
Multiple-Degree-of-Freedom Systems

1 Governing Equations of a Two-Degree-of-Freedom System

In previous chapters we have only looked at systems with one changing variable x. In reality situations
can hardly ever be expressed by just one variable. To investigate multiple-degree-of-freedom systems, we
will first look at two-degree-of-freedom systems. An example of such a system is shown in figure 1.

Figure 1: An example of a two-degree-of-freedom system.

When drawing the equations of motion for each mass, the general equations of motion can be derived.
These are

m1ẍ1 = −k1x1 + k2 (x2 − x1) , (1.1)
m2ẍ2 = −k2 (x2 − x1) . (1.2)

(We are not considering damping for multiple-degree-of-freedom systems.) When solving this system,
four boundary conditions are necessary. These are x10 , ẋ10 , x20 and ẋ20 .

However, writing things like this is a bit annoying. It’s better to use vectors and matrices. First let’s
define the position vector x, the velocity vector ẋ and the acceleration vector ẍ as

x =

[
x1

x2

]
, ẋ =

[
ẋ1

ẋ2

]
and ẍ =

[
ẍ1

ẍ2

]
. (1.3)

We can also define the mass matrix (also called the inertia matrix) for two-degree-of-freedom cases
as

M =

[
m1 0
0 m2

]
. (1.4)

Finally we also need the stiffness matrix. For our example system, this matrix is

K =

[
k1 + k2 −k2

−k2 k2

]
. (1.5)

Now we can write the system of differential equations as

M ẍ + Kx = 0. (1.6)

Note that both M and K are symmetric matrices (meaning that MT = M and KT = K). M is symmetric
because all non-diagonal terms are simply zero. K is symmetric due to Newton’s third law.

We now want to find the equation of motion x(t) for the system of differential equations. To get it, we
need to solve equation 1.6. There are multiple ways to do this. We’ll discuss two ways.
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2 First Method to find the Equation of Motion

The first method we will be discussing is usually the simplest method for hand calculation. It is therefore
quite suitable for applying on examinations. Computers, however, don’t prefer this method.

Let’s suppose our solution has the form x(t) = ueiωt. Filling this in into the differential equation will
give (

K − ω2M
)
ueiωt = 0. (2.1)

The exponential can’t be zero. Also, if u = 0, we won’t have any motion either. So we need to have ω
such that the matrix

(
K − ω2M

)
is singular (not invertible). In other words, its determinant must be

zero. The characteristic equation then is

det
(
K − ω2M

)
= 0. (2.2)

For our two-degree-of-freedom example system, this results in

m1m2ω
4 − (m1k2 + m2k1 + m2k2)ω2 + k1k2 = 0. (2.3)

From this equation four values of ω will be found, being ±ω1 and ±ω2. These are the natural frequen-
cies of the system. So although a one-degree-of-freedom has only one natural frequency, a two-degree-
of-freedom system has 2 natural frequencies. Multiple-degree-of-freedom systems have even more natural
frequencies.

The corresponding (nonzero) vectors u1 and u2 can now be found using(
K −Mω2

1

)
u1 = 0 and

(
K −Mω2

2

)
u2 = 0. (2.4)

Only the direction of the vectors u can be derived from the above relations. Their magnitudes may be
chosen arbitrarily, although they are often normalized such that ||u|| = 1. The final equation of motion
is then given by

x(t) = A1 sin (ω1t + φ1)u1 + A2 sin (ω2t + φ2)u2. (2.5)

The values of A1, φ1, A2 and φ2 now need to be determined from the initial conditions.

3 Second Method to find the Equation of Motion

There is another way to find the equation of motion. Before we discuss this method, we first have to
make some definitions. We define the matrix square root M1/2 of M such that

M1/2M1/2 = M ⇒ M1/2 =

[√
m1 0
0

√
m2

]
. (3.1)

This matrix also has an inverse
(
M1/2

)−1
= M−1/2. Let’s define the vector q such that

x(t) = M−1/2q(t). (3.2)

Let’s assume q = veiωt, with v a constant vector. We can now rewrite equation 1.6 to

M−1/2KM−1/2v = K̃v = ω2v, (3.3)

where K̃ = M−1/2KM−1/2 is the mass normalized stiffness. If we replace ω2 by λ in the above
equation we have exactly the eigenvalue problem from linear algebra. The solutions for λ are then the
eigenvalues of the matrix K̃ and the corresponding vectors v are the eigenvectors.
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Since K is symmetric, also K̃ is symmetric. All the eigenvalues are therefore real numbers and also the
eigenvectors are real. Once the eigenvalues λ1 and λ2 are known, the natural frequencies ω1 and ω2 can
easily be found using

ω1 =
√

λ1 and ω2 =
√

λ2. (3.4)

To find the corresponding vectors u, you can use

u1 = M−1/2v1 and u2 = M−1/2v2 (3.5)

The equation of motion is then once more given by

x(t) = A1 sin (ω1t + φ1)u1 + A2 sin (ω2t + φ2)u2. (3.6)

4 Modal Analysis

We can also find the equation of motion using modal analysis. In the previous paragraph we have found
the eigenvectors v1 and v2 of the matrix K̃. These vectors are orthogonal (unless they correspond to
the same eigenvalue, in which case they should be made orthogonal). If they have also been normalized
(given length 1), then they form an orthonormal set. Now let’s define the matrix of eigenvectors P
to consist of these orthonormal eigenvectors. In an equation this is

P =
[
v1 v2

]
. (4.1)

This matrix is an orthogonal matrix (as its columns are orthonormal). Such matrices have the conve-
nient property that PT P = I. Also let’s define the matrix of mode shapes S as

S = M−1/2P. (4.2)

Furthermore we define the vector r(t) such that

x(t) = M−1/2q(t) = M−1/2Pr(t) = Sr(t). (4.3)

Using all these definitions, we can rewrite the system of differential equations to

r̈(t) + Λr(t) = 0, (4.4)

where the matrix Λ is given by

Λ = PT K̃P =

[
ω2

1 0
0 ω2

2

]
. (4.5)

So we remain with the differential equations

r̈1 + ω2
1r = 0, (4.6)

r̈2 + ω2
2r = 0. (4.7)

The differential equations have been decoupled! They don’t depend on each other, and therefore can be
solved using simple methods. The two decoupled equations above are called the modal equations. Also
the coordinate system r(t) is called the modal coordinate system.

To solve the modal equations, we need the initial conditions in the modal coordinate system. Usually we
only know the initial conditions x0 and ẋ0 in the normal coordinate system. We can transform these to
the modal coordinate system using

r0 = S−1x0 and ṙ0 = S−1ẋ0, where S−1 = PT M1/2. (4.8)

Now we can solve for r1(t) and r2(t) and thus for r(t). Once we have found r(t) we can find the equation
of motion x(t) using

x(t) = Sr(t). (4.9)
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