot the solution.

Solution:

This is identical to problem 2, except v, = 0. (wn = \/E =2 rad/s). Calculating the
m

initial conditions:
X0)=c +c, =% =1=¢c,=1-¢
v(0) = x(0) = 2ic, - 2ic, =v, =0= ¢, =¢,
c,=¢=05
x(t) = Lo lgal (cos2t +isin2t) + 1(cosZt —isin2t)
2 2 2 2

x(t)= cos (2t)
The following plot is from Mathcad:

x(t) = cos(2-1)

LA
oy

Alternately students may use equation (1.10) directly to get

An:igggigsma+mwwéﬁ)

=mmz+§:mﬂt



1.4

1.5

The amplitude of vibration of an undamped system is measured to be 1 mm. The phase
shift from t = 0 is measured to be 2 rad and the frequency is found to be 5 rad/s.
Calculate the initial conditions that caused this vibration to occur. Assume the response
is of the form x(t) = Asin(e,t + ¢).

Solution:

Given: A=1mm, ¢ = 2rad, w =5rad/s. For an undamped system:
x(t) = Asin(w,t +¢) =1sin(5t +2) and
v(t) = x(t) = Aw, cos(w,t + ¢) = 5cos(5t +2)
Setting t = 0 in these expressions yields:

x(0) = 1sin(2) =0.9093 mm
v(0) =5 cos(2) = - 2.081 mm/s

Find the equation of motion for the hanging spring-mass system of Figure P1.5, and
compute the natural frequency. In particular, using static equilibrium along with
Newton’s law, determine what effect gravity has on the equation of motion and the
system’s natural frequency.

Figure P1.5

Solution:
The free-body diagram of problem system in (a) for the static case and in (b) for the
dynamic case, where x is now measured from the static equilibrium position.

(@) (b)

From a force balance in the static case (a): mg = kx, where Xs is the static deflection of

the spring. Next let the spring experience a dynamic deflection x(t) governed by
summing the forces in (b) to get



1.6

MX(t) = mg — k(x(t) + x,) = mx(t) + kx(t) = mg — kx;

:>rni((t)+kx(t)=0:>con:\/E
__'m

since mg = kx, from static equilibrium.

Find the equation of motion for the system of Figure P1.6, and find the natural frequency.
In particular, using static equilibrium along with Newton’s law, determine what effect
gravity has on the equation of motion and the system’s natural frequency. Assume the
block slides without friction.

Figure P1.6

Solution:

Choosing a coordinate system along the plane with positive down the plane, the free-

body diagram of the system for the static case is given and (a) and for the dynamic case
in (b):

X

X
(et

«— m

mgsin® mgsin®

Y L a .

¥ mgcoso i mgcoso

In the figures, N is the normal force and the components of gravity are determined by the
angle 0 as indicated. From the static equilibrium: —kx, + mgsin6 = 0. Summing forces
in (b) yields:



1.7

ZE = mX(t) = mX(t) = —k(x + x;) + mgsin@
= mMX(t) + kx = —kx, + mgsind =0
= mx(t) +kx=0

:wn:\/Erad/s
_'m

An undamped system vibrates with a frequency of 10 Hz and amplitude 1 mm. Calculate
the maximum amplitude of the system's velocity and acceleration.

Solution:

Given: First convert Hertz to rad/s: @, = 2nf. =2a(10) = 20xrad/s. We also have that
A=1mm.

For an undamped system:
x(t)= Asin(o,t +¢)

and differentiating yields the velocity: v(t) = A, cos(cont + <p). Realizing that both the
sin and cos functions have maximum values of 1 yields:

V... = Ao, =1(207)=62.8 mm/s
Likewise for the acceleration: a(t)=—Aw?sin(w,t+¢)

a,, = Ao’ =1(207) = 3948 mm/s?



1.8

1.9

Show by calculation that A sin (m.t + ¢) can be represented as Bsinw,t + Ccosw,t and

calculate C and B in terms of A and ¢.

Solution:

This trig identity is useful: sin(a+b)=sinacosb + cosasinb
Given: Asin(w,t+¢)= Asin(o,t)cos(p)+ Acos(w,t)sin(p)

=Bsinat+ Ccosapt
whereB=Acos¢ and C=Asng

Using the solution of equation (1.2) in the form x(t) = Bsinw,t + Ccosa,t
calculate the values of B and C in terms of the initial conditions xo and vy.

Solution:
Using the solution of equation (1.2) in the form

x(t)= Bsina,t + Ccosm
and differentiate to get:
X(t) = @,Bcos(w, t) — @ Csin(m, t)

Now substitute the initial conditions into these expressions for the position and velocity

to get:
X, = X(0) =Bsin(0) + Ccos(0) =C
Vo = X(0) = w,Bcos(0) — w,Csin(0)
=0,B1l)-0,C(0)=w,B

Solving for B and C yields:

B:i, and C =X,
0]

n

vy .
Thus X(t) =—2sinw,t + X, cosw t
o

n



1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition.

Solution: Following the lead given in Example 1.1.2, write down the general expression
of the velocity by differentiating equation (1.10):

X(t) = Asin(@,t + ¢) = X(t) = Aw, cos(a,t + @)
= V(0) = Aw, cos(@,0 + ¢) = Aw, cos(¢)
From the figure:

Figure 1.6
\V
wn
v 2
2 41 Yo
<[]

Substitution of these values into the expression for v(0) yields

Vo

2
A= x§+{ } CoSp =
1)

n

VO
v(O):Awncos¢:,/x§+[ﬁ] (@0,)——— =V,
@n 2 Vo i
)

verifying the agreement between the figure and the initial velocity condition.



1.11 (a)A 0.5 kg mass is attached to a linear spring of stiffness 0.1 N/m. Determine the natural
frequency of the system in hertz. b) Repeat this calculation for a mass of 50 kg and a

stiffness of 10 N/m. Compare your result to that of part a.

Solution: From the definition of frequency and equation (1.12)

a o = E: £):0.447rad/s
A 1

m .
=00 220 40504,
2n 21
(b) o, = ‘/@ = 0.447radls, f, = ©n = 0,071 Hz
10 2n

Part (b) is the same as part (a) thus very different systems can have same natural

frequencies.



1.12  Derive the solution of the single degree of freedom system of Figure 1.4 by writing

Newton’s law, ma = -kx, in differential form using adx = vdv and integrating twice.

Solution: Substitute a = vdv/dx into the equation of motion ma = -kx, to get mvdv = -
kxdx. Integrating yields:

2 2

v 2 X° :
— = -, — +C°, wherec isaconstant
2 2
o V=-pX+c’=

dx
v=— = J-0’X’ +¢ =

dt

dx ,

dt = ———==, writeu = o, x to get:

1 du _ 1 . ,(u
t—O—w—nj\/CZ_uz-w—nsnl(Ej+c2

Here c; is a second constant of integration that is convenient to write as ¢, = -¢/.
Rearranging yields

. 0
ot+o= sn‘l(—“) =

c

oxX _ .
—=gn(wt+¢)=
c

X(t) = Asn(ot +¢), A=——
wn

in agreement with equation (1.19).



1.13  Determine the natural frequency of the two systems illustrated.

Figure P1.13

Solution:

(a) Summing forces from the free-body diagram in the x direction yields:
mx = -k X—-k,x=

mx + kX +k,x=0

<« *X mx + x(k, + k,) =0, dividing by myields:
X+ (w)x =0
ox —> L » kX m
1 Examining the coefficient of x

yields:

Free-body diagram for part a o \/m
" m

(b) Summing forces from the free-body diagram in the x direction yields:

_klx

L 5 ke

-kox

Free-body diagram for part b

MX = —k X — kX — k;x,=
MX+ kX+KX+Kx=0=

(k1+k2+k3)X:0
m

O R
m

MR + (K, + k, + k)X =0= K+




1.14* Plot the solution given by equation (1.10) for the case k = 1000 N/m and m = 10 kg for
two complete periods for each of the following sets of initial conditions: a) xo =0 m, vo =

1 m/s, b) xo =0.01 m, vo =0 m/s, and c) Xo = 0.01 m, vo =1 m/s.

Solution: Here we use Mathcad:
a) all units in m, kg, s

‘= k
m =10 k-~ 1000 @, ==
m
x0 = 0.0 _
v~ 1
2:T
®n T=—
fn 1= — wn
2:T
on-x0
0 = aan )
VO x(t) = A-sin(ont + )

parts b and c are plotted in the above by simply changing the initial conditions as

appropriate
02 T
1 2
A= —-,Jxoz-mn +4 V02
®n 01+
<o \ / \ / \
xb(t) — e = +
- 0 0.5 1 1.5
<t \/ \/
-0.1t ,

—0.2-



1.15* Make a three dimensional surface plot of the amplitude A of an undamped oscillator
given by equation (1.9) versus xo and vo for the range of initial conditions given by -0.1 <
Xo < 0.1 mand -1 < vy <1m/s, for a system with natural frequency of 10 rad/s.

Solution: Working in Mathcad the solution is generated as follows:

on =10
=25 i:=0. N
j:=0. N
5 0 = -01 0.2\ .
V0; 1= -1+ —j) S v

A(X0,\0) = —. Jmnz- (x0)2 + (v0)2
wn

Mi,j :=A(x0i,v0j)

0.1—

0.05—

Amplitude vsinitial conditions



1.16 A machine part is modeled as a pendulum connected to a spring as illustrated in Figure
P1.16. Ignore the mass of pendulum’s rod and derive the equation of motion. Then
following the procedure used in Example 1.1.1, linearize the equation of motion and
compute the formula for the natural frequency. Assume that the rotation is small enough
so that the spring only deflects horizontally.

%0
0
k v
V@ :
m
Figure P1.16

Solution: Consider the free body diagram of the mass displaced from equilibrium:

There are two forces acting on the system to consider, if we take moments about point O
(then we can ignore any forces at O). This yields
Y Mg = Joo = mi*6 = —mglsing — k/sin@ « ¢ cosd
= m¢?0 + mg/sind + k(*sinfcos@ = 0




1.17

1.18

Next consider the small 8 approximations to that sin6 ~ 6 and cos6=1. Then the

linearized equation of motion becomes:
.. mg + kfj
o(t) + ot)=0
(t) ( oy (t)

Thus the natural frequency is

wn:,/ngrkg rad/s
m/

A pendulum has length of 250 mm. What is the system’s natural frequency in Hertz?

Solution:
Given: 1=250 mm
Assumptions: small angle approximation of sin

From Window 1.1, the equation of motion for the pendulum is as follows:
10 + mgo =0, where I,=m’> =0 +T96 =0

The coefficient of @yields the natural frequency as:

2
0) :,/g :,/9'8 m/s =6.26 rad/s
n | 0.25m

0]
f =—1=0.996 Hz
" 2

The pendulum in Example 1.1.1 is required to oscillate once every second. What length
should it be?

Solution:

Given: f =1 Hz (one cycle per second)

w,=2nf =3



| = g :9.81
(2nf)?  4rm?

=0.248 m



1.19

The approximation of sin 6 =0, is reasonable for 0 less than 10°. If a pendulum of length
0.5 m, has an initial position of 6(0) = 0, what is the maximum value of the initial angular

velocity that can be given to the pendulum with out violating this small angle

approximation? (be sure to work in radians)

Solution: From Window 1.1, the linear equation of the pendulum is

é(t)+%0(t) =0

For zero initial position, the solution is given in equation (1.10) by

Vi/‘g sin( %t) — Jo|< Vi/‘g

since sin is always less then one. Thus if we need 6 < 10°=0.175 rad, then we need to

o(t) =

solve:

wy05 _ 176

9.81

j

for vo which yields:
Vo < 0.773 rad/s.



