
Problems and Solutions Section 1.1 (1.1 through 1.19) 
 

1.1 The spring of Figure 1.2 is successively loaded with mass and the corresponding (static) 

displacement is recorded below.  Plot the data and calculate the spring's stiffness.  Note 

that the data contain some error.  Also calculate the standard deviation. 

 

m(kg) 10 11 12 13 14 15 16 

x(m) 1.14 1.25 1.37 1.48 1.59 1.71 1.82 

 

 Solution: 
 

 Free-body diagram: 

 

 

m

k

kx

mg
  

Plot of mass in kg versus displacement in m     

Computation of slope from mg/x 

m(kg) x(m) k(N/m) 

10 1.14 86.05 

11 1.25 86.33 

12 1.37 85.93 

13 1.48 86.17 

14 1.59 86.38 

15 1.71 86.05 

16 1.82 86.24 
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From the free-body diagram and static 

equilibrium: 

 

 
kx = mg (g = 9.81m / s

2
)

k = mg / x
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computed stiffness is: 
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1.2 Derive the solution of m˙ ̇ x + kx = 0  and plot the result for at least two periods for the case 

with ωn = 2 rad/s, x0 = 1 mm, and v0 = 5  mm/s. 

 

 Solution: 
 

 Given:   

0=+ kxxm !!   (1) 
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 The sum of x1 and x2 is also a solution so that the total solution is: 
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 Substitute initial conditions: x0 = 1 mm, v0 = 5  mm/s 
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 Therefore the solution is: 
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Using the Euler formula to evaluate the exponential terms yields:
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 Using Mathcad the plot is: 
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1.3 Solve m˙ ̇ x + kx = 0  for k = 4 N/m, m = 1 kg, x0 = 1 mm, and v0 = 0.  Plot the solution. 

 

 Solution: 
 

 This is identical to problem 2, except v
0

= 0.  !n =
k

m
= 2 rad/s

"

#$
%

&'
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initial conditions: 
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x(t)= cos (2t ) 

 The following plot is from Mathcad: 

  

 Alternately students may use equation (1.10) directly to get 
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1.4 The amplitude of vibration of an undamped system is measured to be 1 mm.  The phase 

shift from t = 0 is measured to be 2 rad and the frequency is found to be 5 rad/s.  

Calculate the initial conditions that caused this vibration to occur.  Assume the response 

is of the form x(t) = Asin(!nt + ").  

 

 Solution: 
 

 Given:  rad/s5,rad2,mm1 === !"A .  For an undamped system: 

  

 

x t( ) = Asin !nt + "( ) = 1sin 5t + 2( )    and

v t( ) = !x t( ) = A!n cos !nt + "( ) = 5cos 5t + 2( )
 

 Setting t = 0 in these expressions yields: 

  x(0) = 1sin(2) = 0.9093 mm 
      v(0) = 5 cos(2) = - 2.081 mm/s 

 

1.5 Find the equation of motion for the hanging spring-mass system of Figure P1.5, and 

compute the natural frequency.  In particular, using static equilibrium along with 

Newton’s law, determine what effect gravity has on the equation of motion and the 

system’s natural frequency.  

 

Figure P1.5 
 
 Solution: 
 The free-body diagram of problem system in (a) for the static case and in (b) for the 

dynamic case, where x is now measured from the static equilibrium position. 

 

                                                 (a)                      (b) 

 From a force balance in the static case (a): mg = kxs , where xs  is the static deflection of 

the spring.  Next let the spring experience a dynamic deflection x(t) governed by 

summing the forces in (b) to get 



 

m!!x(t) = mg ! k(x(t) + xs ) " m!!x(t) + kx(t) = mg ! kxs

                                          " m!!x(t) + kx(t) = 0 "#n =
k

m

 

 since mg = kxs  from static equilibrium. 

 

1.6 Find the equation of motion for the system of Figure P1.6, and find the natural frequency.  

In particular, using static equilibrium along with Newton’s law, determine what effect 

gravity has on the equation of motion and the system’s natural frequency. Assume the 

block slides without friction. 
 

 
Figure P1.6 

 
 Solution: 
 Choosing a coordinate system along the plane with positive down the plane, the free-

body diagram of the system for the static case is given and (a) and for the dynamic case 

in (b): 

 

          
 In the figures, N is the normal force and the components of gravity are determined by the 

angle θ as indicated.  From the static equilibrium: !kxs + mgsin" = 0 .  Summing forces 

in (b) yields: 



 

Fi! = m!!x(t) " m!!x(t) = #k(x + xs ) + mgsin$

                    " m!!x(t) + kx = #kxs + mgsin$ = 0

                     " m!!x(t) + kx = 0

                                             "%n =
k

m
 rad/s

 

 

 

1.7 An undamped system vibrates with a frequency of 10 Hz and amplitude 1 mm.  Calculate 

the maximum amplitude of the system's velocity and acceleration. 

 

 Solution: 
 

 Given: First convert Hertz to rad/s:  !n = 2"fn = 2" 10( ) = 20" rad/s.  We also have that 

A= 1 mm. 

 

 For an undamped system: 

 

  ( ) ( )!" += tAtx
n

sin  

 

 and differentiating yields the velocity:  v t( ) = A!n cos !nt + "( ) .  Realizing that both the 

sin and cos functions have maximum values of 1 yields: 

 

  ( ) mm/s 62.8=== !" 201
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1.8 Show by calculation that A sin (ωnt + φ) can be represented as Bsinωnt + Ccosωnt and 

calculate C and B in terms of A and φ. 

 

 Solution: 
 

 This trig identity is useful:  sin a + b( ) = sinacosb + cosasinb  

 

 Given:  ( ) ( ) ( ) ( ) ( )!"!"!" sincoscossinsin tAtAtA
nnn

+=+  

 

  
             = Bsin!nt + C cos!nt

where B = A cos"      and C = A sin"
 

 

 

 

1.9 Using the solution of equation (1.2) in the form  x(t) = Bsin!nt + Ccos!nt  

 calculate the values of B and C in terms of the initial conditions x0 and v0. 

 

 Solution: 
 Using the solution of equation (1.2) in the form 

 

  x t( ) = Bsin!nt + Ccos!nt  

 and differentiate to get: 

˙ x (t) = !n Bcos(!nt) " !nCsin(!nt)  

 Now substitute the initial conditions into these expressions for the position and velocity 

to get: 

x
0

= x(0) = Bsin(0) + C cos(0) = C

v
0

= ˙ x (0) = !nB cos(0) " !nC sin(0)

              = !nB(1) "! nC(0) =! nB

 

 Solving for B and C yields: 
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v
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0
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0
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0
cos! nt  



1.10  Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. 

 

Solution: Following the lead given in Example 1.1.2, write down the general expression 

of the velocity by differentiating equation (1.10): 

 

x(t) = Asin(! nt + ") # ˙ x (t) = A!n cos(!nt + ")

# v(0) = A!n cos(!n 0 + ") = A!n cos(")
 

From the figure:  
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Substitution of these values into the expression for v(0) yields 
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verifying the agreement between the figure and the initial velocity condition. 



 

1.11 (a)A 0.5 kg mass is attached to a linear spring of stiffness 0.1 N/m.  Determine the natural 

frequency of the system in hertz.  b) Repeat this calculation for a mass of 50 kg and a 

stiffness of 10 N/m.  Compare your result to that of part a. 

 

 Solution: From the definition of frequency and equation (1.12) 

 

a( )          !n =
k

m
=

.5

.1
= 0.447 rad/s

      fn =
!n

2"
=

2.236

2"
= 0.071 Hz

b( )            !n =
50

10
= 0.447rad/s, fn =

!n

2"
= 0.071 Hz

 

 

 Part (b) is the same as part (a) thus very different systems can have same natural 

frequencies. 

 



1.12 Derive the solution of the single degree of freedom system of Figure 1.4 by writing 

Newton’s law, ma = -kx, in differential form using adx = vdv and integrating twice. 

 

Solution:  Substitute a = vdv/dx into the equation of motion ma = -kx, to get mvdv = -

kxdx.  Integrating yields: 
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Here c2 is a second constant of integration that is convenient to write as c2 = -φ/ωn.  

Rearranging yields 
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 in agreement with equation (1.19). 

 

 

 



 

1.13 Determine the natural frequency of the two systems illustrated. 

                          

(a)                                                   (b) 

Figure P1.13 

 Solution:  
 (a)  Summing forces from the free-body diagram in the x direction yields: 

-k1x

+x

 -k2x

 

Free-body diagram for part a 
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 Examining the coefficient of x 
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 (b)  Summing forces from the free-body diagram in the x direction yields: 
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Free-body diagram for part b 
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1.14* Plot the solution given by equation (1.10) for the case k = 1000 N/m and m = 10 kg for 

two complete periods for each of the following sets of initial conditions: a) x0 = 0 m, v0 = 

1 m/s, b) x0 = 0.01 m, v0 = 0 m/s, and c) x0 = 0.01 m, v0 = 1 m/s. 

 

 Solution:  Here we use Mathcad: 

 a) all units in m, kg, s 
 

 

 parts b and c are plotted in the above by simply changing the initial conditions as 
appropriate 
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1.15* Make a three dimensional surface plot of the amplitude A of an undamped oscillator 

given by equation (1.9) versus x0 and v0 for the range of initial conditions given by –0.1 < 

x0 < 0.1 m and -1 < v0 < 1 m/s, for a system with natural frequency of 10 rad/s. 

Solution: Working in Mathcad the solution is generated as follows: 
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1.16 A machine part is modeled as a pendulum connected to a spring as illustrated in Figure 

P1.16.  Ignore the mass of pendulum’s rod and derive the equation of motion.  Then 

following the procedure used in Example 1.1.1, linearize the equation of motion and 

compute the formula for the natural frequency. Assume that the rotation is small enough 

so that the spring only deflects horizontally. 

 

 

Figure P1.16 
 

Solution: Consider the free body diagram of the mass displaced from equilibrium: 

 
 There are two forces acting on the system to consider, if we take moments about point O 

(then we can ignore any forces at O). This yields 

 

MO! = JO" # m!
2 ""$ = %mg!sin$ % k!sin$ • !cos$

             # m!
2 ""$ + mg!sin$ + k!

2
sin$ cos$ = 0

 



 Next consider the small θ  approximations to that  sin! ! !  and cos!=1.   Then the 

linearized equation of motion becomes: 

 

!!!(t) +
mg + k"

m"

"
#$

%
&'
!(t) = 0  

 Thus the natural frequency is  

 

!n =
mg + k!

m!
 rad/s  

 

 

1.17 A pendulum has length of 250 mm.  What is the system’s natural frequency in Hertz? 

 

Solution: 

 Given:  l =250 mm 

 Assumptions:  small angle approximation of sin 

From Window 1.1, the equation of motion for the pendulum is as follows: 

IO
˙ ̇ ! + mg! = 0 ,   where IO = ml

2
! ˙ ̇ " +

g

l
" = 0  

 The coefficient of θ yields the natural frequency as: 

 

 

 

  
f

n
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2"
= 0.996  Hz  

 

1.18 The pendulum in Example 1.1.1 is required to oscillate once every second.  What length 

should it be? 

  

 Solution: 

 Given: f = 1 Hz  (one cycle per second) 
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1.19 The approximation of sin θ = θ, is reasonable for θ less than 10°.  If a pendulum of length 

0.5 m, has an initial position of θ(0) = 0, what is the maximum value of the initial angular 

velocity that can be given to the pendulum with out violating this small angle 

approximation? (be sure to work in radians) 

 

 Solution:  From Window 1.1, the linear equation of the pendulum is 

 

 

 

 For zero initial position, the solution is given in equation (1.10) by 

 

 

 

since sin is always less then one.  Thus if we need θ < 10°= 0.175 rad, then we need to 

solve: 

 

 

 

 for v0 which yields: 

v0 < 0.773  rad/s. 
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Problems and Solutions for Section 1.2 and Section 1.3 (1.20 to 1.51) 

 

Problems and Solutions Section 1.2   (Numbers 1.20 through 1.30) 

 

1.20* Plot the solution of a linear, spring and mass system with frequency ωn =2 rad/s, 

x0 = 1 mm and v0 =  2.34 mm/s, for at least two periods. 

 Solution: From Window 1.18, the plot can be formed by computing: 

  

A =
1

!n

!n

2
x

0

2
+ v

0

2
= 1.54 mm,  " = tan

#1
(
!n x

0

v
0

) = 40.52
!

 

x(t) = Asin(! nt + ")  

 This can be plotted in any of the codes mentioned in the text.  In Mathcad the 

program looks like.   

 

 In this plot the units are in mm rather than meters.



 

 

1.21* Compute the natural frequency and plot the solution of a spring-mass system with 

mass of 1 kg and stiffness of 4 N/m, and initial conditions of x0 = 1 mm and v0 =  

0 mm/s, for at least two periods. 

 Solution: Working entirely in Mathcad, and using the units of mm 

yields:

 

 Any of the other codes can be used as well. 

