
General Forced Vibrations

1 The Impulse Function

An impulse excitation is a force that is applied for a very short duration ∆t with respect to the vibration
period T = 2π/ωn. It is an example of a shock loading. Such an impulse can be mathematically
represented by using the unit impulse function δ(t) (also called the Dirac delta function), defined
such that

δ(t− τ) = 0 for t 6= τ, (1.1)∫ ∞
−∞

δ(t− τ)dt = 1. (1.2)

But how does this effect the motion of a system? Let’s suppose we have a system with no initial
displacement and mass, that is given an impulse F̂e at time t = τ . The corresponding differential
equation is

mẍ + cẋ + kx = Feδ(t− τ). (1.3)

This impulse will cause the linear momentum of the mass to change by

F̂e = Fe∆t = m ∆v = mvτ . (1.4)

So this situation is similar to the case where the object simply has an initial velocity of vτ at time t = τ
(with xτ = 0). If we apply this, for example, to an underdamped system, we would get the equation of
motion

x(t) = F̂eh(t− τ), where h(t) =
1

mωd
e−ζωnt sinωdt. (1.5)

The function h(t) is now called the impulse response function.

2 The Step Function

Another case of a forcing function is the unit step function u(t) (also called the Heaviside step
function, defined such that

u(t− τ) =

{
0 for t < τ,

1 for t ≥ τ.
(2.1)

Let’s consider the underdamped differential equation

mẍ + cẋ + kx = F̂eu(t− τ). (2.2)

If x0 = 0 and v0 = 0, it can be shown that

x(t) =
F̂e

k

(
1− 1√

1− ζ2
e−ζωnt cos (ωdt− θ)

)
, (2.3)

where θ is given by

θ = arctan

(
ζ√

1− ζ2

)
. (2.4)

This solution looks awfully familiar. In fact, it corresponds to a vibration with equilibrium point xe =
F̂e/k and initial displacement x0 = 0.
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3 Replacing a Periodic Forcing Function by a Fourier Series

What if we don’t have just an impulse or a step function, but a continuous forcing function Fe(t)? In
this case we can take the force Fe(τ) at time τ for a given moment dτ and replace it by an impulse of
magnitude Fe(τ)dτ . We can then find the impulse response function h(t − τ) for the time τ . If we do
this for all times τ and sum everything up, we will eventually find as particular solution

xp(t) =
∫ t

0

Fe(τ)h(t− τ)dτ =
∫ t

0

Fe(t− τ)h(τ)dτ. (3.1)

This integral is called the convolution integral. It is often difficult to evaluate the integral. If we have
a periodic forcing function Fe(t) (with period T and angular frequency ωT = 2π/T ), we can apply a trick
though. We can replace Fe(t) by a Fourier series. To do this, we use

Fe(t) =
a0

2
+
∞∑

n=1

(
an cos

(
n

2π

T
t

)
+ bn sin

(
n

2π

T
t

))
. (3.2)

The coefficients a0, an and bn are given by

a0 =
2
T

∫ T

0

Fe(t)dt, (3.3)

an =
2
T

∫ T

0

Fe(t) cos
(

n
2π

T
t

)
dt, (3.4)

bn =
2
T

∫ T

0

Fe(T ) sin
(

n
2π

T
t

)
dt. (3.5)

Now we have a new way to write the forcing function. How we use this will be treated in the next
paragraph.

4 Finding the Equation of Motion

When we replace the periodic forcing function Fe(t) by a Fourier Series, we can rewrite the differential
equation to

mẍ + cẋ + kx =
a0

2
+
∞∑

n=1

(an cos (nωT t) + bn sin (nωT t)) . (4.1)

We now repeatedly take one element from the right hand side of the equation, solve the equation for that
part, and in the end sum everything up. We will then find our particular solution. In an equation this
becomes

xp(t) = xa0(t) +
∞∑

n=1

(xan
(t) + xbn

(t)) . (4.2)

The individual solution are then the solutions of the differential equations

mẍa0 + cẋa0 + kxa0 = a0/2, (4.3)
mẍan + cẋan + kxan = an cos (nωT t) , (4.4)
mẍbn + cẋbn + kxbn = bn sin (nωT t) . (4.5)
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All these equations are equations we have solved before. For completeness’ sake we will give the solutions
once more. They are

xa0 =
a0

2k
, (4.6)

xan =
an

m
X cos (nωT t− θn) , (4.7)

xbn =
bn

m
X sin (nωT t− θn) . (4.8)

The variables X and θn are defined as

X =
1√(

ω2
n − (nωT )2

)2

+ (2ζnωnωT )2
and θn = arctan

(
2ζnωnωT

ω2
n − (nωT )2

)
. (4.9)

This is how the particular solution is found. Combine this with the specific solution to the problem to
find the general solution to the differential equation.

5 Using the Laplace Transform

When solving the differential equation, the Laplace transform is often a convenient tool. Let’s consider
the differential equation

mẍ + cẋ + kx = Fe(x) ⇔ ẍ + 2ζωnẋ + ω2
nx =

Fe(x)
m

. (5.1)

Taking the laplace transform, and solving for X(s), will give

X(s) =
sx0 + v0 + 2ζωnx0

s2 + 2ζωns + ω2
n

+
1
m

ze(s)
s2 + 2ζωns + ω2

n

, (5.2)

where L {Fe(t)} = ze(s). Often it occurs that x0 = 0 and v0 = 0. The middle term of the above equation
then disappears. To find x(t), you apply the inverse Laplace transform. When doing this, you often need
to use a Laplace transform table like table 1.

Function x(t) = L−1{X(s)} Laplace Transform X(s) = L{x(t)} Condition
e−at 1

s+a

sinωnt a
s2+ω2

n

cos ωnt s
s2+ω2

n

1
s2+2ζωns+ω2

n

1
ωd

e−ζωnt sin (ωdt) Underdamped Motion (ζ < 1)
ω2

n

s
1

s2+2ζωns+ω2
n

1− 1√
1−ζ2

e−ζωnt sin (ωdt + arccos (ζ)) Underdamped Motion (ζ < 1)

e−atx(t) X(s + a)
δ(t− a) e−as

u(t− a)x(t) e−asX(s)

Table 1: Often used Laplace transforms.
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