Problems and Solutionsfor Section 1.2 and Section 1.3 (1.20to 1.51)
Problems and Solutions Section 1.2 (Numbers 1.20 through 1.30)

1.20* Plot the solution of a linear, spring and mass system with frequency o, =2 rad/s,

X =1mmandv,= 2.34 mm/s, for at least two periods.
Solution: From Window 1.18, the plot can be formed by computing:

1
A== JoixZ +V =154mm, ¢= tan‘l(w\“l—xo) = 40.52
w 0

n

x(t) = Asin(o,t + ¢)
This can be plotted in any of the codes mentioned in the text. In Mathcad the

program looks like.

l===———1.18 HH
=1 w0 =234 wi = 2 | |
| 2 4 2 - x0
(t) 1= —aJwmn -x0% + w0 sin [wn-t + atan
ar
2--
]{[t] /\ } /\: T
VARV
_2__
L + —
-
4 | D

In this plot the units are in mm rather than meters.



1.21* Compute the natural frequency and plot the solution of a spring-mass system with

mass of 1 kg and stiffness of 4 N/m, and initial conditions of X, =1 mm and v, =
0 mm/s, for at least two periods.

Solution: Working entirely in Mathcad, and using the units of mm
yields:

E

=]

I
g

wn = 2

1 2 T
Xty = — aJon -x0¢ + ?ﬂz-sin(mn-t + -

C N AN
ivavs

time in seconds

diplarement in mm

Any of the other codes can be used as well.

| ¥ | mm




1.22 To design a linear, spring-mass system it is often a matter of choosing a spring
constant such that the resulting natural frequency has a specified value. Suppose
that the mass of a system is 4 kg and the stiffness is 100 N/m. How much must
the spring stiffness be changed in order to increase the natural frequency by 10%?
Solution: Given m=4 kg and k = 100 N/m the natural frequency is

a)n:,/¥:5rad/s

Increasing this value by 10% requires the new frequency to be 5x 1.1 = 5.5 rad/s.
Solving for k given mand w, yields:

55= ‘/E =k =(5.5?%4) =121 N/m

Thus the stiffness k must be increased by about 20%.



1.23 Referring to Figure 1.8, if the maximum peak velocity of avibrating system is
200 mm/s at 4 Hz and the maximum allowable peak acceleration is 5000 mm/s?,
what will the peak displacement be?

v = 200 mm/sec

X (mm) a = 5000 mm/sec?
f=4Hz

Solution:

Given: v,,,=200mm/s @ 4Hz
A = 5000 MM/s @ 4 Hz

Xpax = A

Viax = Alh

A = Awn?

o = o Ve o 20 _ 7.95 mm

™ o 2rf 8r

n

At the center point, the peak displacement will be x =7.95 mm



1.24 Show that lines of constant displacement and acceleration in Figure 1.8 have

dopes of +1 and —1, respectively. If rms values instead of peak values are used,

how does this affect the slope?

Solution: Let

Peak values:

Location:

X = X SN, T
X = X 0, COSW, t

X = —X @2 SN0, t

Xoax = Xoax@n = 270 X o

max—n

Koo = X @ = 2 F) X

max—n

INXmax = IN Xmax + 1N 2nf

Since X..,, is constant, the plot of In X,y VversusIn 2xf isastraight line of slope

+1. If In Xnax 1S constant, the plot of In Xyax Vversus In 2xf is a straight line of

dope—1. Caculate RMS vaues

Let

X(t) = Asino, t
x(t) = Aw, cosw,t
X(t)=-Aw 2sno,t



.
Mean Square Value: X* = lim %J‘ X2 (t) dt
0

T—>oo
- 1¢ A2 T A2
2 . 2 .2 .
= —| A“sin tdt = — | (- cos2w_ t) dt =—
K= lim [ st o, = im [ 0 cos20,0 =
- 1T A2 2T 1 A2 2
x2= lim =] Ao2cof o, tdt = lim ——2 [ Z(1+ cos 2w, t) df =
Tow 0 T—oo T 0 2 2
- 1T . Ao, T 1 Ao
x2= lim =] Rolsn’o,tdt = lim ——| =(1+ cos 20, 1) dt = ——n
Tooo 0 T—oo 0 2
Therefore,

The last two equations can be rewritten as:
Xrms = Xps @ = 2mf Xims

Xrms = X, @° = 27tf Xrms

The logarithms are:

IN Xmax = 1IN X, + 1IN 27f
IN Xmax = 1IN Xmax + In 2nf

The plots of In Xms Versus In 2nf isastraight line of slope +1 when X, IS constant, and

—1 when Xms is constant. Therefore the dopes are unchanged.



1.25 A foot peda mechanism for a machine is crudely modeled as a pendulum
connected to a spring asillustrated in Figure P1.25. The purpose of the spring is
to keep the pedal roughly vertical. Compute the spring stiffness needed to keep
the pendulum at 1° from the horizontal and then compute the corresponding
natural frequency. Assume that the angular deflections are small, such that the
spring deflection can be approximated by the arc length, that the pedal may be
treated as a point mass and that pendulum rod has negligible mass. The valuesin
thefigurearem=0.5kg, g=9.8m/s’, /, =0.2mand 7, = 0.3 m.

L L i BLTATLT AL TAATT AL TAALT A

Figure P1.25
Solution: You may want to note to your students, that many systems with springs are
often designed based on static deflections, to hold parts in specific positions asin this
case, and yet allow some motion. The free-body diagram for the systemisgivenin
the figure.



kee M8
For static equilibrium the sum of moments about point O yields (6, isthe static
deflection):

z Mo = _Klel(gl)k-'- mgl, = 0

= 26,k =mgl, ()
k=90 0'5'0';’ = 2106 N/m
016, (0_2)2 =
180

Again take moments about point O to get the dynamic equation of motion:
Y Mg =36 =m0 =—12k(0 +6,) + mgl, = —(2k0 + (2k0, — Mg/ 0
Next using equation (1) above for the static deflection yields:

me20 + (2ke = 0
2
:>é+(£15j0:0

2
:)@n:ﬁ\/E:% @:4327 rad/s
¢ \m 03V 05

1.26 Anautomobile is modeled as a 1000-kg mass supported by a spring of

stiffness k = 400,000 N/m. When it oscillates it does so with a maximum
deflection of 10 cm. When loaded with passengers, the mass increases to as much
as 1300 kg. Calculate the change in frequency, velocity amplitude, and

acceleration amplitude if the maximum deflection remains 10 cm.

Solution:
Given: m; = 1000 kg
m, = 1300 kg
k = 400,000 N/m



Xmax = A =10cm

0, = K - 400,000 20 rad/s
m,_ | 1000

o = | X = JM =1754 rad /s
m, 1300

n2
Aw = 1754 — 20 = —2.46 rad /s
Af = A9 }ﬂ‘: 0.392 Hz
27 27

v; = Aw,; =10 cm x 20 rad/s =200 cnvs

V, = Aw,, =10 cm x 17.54 rad/s =175.4 cnvs
Av = 175.4- 200 = -24.6 cm/s

a, = Aw,* =10 cm x (20 rad/s)® = 4000 c/s®
a, = Aw,,”> =10 cm x (17.54 rad/s)® = 3077 cm/s
Aa = 3077 - 4000 = -923 cm/s



1.27 Thefront suspension of some cars contains atorsion rod asillustrated in Figure
P1.27 to improve the car’ shandling. (a) Compute the frequency of vibration of
the wheel assembly given that the torsional stiffnessis 2000 N m/rad and the
wheel assembly has a mass of 38 kg. Take the distance x = 0.26 m. (b)
Sometimes owners put different wheels and tires on a car to enhance the
appearance or performance. Suppose athinner tireis put on with alarger wheel
raising the massto 45 kg. What effect does this have on the frequency?

Frame

Figure P1.27

Solution: (@) Ignoring the moment of inertial of the rod, and computing the

moment of inertia of the wheel as mx?, the frequency of the shaft mass system is

a)n:\/ kZ: 2000N-m - =27.9 rad/s
mx 38-kg (0.26 m)

(b) The same calculation with 45 kg will reduce the frequency to

a)n:\/ k2: 2000N-m > =25.6 rad/s
mx 45-kg (0.26 m)= —

This corresponds to about an 8% change in unsprung frequency and could
influence wheel hop etc. You could also ask students to examine the effect of
increasing x, as commonly done on some trucks to extend the wheels out for
appearance sake.



1.28

1.29

A machine oscillates in simple harmonic motion and appears to be well modeled
by an undamped single-degree-of-freedom oscillation. Its acceleration is
measured to have an amplitude of 10,000 mm/s* at 8 Hz. What is the machine's

maximum displacement?

Solution:
Given: a,,, = 10,000 mm/s’ @ 8 Hz
The equations of motion for position and acceleration are:
x=Asn(w,t + ) (2.3)
x=-Aw’sn(w t+¢) (15
The amplitude of acceleration is Aa)ﬁ =10,000 mm/s’ and w, = 2rf = 2rn(8) =

16m rad/s, from equation (1.12).
10,000 _ 10,000

0f  Gorf

The machine's displacement is A =

A =3.96 mm

A simple undamped spring-mass system is set into motion from rest by giving it
an initial velocity of 100 mm/s. It oscillates with a maximum amplitude of 10

mm. What isits natural frequency?

Solution:
Given: X, =0, v, = 100 mm/s, A =10 mm
_ Vo _ 100

From equation (1.9), A= Yo or , =—==——, sothat: w,=10rad/s
o A 10



1.30 Anautomobile exhibits avertical oscillating displacement of maximum amplitude
5 cm and a measured maximum acceleration of 2000 cm/s?.  Assuming that the
automobile can be modeled as a single-degree-of-freedom system in the vertical

direction, calculate the natural frequency of the automobile.

Solution:
Given: A=5cm. From equation (1.15)

X = Awf = 2000 cm/s
Solving for m, yields:

, 2000 , 2000
a)n = =
A 5

o, =20rad/s




Problems Section 1.3 (Numbers 1.31 through 1.46)

1.31 Solve x+4x+x=0 for x,=1mm, v, = 0mm/s. Sketch your results and
determine which root dominates.
Solution:
Given X +4x+x =0where xg =1mm,vg =0

Let — rt ; 2t
X=@ae =are' =>X=ar
Substitute these Into the equat| on of motion to get:

ar’e' +4are" +a€' =0
=rl+4r+1=0=r,=-2+3

( 2+J_) e(2+J§ (_Z_Jé)aze(—Z—.E)t
Apply| ng initial conditionsyields,
=at+ta = - =y @
=(-2+43)a+(-2-43)a, @)
Substitute equation (1) into (2)
=(~2+4B) - a) +(~2-3)a,
Vo =(—2+3)% - 234,
Solvefor a, vyt (_2+J§) X,
243

Substituting the value of a, into equation (1), and solving for a, yields,

2+J_

soX(t) = % 2+\/)57 2+t (zjjf) 3t

The response is dommated by the root: —2 ++/3_ as the other root dies off
very fast.




1.32 Solve X +2x+2x =0 for X, = 0mm, v, = 1 mm/s and sketch the response. Y ou
may wish to sketch x(t) = €' and x(t) =-e" first.
Solution:
Given X +2x+x =0 wherex, =0, v, = 1 mm/s
Let: x=ae" = x=are" = x=ar’e"
Substitute into the equation of motion to get
ar’d' +2are" +ae' =0=r’+2r +1=0=1,, = -1%]
So

~1+i)

X = Qe( tg Cze(—l—i)t —x= (_1+i)cle(—1+i)t +(—1—i)Cze(_l_i)t

Initial conditions:

%=x(0)=¢+c=0 = c¢== (I
Vo =X(0)= (-1+i)g +(-1-i)c, =1 2
Substituting equation (1) into (2)

v, = (-1+i)g —(-1-i)g =1

o ——}i —}i

1= 5h G = >

X(t) = _lie(—lﬂ)t + l-ie(—l—i)t - —lieft(e“ B eﬁit)
2 2 2

Applying Euler’ s formula
1. . - .
x(t):—Ele (cost+isint—(cost —isint))

x(t)=e"'sint

Alternately use equations (1.36) and (1.38). The plot issimilar to figure 1.11.