 



 

 

1.22  To design a linear, spring-mass system it is often a matter of choosing a spring 

constant such that the resulting natural frequency has a specified value.  Suppose 

that the mass of a system is 4 kg and the stiffness is 100 N/m.  How much must 

the spring stiffness be changed in order to increase the natural frequency by 10%? 

Solution:  Given m =4 kg and k = 100 N/m the natural frequency is  

!n =
100

4
= 5 rad/s  

Increasing this value by 10% requires the new frequency to be 5 x 1.1 = 5.5 rad/s.  

Solving for k given m and ωn yields: 

5.5 =
k

4
! k = (5.5)

2
(4) =121 N/m  

Thus the stiffness k must be increased by about 20%. 



 

 

 

 

 

 

1.23 Referring to Figure 1.8, if the maximum peak velocity of a vibrating system is 

200 mm/s at 4 Hz and the maximum allowable peak acceleration is 5000 mm/s
2
, 

what will the peak displacement be? 

 

  

mm/sec200=v

x (mm) a = 5000 mm/sec
2

f = 4 Hz

 

  

 Solution: 

 Given:  vmax = 200 mm/s   @  4 Hz 

              amax = 5000 mm/s  @  4 Hz 

 xmax = A 

 vmax = Aωn 

 amax = Aω n
 2
 

 ! x
max

=
v

max

"n

=
v

max

2# f
=

200

8#
= 7.95 mm  

 

 At the center point, the peak displacement will be x = 7.95 mm 



1.24 Show that lines of constant displacement and acceleration in Figure 1.8 have 

slopes of +1 and –1, respectively.  If rms values instead of peak values are used, 

how does this affect the slope? 

 

 Solution: Let 
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 Peak values: 

    

 

!x
max

= x
max
!n = 2" fx

max

!!x
max

= x
max
!n

2
= (2" f )

2
x

max

 

 Location: 

    
fxx

fxx

!

!

2lnlnln

2lnlnln

maxmax

maxmax

"=

+=

!!!

!

 

 Since xmax is constant, the plot of ln maxx!  versus ln 2πf is a straight line of slope 

+1.  If ln maxx!!  is constant, the plot of ln maxx!  versus ln 2πf is a straight line of 

slope –1.  Calculate RMS values 

 Let 
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 The last two equations can be rewritten as:  

rmsrmsrms xfxx !="= 2

.

 

rmsrmsrms xfxx
.

2

..

2!="=  

The logarithms are: 

 fxx !+= 2lnlnln
maxmax

.

 

 fxx !+= 2lnlnln max

.

max

..

 

The plots of rmsx
.

ln  versus f!2ln  is a straight line of slope +1 when xrms is constant, and 

–1 when rmsx
..

  is constant. Therefore the slopes are unchanged. 



 

 

 

1.25 A foot pedal mechanism for a machine is crudely modeled as a pendulum 

connected to a spring as illustrated in Figure P1.25.  The purpose of the spring is 

to keep the pedal roughly vertical.  Compute the spring stiffness needed to keep 

the pendulum at 1° from the horizontal and then compute the corresponding 

natural frequency.  Assume that the angular deflections are small, such that the 

spring deflection can be approximated by the arc length, that the pedal may be 

treated as a point mass and that pendulum rod has negligible mass. The values in 

the figure are m = 0.5 kg, g = 9.8 m/s
2
, 
 
!

1
= 0.2 m and !

2
= 0.3 m.   

 

 

Figure P1.25 

Solution: You may want to note to your students, that many systems with springs are 

often designed based on static deflections, to hold parts in specific positions as in this 

case, and yet allow some motion.  The free-body diagram for the system is given in 

the figure.   

 



 

For static equilibrium the sum of moments about point O yields (θ1 is the static 

deflection): 
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Again take moments about point O to get the dynamic equation of motion: 

 
MO! = J !!" = m"

2

2 !!" = #"
1

2
k(" +"

1
) + mg"

2
= #"

1

2
k" + "

1

2
k"

1
# mg"

2
"  

Next using equation (1) above for the static deflection yields: 

 

m!
2

2 ""! + !
1

2
k! = 0

                               " ""! +
!

1

2
k

m!
2

2

#

$%
&

'(
! = 0

                                            ")n =
!

1

!
2

k

m
=

0.2

0.3

2106

0.5
= 43.27  rad/s

 

 

1.26 An automobile is modeled as a 1000-kg mass supported by a spring of 

stiffness k = 400,000 N/m.  When it oscillates it does so with a maximum 

deflection of 10 cm.  When loaded with passengers, the mass increases to as much 

as 1300 kg.  Calculate the change in frequency, velocity amplitude, and 

acceleration amplitude if the maximum deflection remains 10 cm. 

 

 Solution: 

 Given: m1 = 1000 kg 

  m2 = 1300 kg 

k = 400,000 N/m  



xmax =  A  = 10 cm  

 

 

 

 

 

 

 

 

 

v1  =  Aωn1  = 10  cm  x  20  rad/s  = 200 cm/s 

v2  =  Aωn2  = 10  cm  x  17.54  rad/s  = 175.4 cm/s  

Δv  =  175.4 -  200  =  -24.6  cm/s 

 

a1  =  Aωn1
2  = 10  cm  x  (20  rad/s)2

  = 4000 cm/s2
 

a2  =  Aωn2
2  = 10  cm  x  (17.54  rad/s)

2
  = 3077 cm/s2  

Δa  =  3077 -  4000  =  -923  cm/s
2 

srad
m

k
n

/20
1000

000,400

1

1
===!  

srad
m

k
n

/54.17
1300

000,400

2

2
===!  

srad /46.22054.17 !=!="#  

!f =
!"

2#
=

$2.46

2#
= 0.392 Hz  



 

1.27 The front suspension of some cars contains a torsion rod as illustrated in Figure 

P1.27 to improve the car’s handling.  (a) Compute the frequency of vibration of 

the wheel assembly given that the torsional stiffness is 2000 N m/rad and the 

wheel assembly has a mass of 38 kg.  Take the distance x = 0.26 m.  (b) 

Sometimes owners put different wheels and tires on a car to enhance the 

appearance or performance.  Suppose a thinner tire is put on with a larger wheel 

raising the mass to 45 kg.  What effect does this have on the frequency? 

 

 

 

 

Figure P1.27 

 Solution:  (a) Ignoring the moment of inertial of the rod, and computing the 

moment of inertia of the wheel as   mx
2
, the frequency of the shaft mass system is  

!n =
k

mx
2

=
2000 N "m

38 "kg (0.26 m)
2

= 27.9 rad/s  

 (b)  The same calculation with 45 kg will reduce the frequency to 

!n =
k

mx
2

=
2000 N "m

45 "kg (0.26 m)
2

= 25.6 rad/s  

This corresponds to about an 8% change in unsprung frequency and could 

influence wheel hop etc.  You could also ask students to examine the effect of 

increasing x, as commonly done on some trucks to extend the wheels out for 

appearance sake. 

 



1.28 A machine oscillates in simple harmonic motion and appears to be well modeled 

by an undamped single-degree-of-freedom oscillation.  Its acceleration is 

measured to have an amplitude of 10,000 mm/s
2
 at 8 Hz.  What is the machine's 

maximum displacement?  

 

 Solution: 

 Given: amax = 10,000 mm/s
2
 @  8 Hz 

The equations of motion for position and acceleration are: 

  

 

x = Asin(!nt + ")             (1.3)

!!x = #A!n

2
sin(!nt + ")      (1.5)

 

 The amplitude of acceleration is 000,10
2

=nA!  mm/s
2
 and ωn = 2πf = 2π(8) = 

16π rad/s, from equation (1.12). 

 The machine's displacement is 

( )
22

16

000,10000,10

!"

==

n

A  

 A = 3.96 mm 

 

 

1.29 A simple undamped spring-mass system is set into motion from rest by giving it 

an initial velocity of 100 mm/s.  It oscillates with a maximum amplitude of 10 

mm.  What is its natural frequency? 

  

Solution: 

 Given: x0 = 0, v0 = 100 mm/s, A = 10 mm 

 From equation (1.9), 

n

v
A

!

0
=  or 

10

1000
==

A

v
n! ,  so that:   ωn= 10 rad/s 



1.30 An automobile exhibits a vertical oscillating displacement of maximum amplitude 

5 cm and a measured maximum acceleration of 2000 cm/s
2
.  Assuming that the 

automobile can be modeled as a single-degree-of-freedom system in the vertical 

direction, calculate the natural frequency of the automobile. 

  

Solution: 

 Given:  A = 5 cm.  From equation (1.15) 

  cm/s 2000
2

== nAx !!!  

 Solving for ωn yields: 

  

  

!n =
2000

A
=

2000

5

!n = 20rad/s

 



Problems Section 1.3  (Numbers 1.31 through 1.46) 
 

1.31 Solve 04 =++ xxx !!!  for x0 = 1 mm, v0 = 0 mm/s.  Sketch your results and 

determine which root dominates. 

 Solution: 

 Given 0 mm, 1  where04 00 ===++ vxxxx !!!  

 Let 

Substitute these into the equation of motion to get: 

ar
2
e

rt
+ 4are

rt
+ ae

rt
= 0

! r
2

+ 4r +1 = 0 ! r
1,2

= "2 ± 3
 

 So 

 

x = a
1
e

!2 + 3( ) t
+ a

2
e

!2 ! 3( ) t

˙ x = ! 2 + 3( )a
1
e

!2+ 3( ) t
+ ! 2 ! 3( )a

2
e

!2! 3( ) t
 

Applying initial conditions yields, 

 
 

 

Substitute equation (1) into (2) 

 

 
 
 Solve for a2 

      
 

Substituting the value of a2 into equation (1), and solving for a1 yields, 

 
 
 

! x(t) =

v
0

+ 2 + 3( )x
0

2 3
e

"2+ 3( ) t
+

"v
0

+ " 2 + 3( )x
0

2 3
e

"2" 3( ) t  

The response is dominated by the root:  !2 + 3    as the other root dies off 

very fast. 

x
0

= a
1

+ a
2

! x
0
" a

2
= a

1
(1)

v
0

= " 2 + 3( ) a
1

+ " 2 " 3( )a2
(2)

 

v
0

= ! 2 + 3( )(x0
! a

2
) + ! 2 ! 3( )a2

v
0

= ! 2 + 3( )x0
! 2 3 a

2

 

a
2

=
!v

0
+ ! 2 + 3( ) x

0

2 3
 

a
1

=
v

0
+ 2 + 3( ) x

0

2 3
 

 x = ae
rt
! !x = are

rt
! !!x = ar

2
e

rt
 



 

1.32 Solve 022 =++ xxx !!!  for x0 = 0 mm, v0 = 1 mm/s and sketch the response.  You 

may wish to sketch x(t) = e-t and x(t) =-e-t
 first. 

 Solution: 

 Given 02 =++ xxx !!!  where x0 = 0, v0 = 1 mm/s 

 Let: x = ae
rt
! !x = are

rt
! !!x = ar

2
e

rt
 

 Substitute into the equation of motion to get 

 ar
2
e

rt
+ 2are

rt
+ ae

rt
= 0 ! r

2
+ 2r +1 = 0 ! r

1,2
= "1 ± i  

 So 

 
 
x = c

1
e

!1+ i( ) t
+ c

2
e

!1! i( ) t
" !x = !1+ i( )c

1
e

!1+ i( ) t
+ !1! i( )c

2
e

!1! i( ) t
 

 Initial conditions: 

 

 

 

Substituting equation (1) into (2) 

  

 

 

 

 

Applying Euler’s formula 

 

 

 

 

Alternately use equations (1.36) and (1.38).  The plot is similar to figure 1.11.

x
0

= x 0( ) = c
1

+ c
2

= 0 ! c
2

= "c
1

(1)

v
0

= ˙ x 0( ) = "1+ i( )c
1

+ "1" i( )c
2

=1 (2)
 

v
0

= !1 + i( )c1
! !1! i( )c1

= 1

c
1

= !
1

2
i, c

2
=

1

2
i

x t( ) = !
1

2
ie

!1+i( ) t
+

1

2
ie

!1! i( ) t
= !

1

2
ie

! t
e

it
! e

!it
( )

 

x t( ) = !
1

2
ie

!t
cos t + isin t ! (cos t ! i sin t)( )  

x t( ) = e
! t

sin t  



1.33 Derive the form of λ1 and λ2 given by equation (1.31) from equation (1.28) 

and the definition of the damping ratio. 

 

 Solution: 

 Equation (1.28): kmc
mm

c
4

2

1

2

2
2,1 !±!="  

 Rewrite, !
1,2

= "
c

2 m m

#
$%

&
'(

k

k

#

$%
&

'(
±

1

2 m m

k

k

#

$%
&

'(
c

c

#
$%

&
'(

c
2 " 2 km

2

( )
c

c

#
$%

&
'(

2

 

 Rearrange,!
1,2

= "
c

2 km

#
$%

&
'(

k

m

#

$%
&

'(
±

c

2 km

k

m

#

$%
&

'(
1

c

#
$%

&
'(

c
2

1"
2 km

c

#

$%
&

'(

2)

*
+
+

,

-
.
.

 

 Substitute: 

!n =
k

m
 and " =

c

2 km
#$

1,2
= %"!n ±"!n

1

c

&
'(

)
*+

c 1%
1

" 2

&
'(

)
*+

                                           #$
1,2

= %"!n ±!n " 2
1%

1

" 2

&
'(

)
*+

,

-
.

/

0
1

                                           #$
1,2

= %"!n ±!n " 2 %1

 



1.34 Use the Euler formulas to derive equation (1.36) from equation (1.35) and to 

determine the relationships listed in Window 1.4. 

 Solution: 

 Equation (1.35):  x t( ) = e
!"# nt

a
1
e( )

j# n 1!"
2

t

! a
2
e
! j# n 1!"

2
t
 

 From Euler,  

  

x t( ) = e!"# nt
(a

1
cos #n 1 !" 2 t( ) + a

1
j sin #n 1 !" 2 t( )

                        + a
2

cos #n 1 !" 2
t( ) ! a

2
j sin #n 1 !" 2

t( ))

= e
!"# nt

a
1

+ a
2( )cos#d t + j a

1
! a

2( )sin#d t

 

  Let:  A1=( )
21

aa + , A2=( )
21

aa ! , then this last expression becomes 

  x t( ) = e
!"# nt

A
1
cos# dt + A

2
sin#d t  

  Next use the trig identity: 

  
2

11

21
tan,

A

A
AAA

!
="+=  

  to get: x t( ) = e
!"#nt

Asin(#dt + $)  

  



1.35 Using equation (1.35) as the form of the solution of the underdamped 

system, calculate the values for the constants a1 and a2 in terms of the initial 

conditions x0 and v0. 

 Solution: 

 Equation (1.35):  

x t( ) = e
!"# nt

a
1
e

j# n 1!"
2

t
+ a

2
e
! j# n 1!"

2
t( )  

˙ x t( ) = (!"#n + j#n 1! "2
)a

1
e

!"#n + j#n 1!" 2

( )t
+ (!"#n ! j# n 1 !" 2

)a
2

e
!"# n ! j#n 1!" 2

( )t

 

 Initial conditions 

  x
0

= x(0 ) = a
1

+ a
2
! a

1
= x

0
" a

2
     (1) 

  v
0

= ˙ x (0) = (!"# n + j#n 1 !" 2
)a

1
+ (!"#n ! j#n 1 !" 2

)a
2
 (2) 

 Substitute equation (1) into equation (2) and solve for a2 

  

v
0

= !"#n + j# n 1!" 2( )(x0
! a

2
) + !"#n ! j# n 1!" 2( )a2

v
0

= !"#n + j# n 1!" 2( )x0
! 2 j# n 1! " 2

a
2

 

 

 Solve for a2 

  a
2

=
!v

0
!"#nx0

+ j#n 1!" 2
x

0

2 j#n 1!" 2

 

 Substitute the value for a2 into equation (1), and solve for a1 

a
1

=
v

0
+ !"nx0

+ j"n 1#! 2
x

0

2 j"n 1#! 2

  



1.36 Calculate the constants A and φ in terms of the initial conditions and thus 

verify equation (1.38) for the underdamped case. 

Solution:  

From Equation (1.36),  

x(t) = Ae
!"#nt

sin #dt + $( )  

 Applying initial conditions (t  = 0) yields, 

!= sin
0

Ax                   (1) 

        !"+!#"$== cossin
00

AAxv
dn

!           (2) 

Next solve these two simultaneous equations for the two unknowns A and φ.  

From (1),   

!sin

0
x

A =                 (3) 

Substituting (3) into (1) yields 

!

"
+#"$=

tan

0

00

x
xv d

n    !    tan! =
x

0
"d

v
0

+#"nx
0

 .    

Hence,      

! = tan
"1

x
0
#d

v
0

+$#nx0

%

&
'

(

)
*             (4) 

From (3),   
A

x
0

sin =!                                                      (5) 

and From (4),  cos! =
v

0
+"#nx

0

x
0
# d( )

2

+ v
0

+"#nx
0( )

2
   (6)  

 

Substituting (5) and (6) into (2) yields, 

2

2

0

2

00
)()(

d

dn
xxv

A
!

!"! ++
=  

which are the same as equation (1.38)  

   



 

1.37 Calculate the constants a1 and a2 in terms of the initial conditions and thus verify  

equations (1.42) and (1.43) for the overdamped case. 

 

Solution:   From Equation (1.41) 

 x t( ) = e
!"# nt

a
1
e
#n "

2
!1 t

+ a
2
e
!# n "

2
!1 t( )  

taking the time derivative yields: 

˙ x t( ) = (!"#n +#n " 2
!1)a

1
e

!"# n +#n " 2
!1( )t

+ (!"# n !#n "2
!1)a

2
e
!"# n !# n " 2

!1( )t

 

 Applying initial conditions yields, 

 

x
0

= x 0( ) = a
1
+ a

2
! x

0
" a

2
= a

1
            (1)

v
0

= !x 0( ) = "#$n +$n # 2 " 1( )a1
+ "#$n "$n # 2 " 1( )a2

(2)
        

   Substitute equation (1) into equation (2) and solve for a2 

                         

v
0

= !"#n + #n " 2 !1( )(x0
! a

2
) + ! "# n !#n " 2 !1( )a2

v
0

= !"#n + #n " 2
!1( ) x

0
! 2#n " 2

!1 a
2

        

 Solve for a2 

a
2

=
!v

0
!"# n x

0
+#n " 2 !1 x

0

2#n " 2 !1
 

 Substitute the value for a2 into equation (1), and solve for a1 

a
1

=
v

0
+!"nx0

+"n ! 2 #1 x
0

2"n ! 2 #1

 

 

 

 

 

 

 

 



1.38     Calculate the constants a1 and a2 in terms of the initial conditions and thus verify  

equation (1.46) for the critically damped case. 

 

Solution: 

From Equation (1.45), 

 x(t) = (a
1

+ a
2
t)e

!" nt
 

 
 
! !x

0
= "#na1

e
"#nt

" #na2
te

"#nt
+ a

2
e
"#nt

 

 Applying the initial conditions yields: 

10
ax =    (1) 

and 

  
120

)0( aaxv
n

!"== !   (2) 

solving these two simultaneous equations for the two unknowns a1 and a2.  

Substituting (1) into (2) yields,   

 
01

xa =  

  
002

xva
n

!+=   

which are the same as equation (1.46). 



1.39 Using the definition of the damping ratio and the undamped natural frequency, 

derive equitation (1.48) from (1.47). 

 

Solution:  

m

k
n

=!   thus,  
2

n
m

k
!=  

km

c

2

=!  thus,  
n

m

km

m

c
!"=

!
= 2

2
 

Therefore, 0=++ x
m

k
x

m

c
x !!!  

becomes,  

 ˙ ̇ x (t) + 2!"n
˙ x (t) +"n

2
x(t ) = 0  

 

1.40 For a damped system, m, c, and k are known to be m = 1 kg, c = 2 kg/s, k = 10 

N/m. Calculate the value of ζ and ωn. Is the system overdamped, underdamped, or 

critically damped? 

 Solution: 

Given: m = 1 kg, c = 2 kg/s, k = 10 N/m 

 

Natural frequency: srad
m

k
n

/16.3
1

10
===!  

Damping ratio: 316.0
)1)(16.3(2

2

2
==

!
="

m

c

n

 

Damped natural frequency: 

  

!
d

= 10 1"
1

10

#

$%
&

'(

2

= 3.0  rad/s  

 

Since 0 < ζ < 1, the system is underdamped. 

 

 

 

 

 

 

 



 

 

 

1.41 Plot x(t) for a damped system of natural frequency ωn = 2 rad/s and initial 

conditions x0 = 1 mm, v0 = 1 mm, for the following values of the damping ratio: 

  ζ = 0.01, ζ = 0.2, ζ = 0.1, ζ = 0.4, and ζ = 0.8.  

 

 Solution: 
  
 Given: ωn = 2 rad/s, x0 = 1 mm, v0 = 1 mm, ζi = [0.01;  0.2;  0.1;  0.4;  0.8] 

 Underdamped cases: 

  

  !"di = "n 1 # $ i

2
 

 

 From equation 1.38, 

 

 Ai =
v

0
+! i"nx0( )

2

+ x
0
"di( )

2

"di

2
  !i = tan

"1 x
0
#di

v
0
+ $i#n x

0

 

 

The response is plotted for each value of the damping ratio in the following using 

Matlab: 
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t

x
(
t
)
,
 
m
m



1.42 Plot the response x(t) of an underdamped system with ωn = 2 rad/s, ζ = 0.1, and  

v0 = 0 for the following initial displacements: x0 = 10 mm and x0 = 100 mm. 

 

Solution: 
 
Given: ωn = 2 rad/s, ζ = 0.1, v0 = 0, x0 = 10 mm and x0 = 100 mm. 

 

Underdamped case: 

  

 !"d = "n 1 # $ i

2
= 2 1#0.1

2
= 1.99 rad/s  

 

 A =
v

0
+!" nx0( )

2

+ x
0
"d( )

2

"d

2
= 1.01 x

0
  

 

 ! = tan
"1 x

0
#d

v
0

+ $#n x
0

= 1.47 rad  

 

where 

 

 x(t) = Ae
!"#nt

sin #dt + $( )  

 

 

The following is a plot from Matlab. 
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1.43 Solve 0=+! xxx !!!  with x0 = 1 and v0 =0 for x(t) and sketch the response. 

Solution:  This is a problem with negative damping which can be used to tie into 

Section 1.8 on stability, or can be used to practice the method for deriving the 

solution using the method suggested following equation (1.13) and eluded to at 

the start of the section on damping.   To this end let x(t) = Ae
!t

 the equation of 

motion to get: 

(!
2
" ! +1)e

!t
= 0  

This yields the characteristic equation: 

!
2
" ! + 1 = 0 #! =

1

2
±

3

2
j,   where  j = "1  

There are thus two solutions as expected and these combine to form 

x(t) = e
0.5t

(Ae

3

2
jt

+ Be
!

3

2
jt

)  

Using the Euler relationship for the term in parenthesis as given in Window 1.4, 

this can be written as 

x(t) = e
0.5t

(A
1
cos

3

2
t + A

2
sin

3

2
t)  

Next apply the initial conditions to determine the two constants of integration:  

x(0) = 1 = A
1
(1) + A

2
(0)! A

1
=1 

 

Differentiate the solution to get the velocity and then apply the initial velocity 

condition to get 

 

!x(t) =

1

2
e

0
(A

1
cos

3

2
0 + A

2
sin

3

2
0) + e

0
3

2
(!A

1
sin

3

2
0 + A

2
cos

3

2
0) = 0

" A
1
+ 3(A

2
) = 0 " A

2
= !

1

3
,

                        " x(t) = e
0.5t

(cos
3

2
t !

1

3
sin

3

2
t)

 

This function oscillates with increasing amplitude as shown in the following plot 

which shows the increasing amplitude.  This type of response is referred to as a 

flutter instability. This plot is from Mathcad. 



 

 

 

 

 

1.44 A spring-mass-damper system has mass of 100 kg, stiffness of 3000 N/m and 

damping coefficient of 300 kg/s.  Calculate the undamped natural frequency, the 

damping ratio and the damped natural frequency.  Does the solution oscillate? 

 Solution: Working straight from the definitions: 

 

!n =
k

m
=

3000 N/m

100 kg
= 5.477 rad/s

" =
c

c
cr

=
300

2 km
=

300

2 (3000)(100)
= 0.274

 

 

Since ζ is less then 1, the solution is underdamped and will oscillate.  The damped 

natural frequency is!d = !n 1 "#2
= 5.27 rad/s. 

 

 

 



1.45 A sketch of a valve and rocker arm system for an internal combustion engine is 

give in Figure P1.45.  Model the system as a pendulum attached to a spring and a 

mass and assume the oil provides viscous damping in the range of ζ = 0.01. 

Determine the equations of motion and calculate an expression for the natural 

frequency and the damped natural frequency.  Here J is the rotational inertia of 

the rocker arm about its pivot point, k is the stiffness of the valve spring and m is 

the mass of the valve and stem.  Ignore the mass of the spring. 

 

 

 

Figure P1.45 

Solution: The model is of the form given in the figure. You may wish to give this figure 

as a hint as it may not be obvious to all students. 

 

 Taking moments about the pivot point yields: 

 

(J + m!
2
)""!(t) = "kx! " c"x! = "k!

2
! " c!

2 "!

             # (J + m!
2
)""!(t) + c!

2 "! + k!
2
! = 0

 

 Next divide by the leading coefficient to get; 

 

!!!(t) +
c"

2

J + m"
2

"
#$

%
&'
!!(t) +

k"
2

J + m"
2
!(t) = 0  



 From the coefficient of q, the undamped natural frequency is 

 

!n =
k!

2

J + m!
2

 rad/s  

 From equation (1.37), the damped natural frequency becomes 

 

!d = !n 1"# 2
= 0.99995

k!
2

J + m!
2
"

k!
2

J + m!
2

 

 This is effectively the same as the undamped frequency for any reasonable 

accuracy.  However, it is important to point out that the resulting response will 

still decay, even though the frequency of oscillation is unchanged.  So even 

though the numerical value seems to have a negligible effect on the frequency of 

oscillation, the small value of damping still makes a substantial difference in the 

response.  