1.33 Derivetheform of A, and A, given by equation (1.31) from equation (1.28)
and the definition of the damping ratio.

Solution:

Equation (1.28): 4, 5 :—%i% c? — 4km

e o e e o

= ) 3 e i S 3 (252

Substitute:
= huy = Lo, 20, |07 {1— [%H

= A,= -0, *w,\{* -1

;I




1.34 Usethe Euler formulas to derive equation (1.36) from equation (1.35) and to
determine the relationships listed in Window 1.4.
Solution:

—jonof1-C"t

)jwn 1~ t_aze

Equation (1.35): x(t)= e *(ae
From Euler,
X(t)=e " (a cos(con 1- cjzt) +ajs n(con 1- cjzt)
+a, cos(wn‘/l—Tt) —a,) sin(a)n‘/l—?t))
= e“(a +a,)coswyt + j(a —a,)sinm,t
Let: A;=(a, +a,), A==(a, —a,), then thislast expression becomes
x(t) = €' A cosw t + A,sinw,t

Next use the trig identity:
A=A +A,, ¢=tan™ %

toget: x(t)=e*“"Asin(w,t + ¢)




1.35 Using equation (1.35) as the form of the solution of the underdamped
system, calculate the values for the constants a, and a, in terms of the initial
conditions x, and v,

Solution:

Equation (1.35):

X(t): e—Cwnt(aiejwn 1-¢°t +aze—jwn 1-¢ t)
()= (<Co, +jo1- 2 )aie(—CwnﬂwnJF ), to —io I TDa, Jeon o

Initial conditions
% =x0)=a+a,=a=%-2a 1
% =X(0) = (¢, + jo1-C)a +(-4w, - jo,i-CP)a, ()
Substitute equation (1) into equation (2) and solve for a,
Vo =~ 0, + 0,107 ) 0= @) +(~ Lo, ~ j0 1T )2,
Vo=( o, + jo 1T %~ 2j01-C a

Solvefor a,
— —Vo— Cwnxo + ja)n 1- CZXO
a = : >
ijn\/l_ C
Substitute the value for a, into equation (1), and solve for a;
g = Yot SO * jo,J1-8%
2ja)n\/l_ Cz




1.36 Caculate the constants A and ¢ in terms of the initial conditions and thus
verify equation (1.38) for the underdamped case.
Solution:
From Equation (1.36),
x(t) = Ae " sin(w,t + ¢)
Applying initial conditions (t = 0) yields,
X, = Asin¢ D
Vo = X, ==L, Asind + w, ACosd (2
Next solve these two simultaneous equations for the two unknowns A and ¢.

From (1),

X
A=-° 3
sing ®)
Substituting (3) into (1) yields
_ Wy Xy _ X0y
=- tang = ——<4—
v, ==L, X, + ano = tan¢ v+ o
Hence,
=t -1 XOwd 4
(P o |:V0 + Cwnx0:| ( )
From (3), sing = X—AO\ 5)
and From (4), cos¢ = Yo * 0o (6)

(%o@4)” + (o +EwnXo)”

Substituting (5) and (6) into (2) yields,
A= \/(VO + C(OnXO)Z + (X0, )2

;

which are the same as equation (1.38)



1.37 Cadculate the constants a, and a, in terms of the initial conditions and thus verify

equations (1.42) and (1.43) for the overdamped case.

Solution: From Equation (1.41)
X(t) = e_gwnt(aiewn 401t + aze—wnﬁz—_lt)

taking the time derivative yields:
X(t) = (_Cwn +(1)n‘/ CZ —1) ale(_gw"+w" JC -1 )t + (_Cwn _wnm)az e(—Cwn—wnm)t

Applying initial conditions yields,
%=x(0)=a+a, = %-8=a @

v, = x(0) =(—§wn +wn\/§2——1)a1 + (—Ca)n - a)n\/gzi—l)a2 (2)

Substitute equation (1) into equation (2) and solve for a,
Vo =( =0, + 0, JT71) (%~ 3) + (- G0, ~ 0,1 )3,
Vo :(_Cwn +wn\‘§2 _1)X0 - an\lgz —132

Solvefor a,
—Vo _Cwnxo + @, é‘Z -1 X
20,07 -1
Substitute the value for a, into equation (1), and solve for a;

a =0 +{, X, + 0,5 -1 %,
an\/Cz -1

a2:




1.38 Calculate the constants a, and a, in terms of theinitial conditions and thus verify

equation (1.46) for the critically damped case.

Solution:
From Equation (1.45),

X(t) = (&, + at)e
=X = - 0,36 —wate™ +a,e "
Applying theinitial conditionsyields:
X, =4, Q)
and
vV, =X(0)=a, —o,a, (2
solving these two simultaneous equations for the two unknowns a, and a..
Substituting (1) into (2) yields,
a, = X,
a, =V, +m,X,

which are the same as equation (1.46).



1.39 Using the definition of the damping ratio and the undamped natural frequency,

1.40

derive equitation (1.48) from (1.47).

Solution:
o, =\/E thus, —=w
m m
€= ¢ thus, © _ 26km = 2w,
2+/km m m
Therefore, X +£>’< +£x =0
m m
becomes,

X(t) + 28w X(t) + 0, *X(t) =0

For a damped system, m, ¢, and k are known to be m = 1 kg, ¢ = 2 kg/s, k = 10
N/m. Calculate the value of £ and . Is the system overdamped, underdamped, or
critically damped?

Solution:

Given: m =1Kkg, ¢ =2 kg/s, k=10 N/m

Natural frequency: o, = \/7 \/: =3.16rad/s

Damping ratio: = =0.
PINg 6= 2(om 2(3 16)(1)

Damped natural frequency: o, —x/7 J = 3.0 rad/s

Since 0 < { < 1, the system is underdamped.




1.41  Plot x(t) for a damped system of natural frequency w, = 2 rad/s and initial
conditions Xo = 1 mm, vo = 1 mm, for the following values of the damping ratio:
£=001,{=0.2,=01,,=04,and {=0.8.

Solution:

Given: m, = 2 rad/s, Xo =1 mm, vo = 1 mm, {; =[0.01; 0.2; 0.1; 0.4; 0.8]
Underdamped cases:

S04 = 0,41- Ciz

From equation 1.38,

A - (vo +{ioX )Z+ (%04)" 4 = tant — X%
O Vot G0,

The response is plotted for each value of the damping ratio in the following using
Matlab:

x10°

0 2 4 6 8 10 12 14 16 18 20



1.42

002 [ 4
|
004 1 : §
006 i
|

-0.08 I I I I I I I I I

Plot the response x(t) of an underdamped system with w, = 2 rad/s, { = 0.1, and
vo = 0 for the following initial displacements: xo = 10 mm and X, = 100 mm.

Solution:
Given: o, = 2 rad/s, { = 0.1, vo=0, Xo = 10 mm and xo = 100 mm.

Underdamped case:

f @y =0, \1-§? = 2\1-0.12 = 1.99 rad/s

A~ ‘/(vo +{w X )22 + (%0,) _ L01x

Wy

XoWy

—— =147 rad
VO + gwnxo

¢=tan"

where

x(t) = Ae*" sin(w,t + ¢)

The following is a plot from Matlab.

0.1

0.08 - I x0 =10 mm B

77777 X0 =100 mm
0.06 |- ! E

0.04 - | i

002 | ‘ ! ) J




143 Solve Xx—x+x =0 withx, =1 and v, =0 for x(t) and sketch the response.

Solution: Thisisa problem with negative damping which can be used to tie into
Section 1.8 on stability, or can be used to practice the method for deriving the
solution using the method suggested following equation (1.13) and eluded to at
the start of the section on damping. To thisend letx(t) = Ae™ the equation of
motion to get:

(A -A+De" =0
Thisyields the characteristic equation:

12—,1+1:0:>/1:%¢§j, where j =+/-1

There are thus two solutions as expected and these combine to form
By A,

xt)=e'(Ae” +Be’ )
Using the Euler relationship for the term in parenthesis as given in Window 1.4,

this can be written as
x(t) =e”™(A cos%t +AS n%t)
Next apply theinitial conditions to determine the two constants of integration:
x0)=1=AD+A(0)=A=1

Differentiate the solution to get the velocity and then apply the initial velocity
condition to get
X(t) =

B B B B3

1, . A3 0 . 3
—e cos—0+A an—0)+e —(-Asn—0+A cos—0)=0
S (A0S 20+ A= 0) + €' (-ASNT-0+ A 0s-0)

:»A1+ﬁ(Az):o:»A2:—%,

_osye N3, 1 V3
= X(t)=e€ (cos?t—ﬁsm7t)

This function oscillates with increasing amplitude as shown in the following plot
which shows the increasing amplitude. Thistype of responseisreferred to asa
flutter ingtability. Thisplot is from Mathcad.
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144 A spring-mass-damper system has mass of 100 kg, stiffness of 3000 N/m and
damping coefficient of 300 kg/s. Calculate the undamped natural frequency, the
damping ratio and the damped natural frequency. Does the solution oscillate?

Solution: Working straight from the definitions:

o, = ‘/E = [3ONM _ o 47 radis
m 100 kg
c 300

SRR RN covo)lico

Since { islessthen 1, the solution is underdamped and will oscillate. The damped

natural frequency isw, = w,y1-¢? =5.27 radls.



1.45 A sketch of avalveand rocker arm system for an internal combustion engineis
givein Figure P1.45. Modéd the system as a pendulum attached to a spring and a
mass and assume the oil provides viscous damping in the range of {=0.01.
Determine the equations of motion and calcul ate an expression for the natural
frequency and the damped natural frequency. Here Jistherotationa inertia of
the rocker arm about its pivot point, k is the stiffness of the valve spring and mis
the mass of the valve and stem. Ignore the mass of the spring.

Rocker arm 0 J

] 4
Figure P1.45
Solution: The modd is of the form given in the figure. Y ou may wish to give thisfigure

asahint asit may not be obviousto all students.

Taking moments about the pivot point yields:
(J + me?)0(t) = —kx¢ — cxt = —k¢*0 — c/?0
= (J+me?)O(t) + cl’0 + kr*0 =0

Next divide by the leading coefficient to get;

k2
J + my?

C€2
J + my?

éa)+( Jéa)+ o(t)=0



1.46

From the coefficient of g, the undamped natural frequency is

k2
w, = : > rad/s
J+m/

From equation (1.37), the damped natural frequency becomes

2 2
Wy =0, 1—@'2:0.99995\/ Kt . ~\/ ke S
J+m/ J+m/

Thisis effectively the same as the undamped frequency for any reasonable

accuracy. However, it isimportant to point out that the resulting response will
still decay, even though the frequency of oscillation is unchanged. So even
though the numerical value seems to have a negligible effect on the frequency of
oscillation, the small value of damping still makes a substantial differenceinthe

response.

A spring-mass-damper system has mass of 150 kg, stiffness of 1500 N/m and
damping coefficient of 200 kg/s. Calculate the undamped natural frequency, the
damping ratio and the damped natural frequency. |s the system overdamped,
underdamped or critically damped? Does the solution oscillate?

Solution: Working straight from the definitions:

‘/7 1500 N/m =3.162 rad/s
150 k

Ccr Z‘IR 2‘/11500531505

This last expression follows from the equation following equation (1.29). Since {
islessthen 1, the solution is underdamped and will oscillate. The damped natural

frequency isw, = wn‘ll— ¢? = 3.091 rad/s, which follows from equation (1.37).



1.47* The system of Problem 1.44 is given a zero initial velocity and an initial
displacement of 0.1 m. Calculate the form of the response and plot it for as long
asit takesto die out.

Solution: Working from equation (1.38) and using Mathcad the solution is:

OAlaraD"D")rf——————————————— 142 =————————[H
m =100 kK :'=3000 ¢ = 300 =
k . -
wn = — E= wd = on gl — £
" 2am-k
v =0 x0:=0.1
1 - Z
&= —,‘J[('i.?l:l + q-}:ﬂ.mnj + (KD'UJIijI
w wd - x0
¢ 1= aten | ————
v + -wn-x0
& =10.104 b= 1.293 n = 5 a7
wd = 5.268
¢ = 0.274
x |:t:| '= A 3in I[r_|_'||j_.t + ¢|:|-E't"'-'\-"n't
0.1 -
0.0s -+
x[t]
TN |
0 \/1 : A )
—nnsL
t M=
A [ <[




1.48* The system of Problem 1.46 is given an initial velocity of 10 mm/s and an initial
displacement of -5 mm. Calculate the form of the response and plot it for as long
asit takesto die out. How long does it take to die out?

Solution: Working from equation (1.38), the form of the response is programmed
in Mathcad and is given by:

F
k = 1500 m =150 ¥0 = -0.005 0 :=0.010 - 200 =
all units inm, kg, 5
c
k q = —_—
T il . = 2
i m Zoafm k =021 od 1= wne a1l —f wid = 3.091
. 21
1 2 2 - Ti=—
A= —alv0 + oxtwn]” + (x0wd]® & = 5.445-10 wd
iod
. | ' od - 10
— A . —foemt  Ihmebers ‘= atan
(1) Asmlimdt+¢:| B ¥0 + £-on-x0

0003 1

ﬂ /\ N y — .

0 1\/ e 6

=000 -~

Skl

4 [»

It appearsto take alittle over 6 to 8 seconds to die out. This can also be plotted in
Matlab, Mathematica or by using the toolbox.



1.49* Choose the damping coefficient of a spring-mass-damper system with mass of
150 kg and stiffness of 2000 N/m such that it’s response will die out after about 2
s, given a zero initial position and an initial velocity of 10 mm/s.
Solution: Working in Mathcad, the response is plotted and the value of cis
changed until the desired decay rate is meet:

c = 800 k = 2000 0 i 0,010 )
x0:=0
m ;= 150
C
g =
2: /\’m' k B k 2
wn .= m od = onal -
X(t) = Agn(wnt + q))_e—c.(l)n.t
wd- x0
0 = aan
VO + (- on-x0
In this case { = 0.73 which is very large!
0.002 +
il ’ —— ' : | |
—_ 0 0.5 1 15 5 , )

—0.002 4




1.50 Derivethe equation of motion of the system in Figure P1.50 and discuss the effect
of gravity on the natural frequency and the damping ratio.

: LI

Solution: This requirestwo free body diagrams. One for the dynamic case and

one to show static equilibrium.

ky  cdy/dt KAX
i B

mg X(t) mg y(®

@ (b)
From the free-body diagram of static equilibrium (b) we have that mg = kAX,
where AX represents the static deflection. From the free-body diagram of the
dynamic case given in (a) the equation of motion is:
my(t) +cy(t) + ky(t) -mg =0
From the diagram, y(t) = x(t) +Ax. Since Ax is aconstant, differentiating and
substitution into the equation of motion yields:
y(t) =x(t) and ¥(t) = X(t) =
mX(t) + cx(t) + kx(t) + (kAx —mg) =0
—_—
where the last term is zero from the relation resulting from static equilibrium.
Dividing by the mass yields the standard form
X(t) + 28w, X(t) +w?x(t) =0
It is clear that gravity has no effect on the damping ratio C or the natural
frequency w,. Not that the damping forceis not present in the static case because
the velocity is zero.



151 Derivethe equation of motion of the system in Figure P1.46 and discuss the effect
of gravity on the natural frequency and the damping ratio. You may have to make
some approximations of the cosine. Assume the bearings provide a viscous
damping force only in the vertical direction. (From the A. Diaz-Jimenez, South
African Mechanical Engineer, Vol. 26, pp. 65-69, 1976)

|

Solution: First consider afree-body diagram of the system:
5O L s kas

v
X(t)

I
[

i
i
s

Let o be the angel between the damping and stiffness force. The equation of

motion becomes

mx(t) = —cx(t) — k(A +6,) cosor
From static equilibrium, the free-body diagram (above with ¢ = 0 and stiffness
force kdy) yields: > F, =0 =mg— kd,cosc. Thusthe equation of motion

becomes
mX + cX + kAlcosa =0 (1)
Next consider the geometry of the dynamic state:



C+AY

X 0

From the definition of cosine applied to the two different triangles:
h+x

(+AL
Next assume small deflections so that the angles are nearly the same cos o = cos
6, so that

coso = 7 and cos@ =

+
hohX o exloarX
0 I+ A h coso

For small motion, then this last expression can be substituted into the equation of
motion (1) aboveto yield:

mx +cx +kx =0, o and x small
Thus the frequency and damping ratio have the standard values and are not
effected by gravity. If the small angle assumption is not made, the frequency can
be approximated as

c
2mo,
as detailed in the reference above. For a small angle these reduce to the normal

values of
0, = ‘,E and { = ¢
m 2mw,

k 2 g.o
w, = |—cos’a+=sin"a, ¢ =
n J,. h C

as derived here.



Problems and Solutions Section 1.4 (problems 1.52 through 1.65)

1.52 Caculate the frequency of the compound pendulum of Figure 1.20(b) if amass m;
is added to the tip, by using the energy method.
Solution Using the notation and coordinates of Figure 1.20 and adding a tip mass

the diagram becomes:

I
:_/
|
6 m
If the mass of the pendulum bar is m, and it is lumped at the center of mass the
energies become:
U =—(¢/-(cos@)mg + (¢ — ¢cosf)mg

Potential Energy:

(1- cos8)(mg +2mQ)

N~ NP

. . 2, .
1=10 +1'\]t92 _1m e +1m5292
2 2 2 3 2

Kinetic Energy:
= (1m+ 1 )0%6°
6 2 m

Conservation of energy (Equation 1.52) requires T + U = constant:

é(l— cosf)(mg +2m,g) + (% m+%m)£2é2 =C
Differentiating with respect to time yields:

~(sino)(mg + 2mg)d + G m-+ m) 766 =0

1 .1 .
= (§m+ m)/e + E(mg +2mg)sneé =0

Rearranging and approximating using the small angle formulasin 6 ~ 6, yields:



1.53

m
9(t)+ ]-Z—g 0(t):0:}a)n: M graj/s
3m+m€ \/2m+6m 14

Note that this solution makes sense because if m, = 0 it reduces to the frequency of
the pendulum equation for abar, and if m= 0 it reduces to the frequency of a

masd ess pendulum with only atip mass.

Calculate the total energy in a damped system with frequency 2 rad/s and
damping ratio { = 0.01 with mass 10 kg for the case x, = 0.1 and v, = 0. Plot the
total energy versustime,

Solution: Given: o, =2rad/s, { =0.01, m=10kg, X, =0.1 mm, v, = 0.

Calculate the stiffness and damped natural frequency:

k=mm?=10(2)% = 40 N/m
0, = 0,41-° =241-0.012 = 2 rad/s
The total energy of the damped system is
1 -2 1
E(t)=— t) + = kx(t
(t)= Smic () + S hot)

. X(t) = Ae%%'sin(2t +¢)

where _
X(t) =-0.02Ae *%'sin(2t + ¢) + 2Ae %% cos(2t + ¢)

Applying theinitial conditions to evaluate the constants of integration yields:
X(0)=0.1=Asn¢
x(0) = 0=-0.02Asin¢g + 2Acosp
= ¢=156radls, A=0.1 m

Substitution of these values into E(t) yields:



O 1.48
-0.04-¢
E (1) [0 Lsin(z t+ 156000 + 2enz(zt+ 1569 | + 0.5¢7 MM (0t sim 2t + (1,562
003 +
PRI I




1.54 Use the energy method to calculate the equation of motion and natural frequency
of an airplane's steering mechanism for the nose wheel of its landing gear. The
mechanism is modeled as the single-degree-of-freedom system illustrated in
Figure P1.54.

{ Reeerioa w heel}

111“"\&

{Tira-wheos
rs s Enb |

W‘\.

M :‘hl"‘-:"'h""

5 . -
The steering whed and tire assembly are modeled as being fixed at ground for

this calculation. The steering rod gear system is modeled as a linear spring and
mass system (m, k,) oscillating in the x direction. The shaft-gear mechanism is
modeled as the disk of inertia J and torsional stiffness k,. The gear J turns
through the angle 6 such that the disk does not dip on the mass. Obtain an
equation in the linear motion x. 7
Solution: From kinematics: X =r0,= X =r0

Kinetic energy: :%Jéz +%m>‘(2

- : _1o . 1
Potential energy: —Ekzx +§k10
Substitute § = ;T +U :lizxz +Lme +1k2x2 +£k—;x2

r 2r
Derivative: M:O
dt
J

r_2s<>'<+m'>'<>'<+|<2x>'<+rﬁz><>'<=o




1.55 A control pedal of an aircraft can be modeled as the single-degree-of-freedom
system of Figure P1.55. Consider the lever as a masdess shaft and the pedal asa
lumped mass at the end of the shaft. Use the energy method to determine the

equation of motion in 6 and calculate the natural frequency of the system. Assume

the spring to be unstretched at 6 = 0.

Figure P1.55

Solution: In thefigurelet themass at 6 = 0 be the lowest point for potential energy.
Then, the height of the mass mis (1-cos9)/,.
Kinematic relation: x=/,0

N 1 . 1 :
Kinetic Energy: T = me2 = Em€§92

Potential Energy: U = %k(fle)z + mgl,(1— cosh)
Taking the derivative of the total energy yields:
:—t(T +U) = mr200 +K(/26)0 + mgt, (sin@)d = 0

Rearranging, dividing by do/dt and approximating siné with 8 yields:
me20 +(keZ +mgl,)0 =0

ko2 +
=>60n:’ 1 T%
m£2



1.56

To save space, two large pipes are shipped one stacked inside the other as
indicated in Figure P1.56. Calculate the natural frequency of vibration of the
smaller pipe (of radius R)) rolling back and forth inside the larger pipe (of radius
R). Use the energy method and assume that the inside pipe rolls without slipping
and has amass m.

Lirpe g

smeall pape

Truck bed

Solution: Let 6 be the angle that the line between the centers of the large pipe and
the small pipe make with the vertical and let o be the angle that the small pipe
rotates through. Let R be the radius of the large pipe and R, the radius of the
smaller pipe. Then the kinetic energy of the system is the trandational plus
rotational of the small pipe. The potentia energy isthat of therisein height of

the center of mass of the small pipe.
/

From the drawing:
y+(R-R)cos6 +R =R

= y=(R- R)(1-cos6)
= y=(R-R)sin(6)0
Likewise examination of the value of x yields:
x=(R-R)sin6
= x=(R- Rl)coseé
Let B denote the angle of rotation that the small pipe experiences as viewed in the
inertial frame of reference (taken to be the truck bed in this case). Then thetotal



Kinetic energy can be written as:

T=Ttrans+T =mez+1mf +%I0ﬁ2

rot 2 2
_1 2/ 2 o 1 o
—Em(R— R)?(sin®@ + cos’ 6)0 +§Ioﬁ

=T :%m(R— Rl)2é2+%|0[32

The total potential energy becomes just:

V = mgy = mg(R- R)(1- cosb)

Now it remainsto evaluate the angel 3. Let o be the angle that the small pipe
rotates in the frame of the big pipe asit rolls (say) up the inside of the larger pipe.
Then

B=6-0

were o isthe angle “rolled” out asthe small piperollsfromatob infigure
P1.56. Therolling with out dipping condition implies that arc length a’b must
equal arc length ab. Using the arc length relation thisyieldsthat RO =R 0.
Substitution of the expression § = 6—a. yields:

RO=R(O-P)=RO-RS=(R-R)0=-Rp
=—(R-R@ and f=—(R-RO

which is the relationship between angular motion of the small pipe relative to the
ground () and the position of the pipe (6). Substitution of thislast expression into
the kinetic energy term yields:

_l _ 22 1— i _ P\n)2
T=3MR-R)" +5lo(z (R~ Re)
= T=m(R-R)%

Taking the derivative of T +V yields
%(T +V) = 2m(R- R )?69 + mg(R- R))sin6f =0

= 2mR- R)?6 +mg(R-R)sing =0
Using the small angle approximation for sine this becomes
2mR- R)’0 + mg(R- R)6 =0
9
2(R-R)

- g
S Py

:>é+ 6=0



157 Congder the example of a simple pendulum given in Example 1.4.2. The
pendulum motion is observed to decay with a damping ratio of { = 0.001.
Determine a damping coefficient and add a viscous damping term to the

pendulum equation.