  

1.46 A spring-mass-damper system has mass of 150 kg, stiffness of 1500 N/m and 

damping coefficient of  200 kg/s.  Calculate the undamped natural frequency, the 

damping ratio and the damped natural frequency.  Is the system overdamped, 

underdamped or critically damped?  Does the solution oscillate? 

 Solution: Working straight from the definitions: 

 

!n =
k

m
=

1500 N/m

150 kg
= 3.162 rad/s

" =
c

c
cr

=
200

2 km
=

200

2 (1500)(150)
= 0.211

 

This last expression follows from the equation following equation (1.29).  Since ζ 

is less then 1, the solution is underdamped and will oscillate.  The damped natural 

frequency is!d = !n 1 "# 2
= 3.091 rad/s , which follows from equation (1.37). 



1.47* The system of Problem 1.44 is given a zero initial velocity and an initial 

displacement of 0.1 m.  Calculate the form of the response and plot it for as long 

as it takes to die out. 

Solution: Working from equation (1.38) and using Mathcad the solution is: 

 



1.48* The system of Problem 1.46 is given an initial velocity of 10 mm/s and an initial 

displacement of -5 mm.  Calculate the form of the response and plot it for as long 

as it takes to die out.  How long does it take to die out? 

Solution: Working from equation (1.38), the form of the response is programmed 

in Mathcad and is given by: 

 

 

It appears to take a little over 6 to 8 seconds to die out.  This can also be plotted in 

Matlab, Mathematica or by using the toolbox. 

 



1.49* Choose the damping coefficient of a spring-mass-damper system with mass of 

150 kg and stiffness of 2000 N/m such that it’s response will die out after about 2 

s, given a zero initial position and an initial velocity of 10 mm/s. 

Solution: Working in Mathcad, the response is plotted and the value of c is 

changed until the desired decay rate is meet: 

 
 
 

 
 

 In this case ζ = 0.73 which is very large!  

k 2000

x0 0
v0 0.010

m 150

c 800

!n
k

m

!
c

.2 .m k

!d .!n 1 "
2

! atan

."d x0

v0 ..# "n x0

x t ..A sin .!n t " e
..# !n t

0 0.5 1 1.5 2 2.5 3

0.002

0.002

x t

t



 

1.50 Derive the equation of motion of the system in Figure P1.50 and discuss the effect 

of gravity on the natural frequency and the damping ratio. 

 

Solution: This requires two free body diagrams.   One for the dynamic case and 

one to show static equilibrium. 

!x

mg         x(t)            mg         y(t)

ky      cdy /dt                       k!x

 

    (a)   (b) 

From the free-body diagram of static equilibrium (b) we have that mg = kΔx, 

where Δx represents the static deflection.  From the free-body diagram of the 

dynamic case given in (a) the equation of motion is: 

m˙ ̇ y ( t) + c˙ y (t) + ky(t) ! mg = 0  

From the diagram, y(t) = x(t) + Δx.  Since Δx is a constant, differentiating and 

substitution into the equation of motion yields: 

  

˙ y (t) = ˙ x (t)  and  ˙ ̇ y ( t) = ˙ ̇ x ( t)!

m˙ ̇ x (t) + c ˙ x ( t) + kx(t) + (k"x # mg)

= 0

! " # $ # 
= 0  

where the last term is zero from the relation resulting from static equilibrium.  

Dividing by the mass yields the standard form 

˙ ̇ x (t) + 2!"n
˙ x (t) +"n

2
x(t ) = 0 

It is clear that gravity has no effect on the damping ratio ζ or the natural 

frequency ωn.  Not that the damping force is not present in the static case because 

the velocity is zero. 

 

  



 

1.51 Derive the equation of motion of the system in Figure P1.46 and discuss the effect 

of gravity on the natural frequency and the damping ratio.  You may have to make 

some approximations of the cosine.  Assume the bearings provide a viscous 

damping force only in the vertical direction. (From the A. Diaz-Jimenez, South 

African Mechanical Engineer, Vol. 26, pp. 65-69, 1976) 

 

 Solution: First consider a free-body diagram of the system: 

 x(t)

c ˙ x (t)
  k!!

 

Let α be the angel between the damping and stiffness force.  The equation of 

motion becomes 

  
m˙ ̇ x (t) = !c˙ x (t) ! k("! +# s )cos$  

From static equilibrium, the free-body diagram (above with c = 0 and stiffness 

force kδs) yields: Fx = 0 = mg ! k" s cos#$ .  Thus the equation of motion 

becomes 

  m˙ ̇ x + c ˙ x + k!!cos" = 0     (1) 

Next consider the geometry of the dynamic state: 



   h

   x        !

  

    !

"

  ! +# !

 

From the definition of cosine applied to the two different triangles: 

  

cos! =
h

!
   and  cos" =

h + x

! + #!
   

Next assume small deflections so that the angles are nearly the same cos α = cos 

θ, so that 

  

h

!
!

h + x

!+ "!
# "! ! x

!

h
# "! !

x

cos$
 

For small motion, then this last expression can be substituted into the equation of 

motion (1) above to yield: 

m˙ ̇ x + c ˙ x + kx = 0 , α and x small 

Thus the frequency and damping ratio have the standard values and are not 

effected by gravity.  If the small angle assumption is not made, the frequency can 

be approximated as 

 

!n =
k

m
cos

2" +
g

h
sin

2 " ,    # =
c

2m! n

 

as detailed in the reference above.  For a small angle these reduce to the normal 

values of 

!n =
k

m
,    and  " =

c

2m! n

 

as derived here. 

 

 

 



Problems and Solutions Section 1.4 (problems 1.52 through 1.65) 

1.52 Calculate the frequency of the compound pendulum of Figure 1.20(b) if a mass mT 

is added to the tip, by using the energy method. 

 Solution Using the notation and coordinates of Figure 1.20 and adding a tip mass 

the diagram becomes: 

 

 If the mass of the pendulum bar is m, and it is lumped at the center of mass the 

energies become: 

 Potential Energy:               

 

U =
1

2
(! ! !cos")mg + (! ! !cos")mtg

   =
!

2
(1! cos")(mg + 2mtg)

 

 Kinetic Energy:             

  

T =
1

2
J ˙ ! 

2
+

1

2
Jt

˙ ! 
2

=
1

2

m!2

3

˙ ! 
2

+
1

2
mt!

2 ˙ ! 
2

   = (
1

6
m +

1

2
mt )!

2 ˙ ! 
2

 

 Conservation of energy (Equation 1.52) requires T + U = constant: 

  

!

2
(1! cos")(mg + 2mtg) + (

1

6
m +

1

2
mt )!

2 ˙ " 
2

= C  

 Differentiating with respect to time yields:  

 

!

2
(sin!)(mg + 2mtg) "! + (

1

3
m + mt )!

2 "! ""! = 0

      " (
1

3
m + mt )!

""! +
1

2
(mg + 2mtg)sin! = 0

 

 Rearranging and approximating using the small angle formula sin θ ~ θ, yields: 

 θ          mt 



 

!!!(t) +

m

2
+ mt

1

3
m + mt

g

"

"

#

$
$
$

%

&

'
'
'
!(t) = 0 ()n =

3m + 6mt

2m + 6mt

g

"
 rad/s  

 Note that this solution makes sense because if mt = 0 it reduces to the frequency of 

the pendulum equation for a bar, and if m = 0 it reduces to the frequency of a 

massless pendulum with only a tip mass.   

 

1.53 Calculate the total energy in a damped system with frequency 2 rad/s and 

damping ratio ζ = 0.01 with mass 10 kg for the case x0 = 0.1 and v0 = 0.  Plot the 

total energy versus time. 

 Solution: Given:  ωn = 2 rad/s, ζ = 0.01, m = 10 kg, x0 = 0.1 mm, v0 = 0. 

 Calculate the stiffness and damped natural frequency: 

 

k = m! n

2
=10(2)

2
= 40 N/m

!d = !n 1"# 2
= 2 1 "0.01

2
= 2 rad/s

 

 The total energy of the damped system is 

E(t ) =
1

2
m ˙ x 

2
(t) +

1

2
kx(t)  

 where 
x(t) = Ae!0.02 t

sin(2t +" )

˙ x (t) = !0.02Ae!0.02 t
sin(2t + ") + 2Ae!0.02t

cos(2t + ")
 

 Applying the initial conditions to evaluate the constants of integration yields: 

x(0) = 0.1 = Asin!

˙ x (0) = 0 = "0.02Asin! + 2A cos!

#! = 1.56 rad/s,   A = 0.1  m

 

 Substitution of these values into E(t) yields: 





 

1.54 Use the energy method to calculate the equation of motion and natural frequency 

of an airplane's steering mechanism for the nose wheel of its landing gear.  The 

mechanism is modeled as the single-degree-of-freedom system illustrated in 

Figure P1.54. 

   

 The steering wheel and tire assembly are modeled as being fixed at ground for 

this calculation.  The steering rod gear system is modeled as a linear spring and 

mass system (m, k2) oscillating in the x direction.  The shaft-gear mechanism is 

modeled as the disk of inertia J and torsional stiffness k2.  The gear J turns 

through the angle θ such that the disk does not slip on the mass.  Obtain an 

equation in the linear motion x. 

 Solution: From kinematics: x = r! ," ˙ x = r ˙ !  

 Kinetic energy: 
22

2

1

2

1
xmJT !! += !  

 Potential energy: 
2

1

2

2

2

1

2

1 !kxkU +=  

 Substitute 
r

x
=! :

2

2

12

2

22

2
2

1

2

1

2

1

2

1
x

r

k
xkxmx

r

J
UT +++=+ !!  

 Derivative: 
( )

0=
+

dt

UTd
 

  

J

r
2

˙ ̇ x ̇  x + m˙ ̇ x ̇  x + k
2
x˙ x +

k
1

r
2

x˙ x = 0

J

r
2

+ m
! 

" 

# 

$ 
˙ ̇ x + k

2
+

k
1

r
2

! 

" 

# 

$ 
x

% 

& ' 

( 

) * 
˙ x = 0

 

 Equation of motion: 
J

r
2

+ m
! 

" 

# 

$ 
˙ ̇ x + k

2
+

k
1

r
2

! 

" 

# 

$ 
x = 0  

 Natural frequency: 

  

!
n

=

k
2

+
k

1

r
2

J

r
2

+ m

=
k

1
+ r

2
k

2

J + mr
2

 



1.55  A control pedal of an aircraft can be modeled as the single-degree-of-freedom 

system of Figure P1.55.  Consider the lever as a massless shaft and the pedal as a 

lumped mass at the end of the shaft.  Use the energy method to determine the 

equation of motion in θ and calculate the natural frequency of the system.  Assume 

the spring to be unstretched at θ = 0. 

 

  Figure P1.55 

Solution: In the figure let the mass at θ = 0 be the lowest point for potential energy.  

Then, the height of the mass m is (1-cosθ)2.  

 Kinematic relation:  x = 1θ 

 Kinetic Energy: 

  

T =
1

2
m ˙ x 

2
=

1

2
m!

2

2 ˙ ! 
2
 

 Potential Energy: 

  

U =
1

2
k(!

1
!)

2
+ mg!

2
(1 " cos! ) 

 Taking the derivative of the total energy yields: 

  

d

dt
(T + U ) = m!

2

2 ˙ ! ˙ ̇ ! + k(!
1

2
!) ˙ ! + mg!

2
(sin! ) ˙ ! = 0 

 Rearranging, dividing by dθ/dt and approximating sinθ with θ yields: 

  

m!
2

2˙ ̇ ! + (k!
1

2
+ mg!

2
)! = 0

               "# n =
k!

1

2
+ mg!

2

m!
2

2

 

 



1.56 To save space, two large pipes are shipped one stacked inside the other as 

indicated in Figure P1.56.  Calculate the natural frequency of vibration of the 

smaller pipe (of radius R1) rolling back and forth inside the larger pipe (of radius 

R).  Use the energy method and assume that the inside pipe rolls without slipping 

and has a mass m. 

 

Solution: Let θ be the angle that the line between the centers of the large pipe and 

the small pipe make with the vertical and let α be the angle that the small pipe 

rotates through.  Let R be the radius of the large pipe and R1 the radius of the 

smaller pipe. Then the kinetic energy of the system is the translational plus 

rotational of the small pipe.  The potential energy is that of the rise in height of 

the center of mass of the small pipe. 

R        !  

R – R1

y

R
1

x

 

From the drawing:  

y + (R! R
1
)cos" + R

1
= R

     # y = (R ! R
1
)(1! cos")

               # ˙ y = (R ! R
1
)sin(") ˙ " 

 

Likewise examination of the value of x yields: 

x = (R ! R
1
)sin"

       # ˙ x = (R! R
1
)cos" ˙ " 

 

Let β denote the angle of rotation that the small pipe experiences as viewed in the 

inertial frame of reference (taken to be the truck bed in this case).  Then the total 



kinetic energy can be written as: 

T = Ttrans + Trot =
1

2
m ˙ x 2 +

1

2
m ˙ y 2 +

1

2
I

0

˙ ! 
2

     =
1

2
m(R" R

1
)

2
(sin

2
# + cos

2
#) ˙ # 

2
+

1

2
I

0

˙ ! 
2

                           $ T =
1

2
m(R " R

1
)

2 ˙ # 
2

+
1

2
I

0

˙ ! 
2

 

The total potential energy becomes just: 

V = mgy = mg(R! R
1
)(1! cos")  

Now it remains to evaluate the angel β.   Let α be the angle that the small pipe 

rotates in the frame of the big pipe as it rolls (say) up the inside of the larger pipe.  