Solution: From example 1.4.2, the equation of motion for asimple pendulumis

d+30=0
]

So w, = ‘/% . With viscous damping the equation of motion in normalized form

becomes:
6 +2(w, 0+ =0 or with { asgiven :
= 0 +2(.00)w 6+ w0 =0

The coefficient of the velocity termis




1.58

1.59

Determine a damping coefficient for the disk-rod system of Example 1.4.3.
Assuming that the damping is due to the material properties of the rod, determine
c for therodif it is observed to have adamping ratio of { = 0.01.

Solution: The equation of motion for adisc/rod intorsiona vibrationis

Jo+k6 =0
- 5 k
or 0+w0o=0 Wherewn:‘/;
Add viscous damping:
6 +2lw 6 +w6=0
0+ 2(.01)‘/?9 +®20=0

From the velocity term, the damping coefficient must be

~= (0.02)\/5

= ¢=0.02vk]

The rod and disk of Window 1.1 are in torsional vibration. Calculate the damped
natural frequency if J=1000 m?- kg, c =20 N- m- g/rad, and k = 400 N-m/rad.
Solution: From Problem 1.57, the equation of motion is

J6 +cH+ko =0
The damped natural frequency is

0, = 010

where ‘/7 400 =0.632 rad/s
\} 1000

and 0.0158

6= 2J_ 2J4oo %1000
Thus the damped natural frequency is @, = 0.632 rad/s



1.60 Consder the system of P1.60, which represents a simple model of an aircraft
landing system. Assume, x =r0. What is the damped natural frequency?

Solution: From Example 1.4.1, the undamped equation of maotion is
(m+ r—‘]z)x +kx=0
From examining the equation of motion the natural frequency is:
J k | k
o, = = 3
meq d m+ —
p

An add hoc way do to thisisto add the damping force to get the damped equation

of motion:
JY.. .
(m+F)x+cx+kx:O

The value of { is determined by examining the velocity term:

CJ:ZCa)n:>C: (o 1

k
m+- m+-
r.2 r2 2\/ J
m+-—

==

Thus the damped natural frequency is



1.61 Consider Problem 1.60 with k = 400,000 N-m, m = 1500 kg, J = 100 m*kg, r = 25
cm, and ¢ = 8000 N-m-s. Calculate the damping ratio and the damped natural

frequency. How much effect does the rotationa inertia have on the undamped
natural frequency?
Solution: From problem 1.60:

C k C
4 =—J and o, = 3 T
ZJKE”‘H—J mez e

k = 4x10° Nm/rad
m=15x10° kg
J =100 m*kg
r =0.25 mand
c=8x10° N-m-grad
Inserting the given values yields
¢ =0.114 and w, =11.16 rad/s

Given:

k
For the undamped natura frequency, o, = .|[———
P Yo O SN eIl
With the rotational inertia, w, = 36.886 rad/s

Without rotational inertia, w, = 51.64 rad/s



1.62

1.63

The effect of the rotational inertiaisthat it lowers the natural frequency by almost
33%.

Use Lagrange’ s formulation to calculate the equation of motion and the natural
frequency of the system of Figure P1.62. Model each of the brackets as a spring
of stiffnessk, and assume the inertia of the pulleysis negligible.

m

Figure P1.62

Solution: Let x denote the distance mass m moves, then each spring will deflects
adistance x/4. Thus the potentia energy of the springsis

2
U:2><Ek X zhx2
2 \ 4 16
The kinetic energy of the massis

1
T=mx’
2

Using the Lagrange formulation in the form of Equation (1.64):

2
4 i L w2 s 9k :O:E(mx)+3x=0
dt| ox\ 2 ox| 16 dt 8
:>m>‘<+5x:0:>co :1,{L rad/s
8 " 2\V2m

Use Lagrange's formulation to calculate the equation of motion and the natural
frequency of the system of Figure P1.63. This figure represents a simplified
model of a jet engine mounted to a wing through a mechanism which acts as a
spring of stiffness k and mass m,. Assume the engine has inertial J and mass m
and that the rotation of the engine is related to the vertical displacement of the

engine, x(t) by the“radius’ r, (i.e. x=r0).



Wing, QlOllnd

|
\ I / Mount, &, m
|
i
|

/“ =

Enginc. J, m {
x(t)
Figure P1.63
Solution: This combines Examples 1.4.1 and 1.4.4. Thekinetic energy is
r=lmisLagrer, 1[ijT |
2 2 spring 2 rO2 spring
The kinetic energy in the spring (see example 1.4.4) is
im, ,
==X
spring 2 3

Thusthe total kinetic energy is

The potential energy isjust
U=tk
2
Using the Lagrange formulation of Equation (1.64) the equation of motion results

from:
g i 1 m+i+ﬂ )'(2 +i lkx2 =0
dt| ox| 2 P 3 ox\ 2

1.64 Lagrange sformulation can also be used for non-conservative systems by adding

the applied non-conservative term to the right side of equation (1.64) to get
dfdT | dT aT L 9u oU . oR,
dt

+—1=0
aqi aq dq.  aq,



Here R isthe Rayleigh dissipation function defined in the case of aviscous
damper attached to ground by

1
R ==cq?
1 2 ql

Use this extended L agrange formulation to derive the equation of motion of the
damped automobile suspension of Figure P1.64

Figure P1.64

Solution: The kinetic energy is (see Example 1.4.1):
1 J
T==(m+=)X°
S(m+3)
The potential energy is.
U= 1 kx?
2
The Rayleigh dissipation function is
1 .,
==CX
2
The Lagrange formulation with damping becomes
d{dT | oT  oU OR
-+ —+ =
Jdq  dq,  dq

d(of1 J .\, o(1, ,), 91 ,
—| = =(m+= —| =k |+ —| Zcx* |=0
zdt[ax[z(m+r2)x D+ax[2 " j+ax[2cxj

:>(m+%)>‘<+c>‘<+kx:0

—| — —1=0
dt| g,




1.65 Congder the disk of Figure P1.65 connected to two springs. Use the energy
method to calculate the system's natural frequency of oscillation for small angles

o(t).

Solution:
Known: x=r@, Xx=r6 and J, —%mr

Kinetic energy:
. 2 .
'I',m:EJO g =1 mr ) 0 = L 2@
2 2\ 2 ) 4
Ttrans= 1- m).(z = i mrzéz
2 2

T=T,+T, .= Lot + Lo = S
4 2 4
. 1
Potential energy: U = Z(Ek[(aﬂ )6] ) Ka+r)¢

Conservation of energy:
T+U = Constant

d
Z(m+u)=0

d 3 2,42 2 2)
—| —=mr°e” +k(a+r)°0° |=0
dt(4 (a+r)
3 2 2 . _

S (266) +k(a +1)*(200) = 0

gmrzé +2k(a+r)’0=0

Natural frequency:

a)ankeﬂ _ [K(@+r)”

M g’mrz
2

_2a_+r ’ rad/s



Problems and Solutions Section 1.5 (1.66 through 1.74)

1.66 A helicopter landing gear consists of a metal framework rather than the cail
spring based suspension system used in a fixed-wing aircraft. The vibration of the
frame in the vertical direction can be modeled by a spring made of a dender bar
asillustrated in Figure 1.21, where the helicopter is modeled as ground. Herel =
0.4m, E =20x 10" N/m? and m= 100 kg. Calculate the cross-sectional areathat
should be used if the natural frequency isto be f, = 500 Hz.

Solution: From Figure 1.21

_ |k _ |EA
wn_J%_J; (1)

2rrad ) _
1cyc|e)_

and

3142 rad/s

, =500 Hz[

Solving (1) for Ayields:

_ o Im _ (3142)*(.4)(100)
E 20x 10"
A=0.0019 m? = 19cm?

A




1.67 The frequency of oscillation of a person on a diving board can be modeled as the
transverse vibration of a beam as indicated in Figure 1.24. Let m be the mass of
the diver (m= 100 kg) and | =1 m. If the diver wishes to oscillate at 3 Hz, what
value of El should the diving board material have?

Solution: From Figure 1.24,

, _ SEl
“n e
and
0, = 3Hz[ 2z red ) =6m rad/s
1cycle )
Solving for El

i’ (6%)2(200)(1)3

El =11843.5 Nm?

1.68 Consder the spring system of Figure 1.29. Let k; = k; = k, =100 N/m, k; = 50
N/m, and k, = 1 N/m. What isthe equivalent stiffness?

Solution: Given: k; =k, =k; =100 N/m,k; = 50 N/m, k, =1 N/m
From Example 1.5.4

_ KKy
= k,, =300.98 N/m




1.69 Springs are available in stiffness values of 10, 100, and 1000 N/m. Design a
spring system using these values only, so that a 100-kg mass is connected to

ground with frequency of about 1.5 rad/s.

Solution: Using the definition of natural frequency:

= [k

“ =\

With m= 100 kg and w, = 1.5 rad/s the equival ent stiffness must be:

Keg = Mo = (100)(L.5)° =225 N/m
There are many configurations of the springs given and no clear way to determine
one configuration over another. Here is one possible solution. Choose two 100
N/m springsin parale to get 200 N/m, then use four 100 N/m springsin seriesto
get an equivalent spring of 25 N/m to put in parallel with the other 3 springs since
K = = =25
= 1,1,1,1 4100

ko Kk ks Kk

Thus using six 100 N/m springs in the following arrangement will produce an
equivaent stiffness of 225 N/m




1.70

1.71*

Calculate the natural frequency of the system in Figure 1.29(a) if k; = k, = 0.
Choose m and nonzero values of ks, k,, and k; so that the natural frequency is 100
Hz.

Solution: Given: k, =k, =0 and w, = 27(100) = 628.3 rad/s
From Figure 1.29, the natural frequency is

_ [k Rk K, _( kgkAJ
0, = and =k +———
i+ k) SR
Equating the given value of frequency to the analytical value yields:
o = (628.3) = ek F ek ke

mk; +k,)

Any values of ks, k,, ki, and mthat satisfy the above equation will do. Again, the

answer is not unique. One solutionis
k, =1N/m,k, =1N/m, k; =50,000 N/m,and m =0.127 kg

Example 1.4.4 examines the effect of the mass of a spring on the natural
frequency of asimple spring-mass system. Use the relationship derived there and
plot the natural frequency versus the percent that the spring mass is of the
oscillating mass. Use your plot to comment on circumstances when it is no longer
reasonabl e to neglect the mass of the spring.

Solution: The solution here depends on the value of the stiffness and mass ratio
and hence the frequency. Almost any logical discussion is acceptable aslong as
the solution indicates that for smaller values of m,, the approximation produces a
reasonable frequency. Hereisone possible answer. For



kEi=1000 m =100

p.=0,0001..01

21 | | | |
0 0.02 0.04 0.06 0.0% 0.1

From this plot, for these values of mand k it looks like a 10 % spring mass
causeslessthen a 1 % error in the frequency.



1.72 Calculate the natura frequency and damping ratio for the system in Figure P1.72
given the values m = 10 kg, ¢ = 100 kg/s, k; = 4000 N/m, k, = 200 N/m and k; =
1000 N/m. Assume that no friction acts on the rollers. |sthe system overdamped,

critically damped or underdamped?

] — &

e

Figure P1.72
Solution: Following the procedure of Example 1.5.4, the equivalent spring

congtant is;

(200)(1000)

keq:k1+kk2—k3=4000+ =4167 N/m

2+3

Then using the standard formulas for frequency and damping ratio:

k
o, =1/i“ =1/@ =20.412 rad/s
m 10
C 100

= =0.245

2mo.  2(10)(20.412)

n

Thus the system is underdamped.

1.73 Repeat Problem 1.72 for the system of Figure P1.73.

Figure P1.73

Solution: Again using the procedure of Example 1.5.4, the equivalent spring
congtant is:

Keg = kg +Ky +Kg+ k4k4+k5k5 =(10+1+4+

23\ | NIm=16.2 KN/m
2+3

Then using the standard formulas for frequency and damping ratio:



3
o, = J% = ‘/% = 40.25 rad/s
1 _

c=—% = =0.00158
2mw,  2(10)(40.25)

Thus the system is underdamped.