Then 

β = θ – α 

were α is the angle “rolled” out as the small pipe rolls from a to b  in figure 

P1.56. The rolling with out slipping condition implies that arc length a’b must 

equal arc length ab.  Using the arc length relation this yields that  Rθ =R1α.  

Substitution of the expression β = θ – α yields: 

 

R! = R
1
(! " # ) = R

1
! " R

1
# $ (R " R

1
)! = "R

1
#

    $ # =
1

R
1

(R
1
" R)!  and   ˙ # =

1

R
1

(R
1
" R) ˙ ! 

 

which is the relationship between angular motion of the small pipe relative to the 

ground (β) and the position of the pipe (θ). Substitution of this last expression into 

the kinetic energy term yields: 

T =
1

2
m(R! R

1
)

2 ˙ " 
2

+
1

2
I

0
(

1

R
1

(R
1
! R) ˙ " )

2

            #  T = m(R! R
1
)

2 ˙ " 
2

 

 

Taking the derivative of T + V  yields 

d

d!
T + V( ) = 2m(R" R

1
)

2 ˙ ! ˙ ̇ ! + mg(R" R
1
)sin! ˙ ! = 0

         # 2m(R " R
1
)

2 ˙ ̇ ! + mg(R " R
1
)sin! = 0

 

Using the small angle approximation for sine this becomes 

2m(R ! R
1
)

2 ˙ ̇ " + mg(R ! R
1
)" = 0

         # ˙ ̇ " +
g

2(R ! R
1
)
" = 0

                   #$ n =
g

2(R ! R
1
)

 

 

   



1.57 Consider the example of a simple pendulum given in Example 1.4.2.  The 

pendulum motion is observed to decay with a damping ratio of ζ = 0.001.  

Determine a damping coefficient and add a viscous damping term to the 

pendulum equation. 

 

 Solution: From example 1.4.2, the equation of motion for a simple pendulum is 

  0=+ !!
!

""
g

 

 So 

  

!n =
g

!
.  With viscous damping the equation of motion in normalized form 

becomes: 

  

˙ ̇ ! + 2"#n
˙ ! +#n

2! = 0  or with " as given :

                     $ ˙ ̇ ! + 2 .001( )# n
˙ ! + #n

2! = 0

 

 The coefficient of the velocity term is 

  

  

c

J
=

c

m!
2

= .002( )
g

!

c = 0.002( )m g!
3

 



1.58 Determine a damping coefficient for the disk-rod system of Example 1.4.3.  

Assuming that the damping is due to the material properties of the rod, determine 

c for the rod if it is observed to have a damping ratio of ζ = 0.01. 

 Solution: The equation of motion for a disc/rod in torsional vibration is 

  0=+ !! kJ !!  

 or ˙ ̇ ! + "n

2
! = 0 where "n =

k

J
 

 Add viscous damping: 

  

˙ ̇ ! + 2"#n
˙ ! +#n

2! = 0

˙ ̇ ! + 2 .01( )
k

J
˙ ! + #n

2! = 0

 

 From the velocity term, the damping coefficient must be 

  

  

c

J
= 0.02( )

k

J

   ! c = 0.02 kJ

 

 

1.59 The rod and disk of Window 1.1 are in torsional vibration.  Calculate the damped 

natural frequency if J = 1000 m
2
 ⋅  kg, c = 20 N⋅  m⋅ s/rad, and k = 400 N⋅m/rad. 

 Solution: From Problem 1.57, the equation of motion is 

  0=++ !!! kcJ !!!  

 The damped natural frequency is 

  !d = !n 1 "# 2
 

 where !n =
k

J
=

400

1000
= 0.632 rad/s  

 and ! =
c

2 kJ
=

20

2 400 "1000
= 0.0158 

 Thus the damped natural frequency is   !d = 0.632 rad/s  



1.60 Consider the system of P1.60, which represents a simple model of an aircraft 

landing system.  Assume, x = rθ.  What is the damped natural frequency? 

 

 Solution:  From Example 1.4.1, the undamped equation of motion is 

  m +
J

r
2

! 

" 

# 

$ 
˙ ̇ x + kx = 0 

 From examining the equation of motion the natural frequency is: 

!n =
k

meq

=
k

m +
J

r
2

 

 An add hoc way do to this is to add the damping force to get the damped equation 

of motion: 

  m +
J

r
2

! 

" 

# 

$ 
˙ ̇ x + c˙ x + kx = 0  

 The value of ζ is determined by examining the velocity term: 

c

m +
J

r
2

= 2!"n #! =
c

m +
J

r
2

1

2
k

m +
J

r
2

                #! =
c

2 k m +
J

r
2

$
%&

'
()

 

 Thus the damped natural frequency is 



!d = !n 1"# 2
=

k

m +
J

r
2

1"
c

2 k m +
J

r
2

$
%&

'
()

$

%

&
&
&
&

'

(

)
)
)
)

2

                       *!d =
k

m +
J

r
2

"
c

2

4 m +
J

r
2

$
%&

'
()

2
=

r

2(mr
2

+ J )
4(kmr

2
+ kJ ) " c

2
r

2

 

 

    

 

1.61 Consider Problem 1.60 with k = 400,000 N⋅m, m = 1500 kg, J = 100 m
2⋅kg, r = 25 

cm, and c = 8000 N⋅m⋅s.  Calculate the damping ratio and the damped natural 

frequency.  How much effect does the rotational inertia have on the undamped 

natural frequency? 

 Solution: From problem 1.60: 

  ! =
c

2 k m +
J

r 2

" 

# 

$ 

% 

 and &d =
k

m +
J

r
2

'
c2

4 m +
J

r 2

" 

# 

$ 

% 

2  

 Given: 

  

k = 4 ! 10
5
 Nm/rad

m = 1.5 !10
3
 kg

J = 100 m
2
kg

r = 0.25 m and

c = 8 !10
3
 N "m " s/rad

 

 Inserting the given values yields 

  ! = 0.114 and "d = 11.16 rad/s 

 For the undamped natural frequency, !n =
k

m + J / r
2

 

 With the rotational inertia, !n = 36.886 rad/s  

 Without rotational inertia, !n = 51.64 rad/s 



 The effect of the rotational inertia is that it lowers the natural frequency by almost 

33%. 

 

1.62 Use Lagrange’s formulation to calculate the equation of motion and the natural 

frequency of the system of Figure P1.62.  Model each of the brackets as a spring 

of stiffness k, and assume the inertia of the pulleys is negligible. 

                         

                                                 Figure P1.62 

 

Solution: Let x denote the distance mass m moves, then each spring will deflects 

a distance x/4.  Thus the potential energy of the springs is  

  

U = 2 !
1

2
k

x

4

"
#$

%
&'

2

=
k

16
x

2
 

The kinetic energy of the mass is  

   
T =

1

2
m!x

2
 

Using the Lagrange formulation in the form of Equation (1.64): 

   

d

dt

!
!!x

1

2
m!x

2
"
#$

%
&'

"

#$
%

&'
+

!
!x

kx
2

16

"

#$
%

&'
= 0 (

d

dt
m!x( ) +

k

8
x = 0

                                 ( m!!x +
k

8
x = 0 ()

n
=

1

2

k

2m
 rad/s

 

 

1.63 Use Lagrange’s formulation to calculate the equation of motion and the natural 

frequency of the system of Figure P1.63.  This figure represents a simplified 

model of a jet engine mounted to a wing through a mechanism which acts as a 

spring of stiffness k and mass ms. Assume the engine has inertial J and mass m 

and that the rotation of the engine is related to the vertical displacement of the 

engine, x(t) by the “radius” r0 (i.e. 
  
x = r

0
! ). 

 

 



 

Figure P1.63 

 Solution: This combines Examples 1.4.1 and 1.4.4.  The kinetic energy is  

   

T =
1

2
m!x

2
+

1

2
J !! 2

+ T
spring

=
1

2
m +

J

r
0

2

"

#
$

%

&
' !x

2
+ T

spring
 

The kinetic energy in the spring (see example 1.4.4) is 

   
T

spring
=

1

2

m
s

3
!x

2
 

Thus the total kinetic energy is  

   

T =
1

2
m +

J

r
0

2
+

m
s

3

!

"
#

$

%
& !x

2
 

The potential energy is just  

  
U =

1

2
kx

2
 

Using the Lagrange formulation of Equation (1.64) the equation of motion results 

from: 

   

d

dt

!
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2
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 rad/s

 

 

1.64 Lagrange’s formulation can also be used for non-conservative systems by adding 

the applied non-conservative term to the right side of equation (1.64) to get  

   

d

dt

!T

! !q
i

"

#$
%

&'
(
!T

!q
i

+
!U

!q
i

+
!R

i

! !q
i

= 0  



Here Ri is the Rayleigh dissipation function defined in the case of a viscous 

damper attached to ground by 

   
R

i
=

1

2
c !q

i

2
 

Use this extended Lagrange formulation to derive the equation of motion of the 

damped automobile suspension of Figure P1.64 

 

 

Figure P1.64 

 

 Solution: The kinetic energy is (see Example 1.4.1): 

   
T =

1

2
(m +

J

r
2
) !x

2
 

 The potential energy is: 

  
U =

1

2
kx

2
 

 The Rayleigh dissipation function is 

   
R =

1

2
c !x

2
 

 The Lagrange formulation with damping becomes 

   

d
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2
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= 0

                                         ) (m +
J

r
2
)!!x + c !x + kx = 0

 



1.65 Consider the disk of Figure P1.65 connected to two springs.  Use the energy 

method to calculate the system's natural frequency of oscillation for small angles 

θ(t). 

 

 Solution: 

 Known:  x = r! , ˙ x = r ˙ !  and 
2

2

1
mrJ

o
=  

 Kinetic energy: 

  

Trot =
1

2
Jo

˙ ! 
2

=
1

2

mr
2

2

" 

# 

$ % 

& 
!2

=
1

4
mr2 ˙ ! 

2

Ttrans =
1

2
m ˙ x 

2
=

1

2
mr

2 ˙ ! 
2

T = Trot + Ttrans =
1

4
mr

2 ˙ ! 
2

+
1

2
mr

2 ˙ ! 
2

=
3

4
mr

2 ˙ ! 
2

 

 Potential energy: U = 2
1

2
k a + r( )![ ]

2" 

# 

$ 

% 
= k a + r( )

2!2
 

 Conservation of energy: 

  

T + U =  Constant

d

dt
T + U( ) = 0

d

dt

3

4
mr

2 ˙ ! 
2

+ k a + r( )
2! 2" 

# 

$ 

% 
= 0

3

4
mr2

2 ˙ ! ˙ ̇ ! ( ) + k a + r( )
2

2 ˙ ! !( ) = 0

3

2
mr2˙ ̇ ! + 2k a + r( )

2! = 0

 

 Natural frequency: 

  

!n =
keff

meff

=
2k a + r( )

2

3

2
mr

2

!n = 2
a + r

r

k

3m
 rad/s

 

 

 



Problems and Solutions Section 1.5 (1.66 through 1.74)  

 

1.66 A helicopter landing gear consists of a metal framework rather than the coil 

spring based suspension system used in a fixed-wing aircraft.  The vibration of the 

frame in the vertical direction can be modeled by a spring made of a slender bar 

as illustrated in Figure 1.21, where the helicopter is modeled as ground.  Here l = 

0.4 m, E = 20 × 10
10

 N/m
2
, and m = 100 kg.  Calculate the cross-sectional area that 

should be used if the natural frequency is to be fn = 500 Hz. 

 Solution:  From Figure 1.21 

  !n =
k

m
=

EA

lm
 (1) 

 and 

  !n = 500 Hz
2" rad

1 cycle

# 

$ 

% & 

' 
= 3142 rad/s 

 Solving (1) for A yields: 

A =
!n

2lm

E
=

3142( )
2

.4( ) 100( )

20 "10
10

A = 0.0019 m
2

= 19cm
2

 



1.67 The frequency of oscillation of a person on a diving board can be modeled as the 

transverse vibration of a beam as indicated in Figure 1.24.  Let m be the mass of 

the diver (m = 100 kg) and l = 1 m.  If the diver wishes to oscillate at 3 Hz, what 

value of EI should the diving board material have? 

  

 Solution: From Figure 1.24, 

  !n

2
=

3EI

ml
3

 

 and 

  !n = 3Hz
2" rad

1 cycle

# 

$ 

% & 

' 
= 6" rad/s 

 Solving for EI 

  

  
EI =

!
n

2
ml

3

3
=

6"( )
2

100( ) 1( )
3

3
= 11843.5 Nm

2
 

 

 

1.68 Consider the spring system of Figure 1.29.  Let k1 = k5 = k2 =100 N/m, k3 = 50 

N/m, and k4 = 1 N/m.  What is the equivalent stiffness? 