1.74 A manufacturer makes a cantilevered leaf spring from steel (E = 2 x 10" N/m?)
and sizes the spring so that the device has a specific frequency. Later, to save weight, the
spring is made of aluminum (E = 7.1 x 10" N/m?). Assuming that the mass of the spring
ismuch smaller than that of the device the spring is attached to, determineif the
frequency increases or decreases and by how much.

Solution: Use equation (1.68) to write the expression for the frequency twice:

o, :"::é’; and @, :‘/3539' rad/s

’SE_,,
3 10
0y, _ Vm® _ 7.1x10 — 059

Oy [Egm ¥V 2x10"
3

Dividing yields:

Thus the frequency is decreased by about 40% by using aluminum.



Problems and Solutions Section 1.6 (1.75 through 1.81)

1.75 Show that the logarithmic decrement is equal to

o= 1- |nﬁ
n X
where x, isthe amplitude of vibration after n cycles have elapsed.

Solution:

In —X(t) =1In Aeicwntsm(wdt +¢)
x(t + nT) Ae<enle) sin(a)dt +o,nT + q))
Since nw, T =n(2x), sin(w,t+nw,T +¢) =sin(w,t+¢)

Hence, EqQ. (1) becomes

Ae! sin(w L+ q))

In
[Aeiwn(HnT)eCwnntsin(wdt+wdnt+¢)

] = In(eg“’”“T) =nlw T

. x(t)
Since In =(w T =9,
X(t+T
X t)
Then In =nod
X{(t+nT

Therefore,

x, < original amplitude
X, < amplitude n cycleslater

Here X, = x(0).

(1)



1.76 Derivethe equation (1.70) for thetrifalar suspension system.
Solution: Using the notation given for Figure 1.29, and the following geometry:

Write the kinetic and potential energy to obtain the frequency:
o 1 - 1.
Kinetic energy: T :EI002+§I62

From geometry, x =r0 and X =r6

1 X2
T, :E(Io-l_l)_z

max r
Potential Energy:
lJmax = (mo + m)dl =1 COS¢)

2
Two term Taylor Series Expansion of cos ¢= 1— % :
- )
Umax - (mo + m)gl[ 2 J
. ro . ro
For geometry, sin ¢ :T, and for smal ¢, Sn ¢ = ¢ sothatq):l—
r_202
Upec = (M, +m) gILTJ
2n2
U = (m0 + m)g(r 6%) whererf = x
2l )
Unex = (m. *m)g m)gx2
2l

Conservation of energy requires that:



Tmax =U max 7

1(1,+1) o (m+mlg
2 r? 2l

At maximum energy, x=A and x = w,A

l(|°+|)w2A2: (mo+m)gA2

2 r? : 21

=>(|0+|):M

o’
. 2r
Substitute w, = 2xf, = e

(1, +1)= 2+ m)

(2m I T)?|

= gTer*(m, +m)_I
B 4r?| °

were T isthe period of oscillation of the suspension.




1.77 A prototype composite material is formed and hence has unknown modulus. An
experiment is performed consisting of forming it into a cantilevered beam of
length 1 m and | = 10° m* with a 6-kg mass attached at its end. The system is
given an initia displacement and found to oscillate with a period of 0.5 s.
Calculate the modulus E.

Solution: Using equation (1.66) for a cantilevered beam,

3
T:2—ﬂ=27r ﬂ
, v3EI

Solving for E and substituting the given values yields
_ 4n?ml® _ 4n%(6)(1)’
E= 2, 2{1 -9
3T’ 3(5)°(107)
= E=3.16x10" N/m?




1.78 The free response of a 1000-kg automobile with stiffness of k = 400,000 N/m is

1.79

observed to be of the form given in Figure 1.32. Modeling the automobile as a
single-degree-of-freedom oscillation in the vertical direction, determine the
damping coefficient if the displacement at t, is measured to be 2 cm and 0.22 cm
at,.

Solution: Given: x, =2cmandx, =0.22cmwheret,=T+1t,

N 2
Logarithmic Decrement: 6 = Inﬁ =In 0 =2.207

X2
Damping Ratio: { = S = 2.207 =0.331
Varn? +8%  Jag? +(2.207)

Damping Coefficient: ¢ = 2¢+/km = 2(0.331),/(400,000)1000) = 13,256 kg/s

A pendulum decays from 10 cm to 1 cm over one period. Determine its damping
ratio.

Solution: Using Figure 1.31:x, =10 cmand x, =1 cm

Logarithmic Decrement: § = In— = InE =2.303

X2
2.303

J47r o0 Jar +(2303)

Damping Ratio:{ = =0.344




1.80 The relationship between the log decrement & and the damping ratio ( is often

approximated as 6 =2rn{. For what values of { would you consider this a good

approximation to equation (1.74)?

Solution: From equation (1.74), 6 = \/i
1-¢
For small , 6 =2nf

A plot of these two equations is shown:
¢ :=0,0001. 09

sife) =275 sl =zne

a

1-g +

15 T+

The lower curve represents the approximation for small £, while the upper curve

is equation (1.74). The approximation appears to be valid to about £ = 0.3.



1.81 A damped system is modeled as illustrated in Figure 1.10. The mass of the
system is measured to be 5 kg and its spring constant is measured to be 5000 N/m.
It is observed that during free vibration the amplitude decays to 0.25 of itsinitial
value after five cycles. Calculate the viscous damping coefficient, c.
Solution:
Note that for any two consecutive peak amplitudes,

%4 = & by definition
XX X5 X,

a2z =R A R 25 e
X 025 X % X3 X X
30,
1
=>In(4)=0.277
5
and
(=20  -oom
Var? +6°
Solving for c,

¢ = 2¢ /km = 2(0.044),/5000(5)

c=13.94N-s/m



Problems and Solutions Section 1.7 (1.82 through 1.89)

1.82

1.83

Choose a dashpot's viscous damping value such that when placed in parale with
the spring of Example 1.7.2 reduces the frequency of oscillation to 9 rad/s.
Solution:

The frequency of oscillationis w, = wn‘/1—7
From example 1.7.2: w, = 10 rad/'s, m=10kg, andk =10° N/m
So, 9=10y1-¢?

= 09=41-% = (0.9 =1-¢2

¢ =\1-(0.9) =0.436

Then
¢ =2mw, ¢ =2(10)(10)(0.436) = 87.2 kg/s

For an underdamped system, X, = 0 and v, = 10 mm/s. Determine m, ¢, and k such
that the amplitudeisless than 1 mm.

Solution: Note there are multiple correct solutions. The expression for the
amplitudeis:
AZ — X§ + (Vo + Z.:a)nxo)2

o
forx. =0 A= <0001m = @, >—e_ = 20 _
, 0.001  0.001
So
w, =‘/5(1— £?) >10
m
k 100

:>E(1— £?) >100,= k =Mz

K
(1) Choose { =001= —>100,01

(2) Choose m=1kg = k>100.01
(3) Choose k =144 N/m >100.01
rad rad

=0, =J144==12-=
S S

ad
=0, = 11.99%

= c=2mlw,=0.24 kg
—S




1.84 Repeat problem 1.83 if the massisrestricted to lie between 10 kg < m< 15 kg.

Solution: Referring to the above problem, the relationship between mand k is
k>1.01x10"m
after converting to metersfrom mm. Choose m =10 kg and repeat the calculation

at the end of Problem 1.82 to get w, (again taking { = 0.01). Then k= 1000 N/m

_ ,1.0>< 10° rad _, . rad
=0, = — =10 —
10 S S

— @y =9.998 %

and:

= ¢=2m{w, =2.000 kg
ﬁ



1.85

1.86

Use the formula for the torsional stiffness of a shaft from Table 1.1 to design a 1-
m shaft with torsional stiffness of 10° N-m/rad.
Solution: Referring to equation (1.64) the torsiona stiffnessis

k = —E

l
Assuming a solid shaft, the value of the shaft polar moment is given by
ﬂd 4
P T 32
Substituting this last expression into the stiffness yields:
_ Grd®

‘32
Solving for the diameter d yields

J

Thus we are left with the design variable of the material modulus (G). Choose
steel, then solve for d. For steel G = 8 x 10" N/m? From the last expression the

numerical answer is

s Nm g
10 E(32)(1m)

(8 x 10" r:lz](n)

d= =0.0597 m

Repeat Example 1.7.2 using duminum. What difference do you note?
Solution:
For aluminum G = 25 x 10° N/m?

Gd*
64nR

From example 1.7.2, the stiffnessisk = 10° = andd=.01m

3

25 x10°)(.01)"
So, 10° = (
64nR’

Solving for nR? yields: nR® = 3.906 x 10°m?

Choose R=10cm = 0.1 m, so that



1.87

_ 3.906x10°
n=———
(0.0)

Thus, aluminum requires 1/3 fewer turns than steel.

=4turns

Try to design a bar (see Figure 1.21) that has the same stiffness as the spring of
Example 1.7.2. Note that the bar must remain at least 10 times as long as it is
wide in order to be modeled by the formula of Figure 1.21.

Solution:

From Figure 1.21, k = ?

For steel, E=210x 10° N/m?
From Example 1.7.2, k= 10° N/m

3 9A
_(210%10
S0,10° = A———

| =(2.1x10°)A
If A=0.0001 m?(1cm?), then
| =(2.1x10°)(10*) =21,000 m (21km or 13 miles)
Not very practical at all.



1.88 Repeat Problem 1.87 using plastic (E = 1.40 x 10° N/m?) and rubber (E = 7 x 10°
N/m?). Areany of these feasible?
Solution:

From problem 1.53, k =10° N/m :?

For plastic, E =1.40x 10° N/m®

So, | =140m
For rubber, E = 7x10° N/m?
So, 1=0.7m

Rubber may be feasible, plastic would not.

1.89 Congder the diving board of Figure P1.89. For divers, a certain level of dtatic
deflection is desirable, denoted by A. Compute a design formula for the dimensions
of the board (b, hand /) in terms of the static deflection, the average diver’ s mass, m,
and the modulus of the board.

mg

4 L /= bh’
12

C—/ ok end view

Figure P1.89
Solution: From Figure 1.15 (b), Ak = mg holds for the static deflection. The

T:Z—EZZE\/EZZTC m =21 é (1)
o, k mg/ A g

From Figure 1.24, we also have that

periodis.

2 3
:_n =21 % (2)
o, 3EI

T

Equating (1) and (2) and replacing | with the value from the figure yields:



/m£3 /12m£3 Z
3El 3Ebh? bh3 4mg

Alternately just use the static deflection expression and the expression for the
stiffness of the beam from Figure 1.24 to get
7 AE

Ak:mg:Agﬂzmg:———
A bh® 4mg



Problems and Solutions Section 1.8 (1.90 through 1.93)

1.90 Consder the system of Figure 1.90 and (a) write the equations of motion in terms
of the angle, 6, the bar makes with the vertical. Assume linear deflections of the
springs and linearize the equations of motion. Then (b) discuss the stability of the
linear system’ s solutions in terms of the physical constants, m, k, and /. Assume
the mass of therod acts at the center as indicated in the figure.

k k

QWTWE

o T c.g. [
i vy mg
2
__/ A
/ o4

Figure P1.90
Solution:  Note that from the geometry, the springs deflect a distance
kx = k(¢sin@) and the cg moves a distance /cos®. Thus the tota potential
energy is
1 ., mg/
U :2x§k(£sm9) —Tcose

and the total kinetic energy is

2
T :1\]092 :l_mg 92
2 2 3
The Lagrange equation (1.64) becomes

2
i[aTJ+aU _ [mg 9J+2k€sin6cose—%m955in9:0

dtl 06 ) 96 dt| 3
Using the linear, small angle approximations sin@ =0 and cosf =1 yields

2
A M gifakee-M9 g0
3 2

Since the leading coefficient is positive the sign of the coefficient of 6 determines
the stability.

if 2k/— % >0= 4k > % = the system is stable

b) if 4k =mg = 6(t) = at + b= the system is unstable

if 2k/— % <0=4k< % = the system is unstable



191

Note that physically this results states that the system’s response is stable as long
as the spring stiffness is large enough to over come the force of gravity.

Consider the inverted pendulum of Figure 1.37 as discussed in Example 1.8.1.
Assume that a dashpot (of damping rate c) also acts on the pendulum parallel to
the two springs. How does this affect the stability properties of the pendulum?
Solution: The equation of motion isfound from the following FBD:

m

Fdash

mg

+

2F,

éﬁl
C
NNANN

NN

I PRI 77777

Moment about O: XM, = 16

mi%0 =mgl sin — ZEsinH(l cos@) - c(l—ell— cose)
2 2 2 2

When 0 issmall, sind = 0 and cosh = 1
. |2. k|2 \
m2+Z 6+ L _mgllo=0
4 [2 mg)
-~ ¢l - (K
mI9+—0+(—— )0:0
4 2 M9
... K
For stability, E> mg and ¢ > 0.

The result of adding a dashpot is to make the system asymptotically stable.



1.92

1.93

Replace the masdess rod of the inverted pendulum of Figure 1.37 with a solid
object compound pendulum of Figure 1.20(b). Calculate the equations of
vibration and discuss values of the parameter relations for which the system is

stable.

Solution:
my

O
A my e myg
ANAANAT \_j |
/ 2F5p | +
o e |
ok k |7 o |

A .

NN sl

Moment about O: M, =16

I—sin0+m Isine—ZESinG(l—cose)—(} 1% + Iz)é
”‘192 L0 5 5 Sml m,
When 0 issmall, sind = 6 and cosh = 1.

LR TP 1 DR
(3+mz)le+[2 2gI ngI)0 0

(3o )i[4-(3emppo

R
For stability, E>(%+m2)g.

A smple model of a control tab for an airplane is sketched in Figure P1.93. The

equation of motion for the tab about the hinge point is written in terms of the
angle 6 from the centerline to be

JO+(c—f,)0+k6=0.
Here J isthe moment of inertia of the tab, k isthe rotational stiffness of the hinge,

cistherotational damping in the hingeand f dé is the negative damping provided



by the aerodynamic forces (indicated by arrows in the figure). Discuss the

stability of the solution in terms of the parameters c and f, .

Figure P1.93 A simple model of an airplane control tab

Solution: The stability of the system is determined by the coefficient of & since
the inertia and stiffness terms are both positive. There are three cases

Casel c-f,;>0 andthe system’s solution is of the form 6(t) = e ™ sin(w t + ¢)
and the solution is asymptotically stable.
Case 2 ¢ - f;< 0 and the system’s solution is of the form 6(t) = e* sin(w t + ¢)

and the solution is oscillates and grows without bound, and exhibits flutter
instability asillustrated in Figure 1.36.

Case 3 c=f; andthe system’s solution is of the form 6(t) = Asin(w t + ¢) and
the solution is stable asillustrated in Figure 1.34.



Problems and Solutions Section 1.9 (1.94 through 1.101)

1.94* Reproduce Figure 1.38 for the various time steps indi cated.
Solution: The code is given here in Mathcad, which can be run repeatedly with different

At to see the importance of step size. Matlab and Mathematica can aso be used to show

this.
[I=——————mample 1.0.I=————HH
F N
- 4 =
AUE0S  yopr 2 %pi= 1wy = - At
At
xh (1) =
#
s [i-5t) /\
T . ~
0 1o 2 3 q
05l
i At
- |
A |1l DE




1.95* Use numerical integration to solve the system of Example 1.7.3 with m = 1361 kg,
k =2.688 x 10° N/m, ¢ = 3.81 x 10° kg/s subject to the initial conditions x(0) = 0 and v(0)

= 0.01 mm/s.

Compare your result using numerical integration to just plotting the

analytical solution (using the appropriate formula from Section 1.3) by plotting both on

the same graph.

Solution: The solution is shown here in Mathcad using an Euler integration. This can

also been done in the other codes or the Toolbox:

O 1.84 HE
5 F
k = 2655 10 m = 1361 g = 0.0 Vg = 0.01 co= a0 all units in m, kg, 8 -
i i o 2
wn = |— fn = — = wd 1= Al =&
m 2 2 ofk
T o= -1
1 Z Z -
A = E.J(vn + Q-xn-mnjl + (xn-md) il x, wd
b= e =01
¥y + Cownexg
X (1) = Asinfwd-t + ¢)e Eont
]
N = 10000 b1 =
&= 7 [D.Dl }
win- M
i=0..H
lxi"'l]-— vi-&+xi
. . 2
Vit —r.un-(ﬂ]l-xi—z-lz-mn-vi-ﬂ.+vi .
0001 T
o107
!
Z[i-a) /\ /.
0 02 0 06 \uy 1
51077 L
iA




1.96* Consider again the damped system of Problem 1.95 and design a damper such that

the oscillation dies out after 2 seconds. There are at least two ways to do this. Here it is

intended to solve for the response numerically, following Examples 1.9.2, 1.9.3 or 1.9.4,

using different values of the damping parameter ¢ until the desired response is achieved.
Solution: Working directly in Mathcad (or use one of the other codes). Changing c until

the response dies out within about 2 sec yields ¢ =6500 kg/s or £ = 0.17.
l=— 185

HH

= 07 = = = W
k= 2688107 mi= 1361 % i=00 v =00l oo ouinkinm ks

k i
wn = |—  fmi=— &= 2
m

c
Zn 2 afmk wd 1= w0 fl = § Ti=—

vy + C-wnexg

1 :
&= E-J(vu + Q'xu'mﬂ)z + (xu'md)z EE atan{m—xu] ¥ = rnl

¥
Dl:t.lj'?:l = 2
—(Z-Qr.un-j.rljl - (um :l-j.fu
Z i= rlfixed (¥,0,20 , 1000, D)

& =7221-107"  inmeters o
— =0 indegrees 1= z70*
deg
wn = 14.054 fn = 2.237 T = 0.454 y = 251> N
if rachs in Hz ingec f =017
wd = 13.549
0001 T

s 1
L
P\ o —

DU LW ’ ;

e

A [

4




1.97* Consider again the damped system of Example 1.9.2 and design a damper such
that the oscillation dies out after 25 seconds. There are at least two ways to do this. Here
it is intended to solve for the response numerically, following Examples 1.9.2, 1.9.3 or
1.9.4, using different values of the damping parameter ¢ until the desired response is
achieved. s your result overdamped, underdamped or critically damped?

Solution: The following Mathcad program is used to change c until the desired response
results. Thisyieldsavalue of ¢ = 1.1 kg/s or { = 0.225, an underdamped solution.

=18 10— [MH
— — — — F
k=2 m=3 X, = 0.0 vy = 023 S 5
all units inm, kg, s —
k i c 2 2
wn = |— fi=— &= wd = wnafl =& T:=—
m 21 ook ood
— | 1
x .=
7y DI:'I_,}::I =
- 2-|’;-mn-x1) — (um ) X Z = ikfived (2 ,0,25,1000,D)
ti=z50% x=251F +
0.z
0z
0l +
®
- : 4’/_?\\ 1 .:-'-'_‘—-—\_:
0 5 ] an 25
=1
=12
4
wd = 0.7 wn = 0.316 fn=10.13 T = 7.897 ¢ = 0225
inradls _____ inHz .. insec .

-
Kl

[P




1.98* Repeat Problem 1.96 for theinitial conditions x(0) = 0.1 m and v(0) = 0.01 mm/s.

Solution: Using the code in 1.96 and changing the initial conditions does not change the
settling time, which is just afunction of { and w,. Hence the value of ¢ = 6.5x10° kg/s (¢
=0.17) asdetermined in problem 1.96 will still reduce the response within 2 seconds.



1.99* A spring and damper are attached to a mass of 100 kg in the arrangement given in
Figure 1.9. The system is given the initial conditions x(0) = 0.1 m and v(0) = 1 mm/s.
Design the spring and damper ( i.e. choose k and c) such that the system will come to rest
in 2 s and not oscillate more than two complete cycles. Try to keep ¢ as smal as
possible. Also compute L.

Solution: In performing this numerical search on two parameters, several underdamped
solutions are possible. Students will note that increasing k will decrease {. But increasing

k also increases the number of cycles which is limited to two. A solution with ¢ = 350
kg/s and k =2000 N/misillustrated.

Iee=a=a=a=as\,———— 1= 1
k =000 m = 100 X

¢ = 350 all units inm, kg, 5

k i o 2 21T
wi = — fmi=— &= wd = wneall — & Ti=—

in 21 oalm k und

2
[—(z-q-mn-xlj - (um J-xD] % = rkfixed (x ,0,4, 1000 , D)

ti=z250F x = 271F
0.1 1
0.05 T
X
1 i =
0 \_/1./ 2 3 4
+

—0.05 -

wd = 4116 wn=4472  fn= 0712 T = 1.527 ¢ = 0.391

inradis in Hz [R=L=0e




1.100* Repeat Example 1.7.1 by using the numerical approach of the previous 5

problems.

Solution: The following Mathcad session can be used to solve this problem by varying

the damping for the fixed parameters given in Example 1.7.1.

| 1.89 NS
F.
B=an o ome=e n =l =hd oy allunitsinm, kg, s[5
k o z 2-11
wn = — fni=— = wid = wnall =8 Ti=—
m 21 oakmk wid
}:u :,:1
.
iy DI:t_,:C:I =
—(z-r;-um-xlj - (mn J-xn % := rkfixed (x,0,4,1000, D)
1= 2707 ¥ = z5F +
0.1
005 +
X
0 e 1 15 2
—0.05
4
wd = 9,795 wn = 10 fn = 1592 T = 0.641 £=02
inradls inHz insec | |
-
A [ D

The other codes or the toolbox may also be used to do this.



1.101* Repeat Example 1.7.1 for theinitial conditions x(0) = 0.01 m and v(0) = 1 mm/s.

Solution: The above Mathcad session can be used to solve this problem by varying the
damping for the fixed parameters given in Example 1.7.1. For the given values of initial
conditions, the solution to Problem 1.100 also works in this case. Note that if x(0) gets

too large, this problem will not have a solution.



Problems and Solutions Section 1.10 (1.102 through 1.114)

1.102

1.103

A 2-kg mass connected to a spring of stiffness 10° N/m has a dry diding friction
force (F.) of 3 N. As the mass oscillates, its amplitude decreases 20 cm. How
long does this take?

Solution: With m = 2kg, and k = 1000 N/m the natural frequency isjust

0, = ‘,&SO = 22.36 rad/s

—2umge,  2F®,  Ax
rk rk At

Solving the last equality for At yields:

_ —Axnk _ —(0.20)(r)(10%)
C2fw,  2(3)(22.36)

From equation (1.101): slope =

=4.68s

Consider the system of Figure 1.41 with m = 5 kg and k = 9 x 10° N/m with a
friction force of magnitude 6 N. If the initia amplitude is 4 cm, determine the
amplitude one cycle later as well as the damped frequency.

Solution: Given m=5kg, k=9x10° N/m, f, =6 N, x, =0.04 m, the amplitude

after one cycleis x, = X, _4ch =0.04- % =0.0373m

Note that the damped natural frequency is the same as the natural frequency in the

3
case of Coulomb damping, hence w,, = ‘/% = ‘, 9X510 =42.43rad/s




1.104* Compute and plot the response of the system of Figure P1.104 for the case where
X =0.1m,v,=0.1m/s, p.= 0.05 m= 250 kg, 6 = 20° and k =3000 N/m. How long

does it take for the vibration to die out?