  

 Solution: Given: k
1

= k
2

= k
5

= 100 N/m,k
3

= 50 N/m,  k
4

= 1 N/m  

 From Example 1.5.4 

  

keq = k
1
+ k

2
+ k

5
+

k
3
k

4

k
3

+ k
4

                        ! keq = 300.98 N/m

 



1.69 Springs are available in stiffness values of 10, 100, and 1000 N/m.  Design a 

spring system using these values only, so that a 100-kg mass is connected to 

ground with frequency of about 1.5 rad/s. 

  

 Solution: Using the definition of natural frequency: 

  !n =
keq

m
 

 With m = 100 kg and ωn = 1.5 rad/s the equivalent stiffness must be: 

 keq = m!n

2
= 100( ) 1.5( )

2

= 225 N/m   

There are many configurations of the springs given and no clear way to determine 

one configuration over another.  Here is one possible solution.  Choose two 100 

N/m springs in parallel to get 200 N/m, then use four 100 N/m springs in series to 

get an equivalent spring of 25 N/m to put in parallel with the other 3 springs since 

keq =
1

1

k
1

+
1

k
2

+
1

k
3

+
1

k
4

=
1

4 100
= 25  

Thus using six 100 N/m springs in the following arrangement will produce an 

equivalent stiffness of 225 N/m 

 

 

 

 

1 

 

2 

 

3 

 

4 

5 6 



1.70 Calculate the natural frequency of the system in Figure 1.29(a) if k1 = k2 = 0.  

Choose m and nonzero values of k3, k4, and k5 so that the natural frequency is 100 

Hz. 

  

 Solution: Given:  k
1

= k
2

= 0 and ! n = 2" 100( ) = 628.3 rad/s  

 From Figure 1.29, the natural frequency is 

  !n =
k

5
k

3
+ k

5
k

4
+ k

3
k

4

m k
3

+ k
4( )

and keq = k
5

+
k

3
k

4

k
3

+ k
4

" 

# 

$ 
% 

& 

'  

 Equating the given value of frequency to the analytical value yields: 

  !n

2
= 628.3( )

2

=
k

5
k

3
+ k

5
k

4
+ k

3
k

4

m k
3

+ k
4( )

 

 Any values of k3, k4, k5, and m that satisfy the above equation will do.  Again, the 

answer is not unique.  One solution is 

  kg 127.0 and N/m, 000,50 N/m, 1,N/m 1
543

==== mkkk  

1.71* Example 1.4.4 examines the effect of the mass of a spring on the natural 

frequency of a simple spring-mass system.  Use the relationship derived there and 

plot the natural frequency versus the percent that the spring mass is of the 

oscillating mass.  Use your plot to comment on circumstances when it is no longer 

reasonable to neglect the mass of the spring. 

Solution: The solution here depends on the value of the stiffness and mass ratio 

and hence the frequency.  Almost any logical discussion is acceptable as long as 

the solution indicates that for smaller values of ms, the approximation produces a 

reasonable frequency.  Here is one possible answer.  For 



 

From this plot, for these values of m and k it looks like a 10 % spring mass 
causes less then a 1 % error in the frequency. 

 

 

  



1.72    Calculate the natural frequency and damping ratio for the system in Figure P1.72 

given the values m = 10 kg, c = 100 kg/s, k1 = 4000 N/m, k2 = 200 N/m and k3 = 

1000 N/m.  Assume that no friction acts on the rollers.  Is the system overdamped, 

critically damped or underdamped? 

 

     Figure P1.72 

 Solution: Following the procedure of Example 1.5.4, the equivalent spring 

constant is:   

� 

keq = k
1

+
k

2
k

3

k
2

+ k
3

= 4000 +
(200)(1000)

1200
= 4167 N/m 

Then using the standard formulas for frequency and damping ratio: 

� 

!n =
keq

m
=

4167

10
= 20.412 rad/s

" =
c

2m!n

=
100

2(10)(20.412)
= 0.245

 

Thus the system is underdamped. 

 

1.73   Repeat Problem 1.72 for the system of Figure P1.73. 

 

Figure P1.73 

Solution: Again using the procedure of Example 1.5.4, the equivalent spring 

constant is:   

keq = k
1

+ k
2

+ k
3

+
k

4
k

5

k
4

+ k
5

= (10 +1 + 4 +
2 !3

2 +3
)kN/m = 16.2 kN/m  

Then using the standard formulas for frequency and damping ratio: 



!n =
keq

m
=

16.2 "10
3

10
= 40.25 rad/s

# =
c

2m!n

=
1

2(10)(40.25)
= 0.00158

 

Thus the system is underdamped. 

 

1.74 A manufacturer makes a cantilevered leaf spring from steel (E = 2 x 10
11

 N/m
2
) 

and sizes the spring so that the device has a specific frequency.  Later, to save weight, the 

spring is made of aluminum (E = 7.1 x 10
10

 N/m
2
).  Assuming that the mass of the spring 

is much smaller than that of the device the spring is attached to, determine if the 

frequency increases or decreases and by how much. 

 Solution:  Use equation (1.68) to write the expression for the frequency twice:  

  

!
al

=
3E

al

m!
3

   and !
steel

=
3E

steel

m!
3

 rad/s  

 Dividing yields: 

  

!
al

!
steel

=

3E
al

m!3

3E
steel

m!3

=
7.1 "10

10

2 "10
11

= 0.596 

 Thus the frequency is decreased by about 40% by using aluminum.  

 

 



Problems and Solutions Section 1.6 (1.75 through 1.81)  

 

 

1.75 Show that the logarithmic decrement is equal to 

  ! =
1

n
ln

x
0

xn

 

 where xn  is the amplitude of vibration after n cycles have elapsed. 

 Solution: 

  

  

ln
x t( )

x t + nT( )

!

"
#
#

$

%
&
&

= ln
Ae

'()
n
t
sin )

d
t + *( )

Ae
'()

n
t + nt( )

sin )
d
t +)

d
nT + *( )

!

"

#
#

$

%

&
&

 (1) 

 Since n!d T = n 2"( ),   sin !d t + n!d T +#( ) = sin !d t + #( )  

 Hence, Eq. (1) becomes 

  

  

ln
Ae

!"#
n
t
sin #

d
t + $( )

Ae
!"#

n
t + nT( )

e
!"#

n
nt

sin #
d
t +#

d
nt + $( )

%

&

'
'

(

)

*
*

= ln e
"#

n
nT

( ) = n"#
n
T  

 Since 

  

ln
x t( )

x t + T( )

!

"
#
#

$

%
&
&

= '(
n
T = ) ,  

 Then 

  

ln
x t( )

x t + nT( )

!

"

#
#

$

%

&
&

= n'  

 Therefore, 

  ! =
1

n
ln

xo

xn

" original amplitude

" amplitude n cycles later
 

 Here x0 = x(0). 

 



1.76 Derive the equation (1.70) for the trifalar suspension system. 

 Solution: Using the notation given for Figure 1.29, and the following geometry: 

  

 

r

!

r !
"

l

r !

l h

 

 Write the kinetic and potential energy to obtain the frequency:  

 Kinetic energy: T
max

=
1

2
Io

˙ ! 
2

+
1

2
I ˙ ! 

2
 

 From geometry, !rx =  and ˙ x = r ˙ !  

  T
max

=
1

2
Io + I( )

˙ x 2

r
2

 

 Potential Energy: 

  U
max

= mo + m( )g l ! l cos"( )  

 Two term Taylor Series Expansion of cos φ! 1"
#2

2
:  

  U
max

= mo + m( )gl
!2

2

" 

# 

$ % 

& 
 

 For geometry, sin 
l

r!
" = , and for small φ, sin φ = φ so that φ

l

r!
=  

  

U
max

= mo + m( )gl
r

2!2

2l2

" 

# 

$ % 

& 

U
max

= mo + m( )g
r 2! 2

2l

" 

# 

$ % 

& 
 where r! = x

U
max

=
mo + m( )g

2l
x

2

 

 Conservation of energy requires that: 



  

T
max

= U
max

    !

1

2

Io + I( )

r 2
˙ x 2 =

mo + m( )g

2l
x2

 

 At maximum energy, x = A and ˙ x = !nA  

  

1

2

Io + I( )

r 2
!n

2
A

2
=

mo + m( )g

2l
A

2

             " Io + I( ) =
gr 2 mo + m( )

!n

2
l

 

 Substitute !n = 2"fn =
2"

T
 

  

Io + I( ) =
gr

2
mo + m( )

2! /T( )
2
l

I =
gT

2
r

2
mo + m( )

4!
2l

" Io

 

 were T is the period of oscillation of the suspension. 



1.77 A prototype composite material is formed and hence has unknown modulus.  An 

experiment is performed consisting of forming it into a cantilevered beam of 

length 1 m and I = 10
-9
 m

4
 with a 6-kg mass attached at its end.  The system is 

given an initial displacement and found to oscillate with a period of 0.5 s.  

Calculate the modulus E. 

 

 Solution:  Using equation (1.66) for a cantilevered beam, 

  T =
2!

"n

= 2!
ml3

3EI
 

 Solving for E and substituting the given values yields 

  

E =
4!

2ml3

3T
2
I

=
4!

2
6( ) 1( )

3

3 .5( )
2

10
"9

( )

                    # E = 3.16 $10
11

 N/m
2

 



1.78 The free response of a 1000-kg automobile with stiffness of k = 400,000 N/m is 

observed to be of the form given in Figure 1.32.  Modeling the automobile as a 

single-degree-of-freedom oscillation in the vertical direction, determine the 

damping coefficient if the displacement at t1 is measured to be 2 cm and 0.22 cm 

at t2. 

 Solution:  Given:  x1 = 2 cm and x2 = 0.22 cm where t2 = T + t1 

 Logarithmic Decrement:! = ln
x

1

x
2

= ln
2

0.22
= 2.207  

 Damping Ratio:

( )
331.0

207.24

207.2

4
2222

=

+

=

+

=

!"!

"
#  

 Damping Coefficient:  ( ) ( )( ) kg/s 256,131000000,400331.022 === kmc !  

 

 

 

 

1.79 A pendulum decays from 10 cm to 1 cm over one period.  Determine its damping 

ratio. 

 Solution: Using Figure 1.31: x
1

= 10 cm and x
2

= 1 cm  

 Logarithmic Decrement: 303.2
1

10
lnln

2

1
===

x

x
!  

 Damping Ratio:! =
"

4# 2
+ " 2

=
2.303

4# 2
+ 2.303( )

2
= 0.344  



1.80 The relationship between the log decrement δ and the damping ratio ζ is often 

approximated as δ =2πζ.  For what values of ζ would you consider this a good 

approximation to equation (1.74)? 

 Solution: From equation (1.74), 
2

1

2

!

"!
#

$
=  

 For small ζ, !"# 2=  

 A plot of these two equations is shown: 

 

 

 The lower curve represents the approximation for small ζ, while the upper curve 

is equation (1.74).  The approximation appears to be valid to about ζ = 0.3. 



1.81 A damped system is modeled as illustrated in Figure 1.10.  The mass of the 

system is measured to be 5 kg and its spring constant is measured to be 5000 N/m.  

It is observed that during free vibration the amplitude decays to 0.25 of its initial 

value after five cycles.  Calculate the viscous damping coefficient, c. 

 Solution: 

 Note that for any two consecutive peak amplitudes, 

  
xo

x
1

=
x

1

x
2

=
x

2

x
3

=
x

3

x
4

=
x

4

x
5

= e
!
 by definition 

  !
xo

x
5

=
1

0.25
=

x
0

x
1

"
x

1

x
2

"
x

2

x
3

"
x

3

x
4

"
x

4

x
5

= e
5#

 

 So, 

  ( ) 277.04ln
5

1
==!  

 and 

  044.0

4
22

=

+

=

!"

!
#  

 Solving for c, 

  
( ) ( )

s/m-N 94.13

55000044.022

=

==

c

kmc !
 

 



Problems and Solutions Section 1.7 (1.82 through 1.89)  

 

1.82 Choose a dashpot's viscous damping value such that when placed in parallel with 

the spring of Example 1.7.2 reduces the frequency of oscillation to 9 rad/s. 

 Solution: 

 The frequency of oscillation is !d = !n 1 "# 2
 

 From example 1.7.2:!n = 10 rad/s,  m = 10 kg,   and k =10
3
 N/m  

 So, 9 = 10 1 !" 2
 

  ! 0.9 = 1 "# 2
! (0.9)

2
=1 "# 2

 

    
 
! = 1" 0.9( )

2

= 0.436   

Then  

c = 2m!n" = 2(10)(10)(0.436) = 87.2 kg/s 

 

1.83 For an underdamped system, x0 = 0 and v0 = 10 mm/s.  Determine m, c, and k such 

that the amplitude is less than 1 mm. 