Figure P1.104

Solution: Choose the x y coordinate system to be along the incline and perpendicular to
it. Let p, denote the static friction coefficient, p, the coefficient of kinetic friction and A
the static deflection of the spring. A drawing indicating the angles and a free-body
diagram is given in the figure:

mg cosé

k(x+A)« —_— >

mgsiné

mgsin® ¥ | X
mg mecosd
For the static case
D F =0=kA=puN +mgsing, and Y F =0= N =mgcos6
For the dynamic case
Y F =mx=-k(x+A)+uN +mgsin9—ukN|7):(|

Combining these three equations yields

X
X

Note that as the angle 6 goes to zero the equation of motion becomes that of a spring
mass system with Coulomb friction on aflat surface asit should.

mX + 4, mgcosf— +kx =0



Answer: The oscillation dies out after about 0.9 s. This is illustrated in the following
Mathcad code and plot.

LR
= [I. J:| k = 3K m = 250 o= k03

IJ{:.H} ==k ) L
T-h,. — cos (20 d..-::}-i--.--m

£ (= rkfined (X, 70, 10, 5000, T

s

X = :r'_‘;“

| =

(= 7S

Alternate Solution (Courtesy of Prof. Chin An Tan of Wayne State Univer sity):
Static Analysis:

In this problem, x(t) is defined as the displacement of the mass
from the equilibrium position of the spring-mass system under
friction. Thus, thefirst issue to addressis how to determine this
equilibrium position, or what is this equilibrium position. In
reality, the massis attached onto an initially unstretched spring on
theincline. The free body diagram of the system isas shown. The
governing equation of motionis:

m)-(- - _k)(zero initially _ Ff + mg sin 9

where X (t) isdefined as the displacement measured from the unstretched position of the
spring. Note that since the spring isinitially unstretched, the spring force F, =kX iszero



initially. If the coefficient of static friction L issufficiently large, i.e., p, >tan(0), then

the mass remains stationary and the spring is unstretched with the mass-spring-friction in

equilibrium. Also, inthat case, thefriction force F, <, mg cosé , not necessarily equal
FN

to the maximum static friction. In other words, these situations may hold at equilibrium:

(1) the maximum static friction may not be achieved; and (2) there may be no

displacement in the spring at al. In thisexample, tan(20°) =0.364 and one would expect

that i, (not given) should be smaller than 0.364 since u, =0.05 (very small). Thus, one

would expect the mass to move downward initially (due to weight overcoming the
maximum static friction). The mass will then likely oscillate and eventually settle into an
equilibrium position with the spring stretched.



Dynamic Analysis:

The equation of motion for thissystemis:
mX = —kx — umg coseﬁ
X

where x(t) isthe displacement measured from the equilibrium position. Define
X, (t) = x(t) and x,(t) = x(t) . Employing the state-space formulation, we transform the

original second-order ODE into a set of two first-order ODEs. The state-space equations
(for MATLAB code) are:

X,(t)

dx d [x(t)
= = k
dt dt{xz(t)} —H9 coseﬁ—%

%

MATLAB Code:

x0=[0.1, 0.1];

ts=[0, 5];

[t,x]=0ded45( "1l 937 ,ts,x0);

plot(t,x(:,1), t,x(:,2))

title(Cproblem 1.93%); grid on;

xlabel ("time (s)");ylabel("displacement (m), velocity (m/s)");

function xdot = f1 93(t,x)

% computes derivatives for the state-space ODEs
m=250; k=3000; mu=0.05; g=9.81;

angle = 20*pi/180;

xdot(1) = x(2);

xdot(2) = -k/m*x(1) - mu*g*cos(angle)*sign(x(2));

% use the sign function to Improve computation time
xdot = [xdot(1l); xdot(2)];

Plotsfor 1 =0.05 and p =0.02 casesare shown. Fromthe u =0.05 simulation results,

the oscillation dies out after about 0.96 seconds (using ginput(1) command to
estimate). Note that the acceleration may be discontinuous at v =0 due to the nature of
the friction force.

Effects of u:

Comparing the figures, we see that reducing u leads to more oscillations (takes longer
time to dissipate the energy). Note that since thereis apositiveinitial velocity, the mass
is bounded to move down theincline initially. However, if uis sufficiently large, there
may be no oscillation at all and the mass will just come to a stop (as in the case of



u =0.05). Thisisanaogous to an overdamped mass-damper-spring system. On the

other hand, when pisvery small (say, close to zero), the mass will oscillate for along
time before it comes to a stop.

( problem 1.93
y 015
; | | |
c 4):0.1m,v0:0.1mls
o 01
| u= 0.05, m=250kg
v \ ) k=3,000N/m, §=20°
0.05 |
|
{ \
0
. 1 \Jr
n | T
e 005 || / X =-0.0261
\ ] ss
s [ The mass has no oscillation due
a1 to sufficiently large friction.
p
N
4 015
")
0.2
-0.25
0 0.5 1 15 2 25 3 35 4 45 5
time (s)
/
z“ problem 1.93
0.3
y
t
P ) xO:O.l m,vO:O.l m's
o 02 =0.02, m=250 kg
I M ’
e M0 /] k=3,000N/m, g=20°
v
01 /
Z"‘ \ / \
e \\L X =-0.0114
m SS
e \ M _
c o1l / —
a /
| \ /
§ /
gy o2 a(t) is discontinuous due to friction
\ / force changes direction as the mass
/ changes its direction of motion.
0.3
0.4
0 0.5 1 15 2 2.5 3 35 4 4.5 5
time (s)

Discussion on the ceasing of motion:

Note that when motion ceases, the mass reaches another state of equilibrium. 1n both
simulation cases, this occurs while the mass is moving upward (negative velocity). Note
that the steady-state value of x(t) isvery small, suggesting that thisis indeed the true

equilibrium position, which represents a balance of the spring force, weight component
along the incline, and the static friction.



1.105* Compute and plot the response of a system with Coulomb damping of equation

(1.90) for the case where x, = 0.5m, v, =0, p = 0.1, m= 100 kg and k =1500 N/m. How

long does it take for the vibration to die out?

Solution: Here the solution is computed in Mathcad using the following code. Any of

the codes may be used. The system dies out in about 3.2 sec.

1 1.94 H B
0.5 o
= 0 k = 1500 m = 100 p=01 =]
L)
D, %) o= |-k L)
H-}iu — cos (20 degj-p-g-ﬁ +
Z 1= rkfixed (3,0, 10,5000 , D
1= ge0= x = 251
06 T
04 +
0z +
x
0 1 z\_{/s-:' 4
0zt
—n.4-+
k _—
-
4 |l DE




1.106* A mass moves in a fluid against diding friction as illustrated in Figure P1.106.
Model the damping force as a dow fluid (i.e., linear viscous damping) plus Coulomb
friction because of the diding, with the following parameters. m = 250 kg, 4 =0.01, ¢ =
25 kg/s and k =3000 N/m . @) Compute and plot the response to the initial conditions: X,
=0.1m, v, = 0.1 m/s. b) Compute and plot the response to the initial conditions: x, = 0.1

m, v, = 1 m/s. How long does it take for the vibration to die out in each case?

Figure P1.106
Solution: A free-body diagram yields the equation of mation.

“ 0 (50 + SK(D) + o) = 0
mx(t) + n(x) +cx(t) + =
NS HMgSy
mg — f, where the vertical sum of forces gives
v kx(®)

N f

the magnitude uN = umg for the

Coulomb force asin figure 1.41.

The equation of motion can be solved by using any of the codes mentioned or by using
the toolbox. Here a Mathcad session is presented using a fixed order Runge Kutta
integration. Note that the oscillations die out after 4.8 seconds for v,=0.1 m/s for the
larger initial velocity of v,=1 m/sthe oscillations go on quite a bit longer ending only
after about 13 seconds.  While the next problem shows that the viscous damping can be
changed to reduce the settling time, this example shows how dependent the response is
on the value of theinitial conditions. In alinear system the settling time, or time it takes
to die out is only dependent on the system parameters, not theinitial conditions. This
makes design much more difficult for nonlinear systems.
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1.107* Consider the system of Problem 1.106 part (a), and compute a new damping
coefficient, c, that will cause the vibration to die out after one oscillation.

Solution: Working in any of the codes, use the smulation from the last problem and
change the damping coefficient ¢ until the desired response is obtained. A Mathcad
solution is given which requires an order of magnitude higher damping coefficient,

c=275kg/s
F N
i o= | k 1= 3000 = 250 = 0.01 E
o " = bo=u c = 275 -
X, +
DI:T,X:I = -k Xl C
T RE T T
o % m Z 1= tkfixed (¥ ,0,6,3000,D)
t.= E{D} . _2{1}
015 +
I
K_ oos +
a \7 2 2 4 5 6
—.05+
) - |
4| [ e ]




1.108 Compute the equilibrium positions of X + w’x+ fx* = 0. How many are there?

Solution: The equation of motion in state space form is
X =X,
X, = =i = X
The equilibrium points are computed from:
X =0
—0 %~ Px; =
Solving yields the two equilibrium points:

=7

2 2 O

1.109 Compute the equilibrium positions of X+ w’x— f°x° + > = 0. How many are
there?

Solution: The equation of motion in state space formis
X =X,
X, = =%, + X - Py
The equilibrium points are computed from:
X =0
—o X + X - =0
Solving yields the five equilibrium points (one for each root of the previous
equation). The first equilibrium (the linear case) is:
[%1_[0]
[ ]™ o]
Next divide—w’x, + X — %’ = 0 by x, to obtain:
—o, + B -y, =0
which is quadratic in x,? and has the following roots which define the remaining
four equilibrium points: x, =0 and

N +yB* - 4yo?
+ =

. ‘/—ﬂz VB 4p;

_2}/

X




1.110* Consider the pendulum example 1.10.3 with length of 1 m an initial conditions of

6, =n/10 rad and éo = 0. Compare the difference between the response of the linear

version of the pendulum eguation (i.e. with sin(6) = 6) and the response of the nonlinear

version of the pendulum equation by plotting the response of both for four periods.

Solution: First consider the linear solution. Using the formula s given in the text
the solution of the linear system is just: 6(t) :O.314sin(3.132t+%). The

following Mathcad code, plots the linear solution on the same plot as a numerical
solution of the nonlinear system.

i =0.. 800

At = 0.01

T
Gi = 0.314-Sin(3.132-At-i + >

lxi_l_l] . xi+vi-At

Vie v, — At (sin(x;)) 9.81



04 +

0.2 +

X

I _®
o

—0.6-

i-At

Note how the amplitude of the nonlinear system is growing. The difference
between the linear and the nonlinear plots are a function of the ration of the linear
spring stiffness and the nonlinear coefficient, and of course the size of the initial
condition. It iswork it to investigate the various possibilities, to learn just when
the linear approximation completely fails.



1.111* Repeat Problem 1.110 if theinitial displacement is 6, = n/2 rad.

Solution: The solution in Mathcad is:

Here both solutions oscillate around the “stable” equilibrium, but the nonlinear
solution is not oscillating at the natural frequency and is increasing in amplitude.
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1.112 If the pendulum of Example 1.10.3 isgiven an initial condition near the
equilibrium position of 6, = = rad and 6, = 0, does it oscillate around this

equilibrium?

Solution The pendulum will not oscillate around this equilibrium as it is
unstable. Rather it will “wind” around the equilibrium as indicated in the solution

to Example 1.10.4.



1.113* Calculate the response of the system of Problem 1.109 for the initial conditions
of X, =0.01 m, v, = 0, and anatural frequency of 3 rad/sand for § = 100, y = 0.

Solution: In Mathcad the solution is given using asimple Euler integration as follows:

At = 0.01
X0 [0.01 ]
= 12
VO 0 o'=3 A= — (!)'(XO)
o
B:=100
i = 0.. 1000
[xi_”] 3 X + Vv, At
i+1 vi—At-[oo-xi—B-(xi)]
6, = A-sin|3 At +g Thisisthe linear solution (t)
0.02 T
0.01 4
%i
) 0
-0.01+
-0.02+

i-At

The other codes may be used to compute this solution as well.



1.114* Repeat problem 1.113 and plot the response of the linear version of the system (B
=0) on the same plot to compare the difference between the linear and nonlinear versions
of this equation of motion.

Solution: The solution is computed and plotted in the solution of Problem 1.113. Note
that the linear solution starts out very close to the nonlinear solution. The two solutions
however diverge. They look similar, but the nonlinear solution is growing in amplitude

and period.