 Solution:  Note there are multiple correct solutions. The expression for the 

amplitude is: 

  

A
2

= x
0

2
+

(vo + !"nxo )
2

" d

2

for xo = 0 # A =
vo

"d

< 0.001 m #"d >
vo

0.001
=

0.01

0.001
= 10

 

 So 

  

!d =
k

m
1"# 2( ) >10

$
k

m
1" # 2

( ) >100,$ k = m
100

1 "# 2

 

 (1)  Choose ! = 0.01"
k

m
> 100.01 

 (2)  Choose m = 1 kg ! k > 100.01   

 (3)  Choose k = 144 N/m >100.01  

  

!"n = 144
rad

s
=12

rad

s

!"d = 11.99
rad

s

! c = 2m#"n = 0.24 
kg

s

 



1.84 Repeat problem 1.83 if the mass is restricted to lie between 10 kg < m < 15 kg. 

 

 Solution: Referring to the above problem, the relationship between m and k is 

k >1.01x10
-4
 m 

 after converting to meters from mm.  Choose m =10 kg and repeat the calculation 

at the end of Problem 1.82 to get ωn (again taking ζ = 0.01).  Then k = 1000 N/m 

and: 

 

  

!"n =
1.0 # 10

3

10

rad

s
=10 

rad

s

!"d = 9.998  
rad

s

! c = 2m$"n = 2.000 
kg

s

 

 



1.85 Use the formula for the torsional stiffness of a shaft from Table 1.1 to design a 1-

m shaft with torsional stiffness of 10
5
 N⋅m/rad. 

 Solution: Referring to equation (1.64) the torsional stiffness is 

  

  

kt =
GJp

!
 

 Assuming a solid shaft, the value of the shaft polar moment is given by 

  Jp =
!d 4

32
 

 Substituting this last expression into the stiffness yields:  

  

  

kt =
G!d4

32!
 

 Solving for the diameter d yields 

  

d =
kt 32( )!

G!
" 

# 

$ 

% 

1
4

 

Thus we are left with the design variable of the material modulus (G).  Choose 

steel, then solve for d.  For steel G = 8 × 10
10

 N/m
2
.  From the last expression the 

numerical answer is 

  

  

d =

10
5 Nm

rad
32( ) 1m( )

8 !10
10 N

m
2

"
#$

%
&'
(( )

)

*

+
+
+
+

,

-

.

.

.

.

1

4

= 0.0597 m  

   

1.86 Repeat Example 1.7.2 using aluminum.  What difference do you note? 

 Solution: 

 For aluminum G = 25 × 10
9
 N/m

2
 

 From example 1.7.2, the stiffness is k = 10
3
 = 

3

4

64nR

Gd
 and d = .01 m 

 So, 10
3

=
25 !10

9

( ) .01( )
4

64nR
3

 

 Solving for nR3
 yields:  nR3

 = 3.906 × 10
-3
m

3
 

 Choose R = 10 cm = 0.1 m, so that 



  

  

n =
3.906 !10

"3

0.1( )
3

= 4 turns  

 Thus, aluminum requires 1/3 fewer turns than steel.  

 

1.87 Try to design a bar (see Figure 1.21) that has the same stiffness as the spring of 

Example 1.7.2.  Note that the bar must remain at least 10 times as long as it is 

wide in order to be modeled by the formula of Figure 1.21. 

 Solution: 

 From Figure 1.21, 
l

EA
k =  

 For steel, E = 210 ! 10
9
 N/m

2
 

 From Example 1.7.2, k = 10
3
 N/m 

 So, 10
3

=
210 !10

9

( )A

l
 

        l = 2.1 !10
8

( )A 

 If A = 0.0001 m
2
 (1 cm

2
), then 

  l = 2.1 !10
8

( ) 10
"4

( ) = 21,000 m  21km or 13 miles( )  

Not very practical at all. 



1.88 Repeat Problem 1.87 using plastic (E = 1.40 × 10
9
 N/m

2
) and rubber (E = 7 × 10

6
 

N/m
2
).  Are any of these feasible? 

 Solution: 

 From problem 1.53, 
l

EA
k   N/m 10

3
==  

 For plastic, E = 1.40 ! 10
9
 N/m

2
 

 So, m 140=l  

 For rubber, E = 7 !10
6
 N/m

2
 

 So, m 7.0=l  

 Rubber may be feasible, plastic would not.  

 

1.89      Consider the diving board of Figure P1.89. For divers, a certain level of static       

deflection is desirable, denoted by Δ.  Compute a design formula for the dimensions 

of the board (b, h and ! ) in terms of the static deflection, the average diver’s mass, m, 

and the modulus of the board. 

 

Figure P1.89 

Solution: From Figure 1.15 (b),  !k = mg  holds for the static deflection.  The 

period is: 

  

T =
2!

"
n

= 2!
m

k
= 2!

m

mg / #
= 2!

#

g
                            (1) 

 From Figure 1.24, we also have that 

   

T =
2!

"
n

= 2!
m!

3

3EI
                                         (2) 

 Equating (1) and (2) and replacing I with the value from the figure yields: 



   

2!
m!

3

3EI
= 2!

12m!
3

3Ebh
3

= 2!
"

g
#
!

3

bh
3

=
"E

4mg
 

Alternately just use the static deflection expression and the expression for the 

stiffness of the beam from Figure 1.24 to get 

   

!k = mg " !
3EI

!
3

= mg "
!

3

bh
3

=
!E

4mg
 

 



 Problems and Solutions Section 1.8 (1.90 through 1.93)  

 

1.90 Consider the system of Figure 1.90 and (a)  write the equations of motion in terms 

of the angle, θ, the bar makes with the vertical.   Assume linear deflections of the 

springs and linearize the equations of motion.  Then (b) discuss the stability of the 

linear system’s solutions in terms of the physical constants, m, k, and  ! .  Assume 

the mass of the rod acts at the center as indicated in the figure. 

 

 

Figure P1.90 

 Solution:  Note that from the geometry, the springs deflect a distance 

   kx = k(!sin!)  and the cg moves a distance 
  
!

2
cos! .  Thus the total potential 

energy is 

   

   
U = 2 !

1

2
k(!sin")

2
#

mg!

2
cos"  

 and the total kinetic energy is 

   
T =

1

2
J

O
!!

2
=

1

2

m"
2

3

!!
2
 

 The Lagrange equation (1.64) becomes 

   

d

dt

!T

! !"
#
$%

&
'(

+
!U

!"
=

d

dt

m"
2

3

!"
#

$%
&

'(
+ 2k"sin" cos" )

1

2
mg"sin" = 0  

 Using the linear, small angle approximations  sin! " !   and  cos! " 1 yields 

   

a)    
m!

2

3

""! + 2k!
2 "

mg!

2

#
$%

&
'(
! = 0  

 Since the leading coefficient is positive the sign of the coefficient of θ determines 

the stability.  

 b)             

   

if   2k! !
mg

2
> 0 " 4k >

mg

!
"  the system is stable

if   4k = mg "#(t) = at + b"  the system is unstable

if   2k! !
mg

2
< 0 " 4k <

mg

!
"  the system is unstable

 



 Note that physically this results states that the system’s response is stable as long 

as the spring stiffness is large enough to over come the force of gravity. 

 

 

1.91 Consider the inverted pendulum of Figure 1.37 as discussed in Example 1.8.1.  

Assume that a dashpot (of damping rate c) also acts on the pendulum parallel to 

the two springs.  How does this affect the stability properties of the pendulum? 

 Solution: The equation of motion is found from the following FBD: 
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 When θ is small, sinθ ≈ θ and cosθ ≈ 1 
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˙ ! +
kl

2
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! = 0

 

 For stability, 
kl

2
> mg  and c  > 0. 

 The result of adding a dashpot is to make the system asymptotically stable. 



1.92 Replace the massless rod of the inverted pendulum of Figure 1.37 with a solid 

object compound pendulum of Figure 1.20(b).  Calculate the equations of 

vibration and discuss values of the parameter relations for which the system is 

stable. 

 Solution: 
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 When θ is small, sinθ ≈ θ and cosθ ≈ 1. 
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1.93 A simple model of a control tab for an airplane is sketched in Figure P1.93.  The 

equation of motion for the tab about the hinge point is written in terms of the 

angle θ from the centerline to be 

   
J !!! + (c " f

d
) !! + k! = 0 . 

 Here J is the moment of inertia of the tab, k is the rotational stiffness of the hinge, 

c is the rotational damping in the hinge and 
  
f

d
!!   is the negative damping provided 



by the aerodynamic forces (indicated by arrows in the figure).  Discuss the 

stability of the solution in terms of the parameters c and fd . 

 

Figure P1.93 A simple model of an airplane control tab 

Solution: The stability of the system is determined by the coefficient of  
!!  since 

the inertia and stiffness terms are both positive. There are three cases 

Case 1  c - fd > 0  and the system’s solution is of the form 
  
!(t) = e

"at
sin(#

n
t + $)  

and the solution is asymptotically stable. 

Case 2 c - fd < 0  and the system’s solution is of the form 
  
!(t) = e

at
sin("

n
t + #)  

and the solution is oscillates and grows without bound, and exhibits flutter 

instability as illustrated in Figure 1.36. 

Case 3 c = fd   and the system’s solution is of the form 
  
!(t) = Asin("

n
t + #)  and 

the solution is stable as illustrated in Figure 1.34. 

 

 



Problems and Solutions Section 1.9 (1.94 through 1.101)  

 

1.94*  Reproduce Figure 1.38 for the various time steps indicated. 

Solution: The code is given here in Mathcad, which can be run repeatedly with different 

Δt to see the importance of step size.  Matlab and Mathematica can also be used to show 

this. 

 

  



 

1.95*  Use numerical integration to solve the system of Example 1.7.3 with m = 1361 kg, 

k = 2.688 x 10
5
 N/m, c = 3.81 x 10

3
 kg/s subject to the initial conditions x(0) = 0 and v(0) 

= 0.01 mm/s.  Compare your result using numerical integration to just plotting the 

analytical solution (using the appropriate formula from Section 1.3) by plotting both on 

the same graph. 

Solution: The solution is shown here in Mathcad using an Euler integration.  This can 

also been done in the other codes or the Toolbox: 

 



 

 

 

1.96*  Consider again the damped system of Problem 1.95 and design a damper such that 

the oscillation dies out after 2 seconds.  There are at least two ways to do this. Here it is 

intended to solve for the response numerically, following Examples 1.9.2, 1.9.3 or 1.9.4, 

using different values of the damping parameter c until the desired response is achieved. 

Solution: Working directly in Mathcad (or use one of the other codes).  Changing c until 

the response dies out within about 2 sec yields c =6500 kg/s or ζ = 0.17. 

 



1.97*  Consider again the damped system of Example 1.9.2 and design a damper such 

that the oscillation dies out after 25 seconds.  There are at least two ways to do this. Here 

it is intended to solve for the response numerically, following Examples 1.9.2, 1.9.3 or 

1.9.4, using different values of the damping parameter c until the desired response is 

achieved. Is your result overdamped, underdamped or critically damped? 

Solution: The following Mathcad program is used to change c until the desired response 

results. This yields a value of c = 1.1 kg/s or ζ = 0.225, an underdamped solution. 

 



 

1.98*  Repeat Problem 1.96 for the initial conditions x(0) = 0.1 m and v(0) = 0.01 mm/s. 

 

Solution:  Using the code in 1.96 and changing the initial conditions does not change the 

settling time, which is just a function of ζ and ωn.  Hence the value of c = 6.5x10
3
 kg/s (ζ 

= 0.17) as determined in problem 1.96 will still reduce the response within 2 seconds. 

 



1.99*  A spring and damper are attached to a mass of 100 kg in the arrangement given in 

Figure 1.9.  The system is given the initial conditions x(0) = 0.1 m and v(0) = 1 mm/s.  

Design the spring and damper ( i.e. choose k and c) such that the system will come to rest 

in 2 s and not oscillate more than two complete cycles.  Try to keep c as small as 

possible.  Also compute ζ. 

Solution: In performing this numerical search on two parameters, several underdamped 

solutions are possible. Students will note that increasing k will decrease ζ. But increasing 

k also increases the number of cycles which is limited to two.  A solution with c = 350 

kg/s and k =2000 N/m is illustrated. 



1.100* Repeat Example 1.7.1 by using the numerical approach of the previous 5 

problems. 

Solution: The following Mathcad session can be used to solve this problem by varying 

the damping for the fixed parameters given in Example 1.7.1. 

  

The other codes or the toolbox may also be used to do this. 



 

1.101* Repeat Example 1.7.1 for the initial conditions x(0) = 0.01 m and v(0) = 1 mm/s. 

 

Solution: The above Mathcad session can be used to solve this problem by varying the 

damping for the fixed parameters given in Example 1.7.1.  For the given values of initial 

conditions, the solution to Problem 1.100 also works in this case.  Note that if x(0) gets 

too large, this problem will not have a solution.   

 

 



Problems and Solutions Section 1.10 (1.102 through 1.114)  

 

1.102 A 2-kg mass connected to a spring of stiffness 10
3
 N/m has a dry sliding friction 

force (Fc) of 3 N.  As the mass oscillates, its amplitude decreases 20 cm.  How 

long does this take? 

 Solution: With m = 2kg, and k = 1000 N/m the natural frequency is just 

!n =
1000

2
= 22.36 rad/s  

 From equation (1.101): slope =  

  

!2µmg"
n

#k
=
!2F

c
"

n

#k
=
$x

$t
 

 Solving the last equality for Δt yields:  

!t =
"!x#k

2 fc$n

=
"(0.20)(# )(10

3
)

2(3)(22.36)
= 4.68 s  

 

 

1.103 Consider the system of Figure 1.41 with m = 5 kg and k = 9 × 10
3
 N/m with a 

friction force of magnitude 6 N.  If the initial amplitude is 4 cm, determine the 

amplitude one cycle later as well as the damped frequency. 

 Solution: Given m = 5 kg, k = 9 !10
3
 N/m,  fc = 6 N,  x

0
= 0.04 m , the amplitude 

after one cycle is x
1

= x
0
!

4 fc

k
= 0.04 !

(4)(6)

9 "10
3

= 0.0373 m  

 Note that the damped natural frequency is the same as the natural frequency in the 

case of Coulomb damping, hence !n =
k

m
=

9 "10
3

5
= 42.43 rad/s  

 

 



1.104*  Compute and plot the response of the system of Figure P1.104 for the case where 

x0 = 0.1 m, v0 = 0.1 m/s, µκ = 0.05, m = 250 kg, θ = 20° and k =3000 N/m.  How long 

does it take for the vibration to die out? 

 

Figure P1.104 

Solution: Choose the x y coordinate system to be along the incline and perpendicular to 

it.  Let µs denote the static friction coefficient, µk the coefficient of kinetic friction and Δ 

the static deflection of the spring.  A drawing indicating the angles and a free-body 

diagram is given in the figure: 

 

For the static case 

  
F

x! = 0 " k# = µ
s
N + mg sin$ ,  and  F

y! = 0 " N = mg cos$  

For the dynamic case 

   

F
x! = m!!x = "k(x + #) + µ

s
N + mg sin$ " µ

k
N
!x

| !x |
 

Combining these three equations yields 

   

m!!x + µ
k
mg cos!

!x

!x
+ kx = 0  

Note that as the angle θ goes to zero the equation of motion becomes that of a spring 

mass system with Coulomb friction on a flat surface as it should.   

 



mgFs

Fn

Ff

mgFs

Fn

Ff

x 

y 

Answer: The oscillation dies out after about 0.9 s. This is illustrated in the following 

Mathcad code and plot. 

 

 

Alternate Solution (Courtesy of Prof. Chin An Tan of Wayne State University): 

Static Analysis: 

 

In this problem, ( )x t  is defined as the displacement of the mass 

from the equilibrium position of the spring-mass system under 

friction.  Thus, the first issue to address is how to determine this 

equilibrium position, or what is this equilibrium position.  In 

reality, the mass is attached onto an initially unstretched spring on 

the incline.  The free body diagram of the system is as shown.  The 

governing equation of motion is: 

mX k X= !!!
zero initially

sin
f

F mg "! +  

where ( )X t  is defined as the displacement measured from the unstretched position of the 

spring.  Note that since the spring is initially unstretched, the spring force 
s

F kX=  is zero 



initially.  If the coefficient of static friction 
s

µ  is sufficiently large, i.e., tan( )
s

µ !> , then 

the mass remains stationary and the spring is unstretched with the mass-spring-friction in 

equilibrium.  Also, in that case, the friction force cos

N

f s

F

F mgµ !"
!"#"$

, not necessarily equal 

to the maximum static friction.  In other words, these situations may hold at equilibrium: 

(1) the maximum static friction may not be achieved; and (2) there may be no 

displacement in the spring at all.  In this example, tan(20 ) 0.364=
!

 and one would expect 

that 
s

µ  (not given) should be smaller than 0.364 since 0.05
k

µ =  (very small).  Thus, one 

would expect the mass to move downward initially (due to weight overcoming the 

maximum static friction).  The mass will then likely oscillate and eventually settle into an 

equilibrium position with the spring stretched. 

 

 



Dynamic Analysis: 

 

The equation of motion for this system is: 

cos
x

mx kx mg
x

µ != " "
!

!!

!
 

where ( )x t  is the displacement measured from the equilibrium position.  Define 

1
( ) ( )x t x t=  and 

2
( ) ( )x t x t= ! .  Employing the state-space formulation, we transform the 

original second-order ODE into a set of two first-order ODEs.  The state-space equations 

(for MATLAB code) are: 

2

1

2 1

2

2

( )
( )

cos( )

x t
x td d

x kx
gx tdt dt

x m
µ !

" #
" # $ $

= =% & % &' '( ) $ $
( )

x
 

 

MATLAB Code: 

 

x0=[0.1, 0.1]; 
ts=[0, 5]; 
[t,x]=ode45('f1_93',ts,x0); 
plot(t,x(:,1), t,x(:,2)) 
title('problem 1.93'); grid on; 
xlabel('time (s)');ylabel('displacement (m), velocity (m/s)'); 
 
%--------------------------------------------- 
function xdot = f1_93(t,x) 
% computes derivatives for the state-space ODEs 
m=250; k=3000; mu=0.05; g=9.81; 
angle = 20*pi/180; 
xdot(1) = x(2); 
xdot(2) = -k/m*x(1) - mu*g*cos(angle)*sign(x(2)); 
% use the sign function to improve computation time 
xdot = [xdot(1); xdot(2)]; 
 

Plots for 0.05µ =  and 0.02µ =  cases are shown.  From the 0.05µ =  simulation results, 

the oscillation dies out after about 0.96 seconds (using ginput(1) command to 

estimate).  Note that the acceleration may be discontinuous at 0v =  due to the nature of 

the friction force. 

 

Effects of µ: 

 

Comparing the figures, we see that reducing µ leads to more oscillations (takes longer 

time to dissipate the energy).  Note that since there is a positive initial velocity, the mass 

is bounded to move down the incline initially.  However, if µ is sufficiently large, there 

may be no oscillation at all and the mass will just come to a stop (as in the case of 



0.05µ = ).  This is analogous to an overdamped mass-damper-spring system.  On the 

other hand, when µ is very small (say, close to zero), the mass will oscillate for a long 

time before it comes to a stop. 
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x0 = 0.1 m, v 0 = 0.1 m/s

µ = 0.05, m = 250 kg
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 = -0.0261

x(t)
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The mass has no oscillation due
to sufficiently large friction.
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a(t) is discontinuous due to friction
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changes its direction of motion.

x(t)

v(t)

x
s s
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Discussion on the ceasing of motion: 

 

Note that when motion ceases, the mass reaches another state of equilibrium.  In both 

simulation cases, this occurs while the mass is moving upward (negative velocity).  Note 

that the steady-state value of ( )x t  is very small, suggesting that this is indeed the true 

equilibrium position, which represents a balance of the spring force, weight component 

along the incline, and the static friction. 

 

 



 

1.105*  Compute and plot the response of a system with Coulomb damping of equation 

(1.90) for the case where x0 = 0.5 m, v0 = 0, µ = 0.1, m = 100 kg and k =1500 N/m.  How 

long does it take for the vibration to die out? 

Solution: Here the solution is computed in Mathcad using the following code.  Any of 

the codes may be used.  The system dies out in about 3.2 sec. 

 

 



1.106*  A mass moves in a fluid against sliding friction as illustrated in Figure P1.106.  

Model the damping force as a slow fluid (i.e., linear viscous damping) plus Coulomb 

friction because of the sliding, with the following parameters: m = 250 kg, µ =0.01, c = 

25 kg/s and k =3000 N/m .  a) Compute and plot the response to the initial conditions: x0 

= 0.1 m, v0 = 0.1 m/s. b) Compute and plot the response to the initial conditions: x0 = 0.1 

m, v0 = 1 m/s.  How long does it take for the vibration to die out in each case? 

 

Figure P1.106 

Solution: A free-body diagram yields the equation of motion. 

 mg

N

x(t)

fc1

f
c2

 kx(t)

 

 

 

m˙ ̇ x (t) + µmgsgn( ˙ x ) + c ˙ x (t) + kx(t) = 0 

where the vertical sum of forces gives 

the magnitude µN = µmg for the 

Coulomb force as in figure 1.41.

The equation of motion can be solved by using any of the codes mentioned or by using 

the toolbox.  Here a Mathcad session is presented using a fixed order Runge Kutta 

integration.  Note that the oscillations die out after 4.8 seconds for v0=0.1 m/s for the 

larger initial velocity of v0=1 m/s the oscillations go on quite a bit longer ending only 

after about 13 seconds.   While the next problem shows that the viscous damping can be 

changed to reduce the settling time, this example shows how dependent the response is 

on the value of the initial conditions.  In a linear system the settling time, or time it takes 

to die out is only dependent on the system parameters, not the initial conditions.  This 

makes design much more difficult for nonlinear systems. 



 



 

1.107*  Consider the system of Problem 1.106 part (a), and compute a new damping 

coefficient, c, that will cause the vibration to die out after one oscillation. 

Solution: Working in any of the codes, use the simulation from the last problem and 

change the damping coefficient c until the desired response is obtained.  A Mathcad 

solution is given which requires an order of magnitude higher damping coefficient, 

c = 275 kg/s 

 

 

 



 

1.108  Compute the equilibrium positions of ˙ ̇ x +!n

2
x + "x

2
= 0.  How many are there? 

Solution: The equation of motion in state space form is 

˙ x 
1

= x
2

˙ x 
2

= !"n

2x
1
! #x

1

2
 

 The equilibrium points are computed from: 

x
2
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!" n

2 x
1
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1

2
= 0

 

 Solving yields the two equilibrium points: 
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1.109 Compute the equilibrium positions of ˙ ̇ x +!n

2
x " #

2
x

3
+ $x

5
= 0. How many are 

there? 

Solution: The equation of motion in state space form is 

˙ x 
1

= x
2

˙ x 
2

= !"n

2x
1

+ #2x
1

3 ! $x
1

5
 

 The equilibrium points are computed from: 

x
2

= 0

!" n

2 x
1
+ #2 x

1

2 ! $x
1

5
= 0

 

Solving yields the five equilibrium points (one for each root of the previous 

equation). The first equilibrium (the linear case) is: 

x
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 Next divide!" n

2
x
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+ #

2
x

1

2
! $x

1

5
= 0 by x1 to obtain: 

!" n

2
+ #

2
x

1

2
!$x

1

4
= 0  

which is quadratic in x1

2
 and has the following roots which define the remaining 

four equilibrium points: x2  = 0 and 

x
1

= ±
!" 2

+ " 4 ! 4#$n

2

!2#

x
1

= ±
!" 2 ! " 4 ! 4#$n

2

!2#

 

 

 



 

1.110*  Consider the pendulum example 1.10.3 with length of 1 m an initial conditions of 

θ0 =π/10 rad and ˙ ! 
0

= 0.  Compare the difference between the response of the linear 

version of the pendulum equation (i.e. with sin(θ) = θ) and the response of the nonlinear 

version of the pendulum equation by plotting the response of both for four periods. 

 

Solution: First consider the linear solution.  Using the formula’s given in the text 

the solution of the linear system is just:!(t) = 0.314sin(3.132t + "
2
) .  The 

following Mathcad code, plots the linear solution on the same plot as a numerical 

solution of the nonlinear system. 
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Note how the amplitude of the nonlinear system is growing.  The difference 

between the linear and the nonlinear plots are a function of the ration of the linear 

spring stiffness and the nonlinear coefficient, and of course the size of the initial 

condition.  It is work it to investigate the various possibilities, to learn just when 

the linear approximation completely fails. 
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1.111*  Repeat Problem 1.110 if the initial displacement is θ0 = π/2 rad. 

Solution: The solution in Mathcad is: 

 
Here both solutions oscillate around the “stable” equilibrium, but the nonlinear 
solution is not oscillating at the natural frequency and is increasing in amplitude. 

 
 
 
 



1.112 If the pendulum of Example 1.10.3 is given an initial condition near the 

equilibrium position of θ0 = π rad and ˙ ! 
0

= 0, does it oscillate around this 

equilibrium? 

 

 Solution  The pendulum will not oscillate around this equilibrium as it is 

unstable.  Rather it will “wind” around the equilibrium as indicated in the solution 

to Example 1.10.4.   



 

1.113*  Calculate the response of the system of Problem 1.109 for the initial conditions 

of x0 = 0.01 m, v0 = 0, and a natural frequency of 3 rad/s and for β = 100, γ = 0. 

Solution: In Mathcad the solution is given using a simple Euler integration as follows: 

   

β:=100                
 

 

 
 
The other codes may be used to compute this solution as well. 
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This is the linear solution θ(t) 



 

1.114*  Repeat problem 1.113 and plot the response of the linear version of the system (β 

=0) on the same plot to compare the difference between the linear and nonlinear versions 

of this equation of motion. 

Solution: The solution is computed and plotted in the solution of Problem 1.113.  Note 

that the linear solution starts out very close to the nonlinear solution.  The two solutions 

however diverge.  They look similar, but the nonlinear solution is growing in amplitude 

and period. 

 
 

 


