
Thermodynamics - Example Problems
Problems and Solutions

1 Examining a Power Plant

Consider a power plant. At point 1 the working gas has a temperature of T = 25◦C. The pressure is
1bar and the mass flow is ṁ = 2kg/s. After point 1, the air enters a compressor, at which the pressure
is increased to 6 bar. (This is point 2.) After this, the flow is heated to T3 = 700◦C. (This is stage 3.)
Afterwards, the flow goes through a turbine, at which the pressure is decreased to 1bar again. (This is
stage 4.) The flow is then cooled to T1 = 25◦C. We’re now back in stage 1.

We assume that:

1. air behaves like a thermally and calorically perfect gas with Cp = 1004J/kg K, R = 287J/kg K
and γ = 1.4.

2. the isentropic efficiency of the compressor is 0.88.

3. the polytropic efficiency of the turbine is 0.85.

Answer the following questions.

1. Depict the evolution of the cycle in the T − s plane.

2. Determine the net power.

3. Determine the heat received from the hot source.

4. Determine the thermal efficiency of the power plant.

5. Determine the Carnot efficiency associated with the present power plant and compare it with the
previous result.

6. Verify the first principle.

1 Solution

1. Let’s draw the T − s graph. We start by drawing two lines of constant pressure. (This can be seen
in the graph below.)

We now start at point 1. At this point the pressure and temperature are low. When we go to point
2, we don’t go straight up, since the process is not isentropic. Instead, we go up and slightly right
as well, until we reach the line p = 6bar. We then have found point 2.

The heating takes place under constant pressure. So from point 2 to point 3 we stay on the isobaric
line p = 6bar. This goes on until we reach T = 973K. This is the position of point 3.

The turbine isn’t isentropic either. So from point 3 we don’t go straight down. Instead, we go down
and a bit to the right as well, until we reach the line p = 1bar. This is point 4.

From point 4 we return to point 1. Since the cooling occurs at constant pressure, we do this without
leaving the line p = 1bar.
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Figure 1: The T − s graph of the power plant.

2. Let’s just calculate all the temperatures in all the points. First we’ll find T2.

We know that p2/p1 = 6. We also know that T1 = 298K. To find T2, we have to use the definition
of the isentropic efficiency. For compression (and for constant cp), this definition is

ηis =
T2,is − T1

T2 − T1
. (1.1)

Here the variable T2,is is the temperature in point 2 if the compression would be performed isen-
tropically. If the compression would be performed isentropically, we would be able to find T2 using
the isentropic relations. So, we can find T2,is, using

p2

p1
=

(
T2,is

T1

) γ
γ−1

. (1.2)

It follows that T2,is = 497.2K. We can then find that T2 = 524.4K.

We already know that T3 = 973K. To find T4, we have to look at the turbine. The only thing
given about the turbine is the polytropic efficiency. If the pressure decreases (which is the case in
a turbine), the polytropic efficiency is defined as

ηpoly =
n − 1

n

γ

γ − 1
. (1.3)

We know γ and ηpoly. We just need to solve for n. If we do this, we find that

n =
γ

γ − (γ − 1) ηpoly
= 1.321. (1.4)

Since a polytropic efficiency is given, we may assume that the process in the turbine is polytropic.
So we have pV n = C, with P the pressure and V the volume. Since the mass m in the turbine is
constant (the process is steady), we also have pvn = C, with v the specific volume. The perfect gas
law states that v = RT/p. Using this, we find that also Tnp1−n is constant. This implies that

p3

p4
=

(
T3

T4

) n
n−1

. (1.5)

By inserting values, we find that T4 = 629.7K.
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Now it’s time to calculate the net power of the power plant. We know that the power used by the
compressor is given by

Pcomp = cpṁ (T2 − T1) = 455KJ/s. (1.6)

Similarly, the power created by the turbine is given by

Pturb = cpṁ (T3 − T4) = 689KJ/s. (1.7)

The net power produced by the entire power plant thus becomes

Pnet = Pturb − Pcomp = 234.8KJ/s. (1.8)

This power is produced by the power plant, and thus, in a way, ”flows” outward.

3. Let’s calculate the heat received from the hot source. This is simply given by

Qin = cpṁ (T3 − T2) = 900.8KJ/s. (1.9)

4. The thermal efficiency is ”useful output” divided by ”total input”. The input is the heat received
from the hot source. The output is the net work done by the power plant. So the thermal efficiency
is

ηther =
Pnet

Qin
=

234.8
900.8

= 0.2606 = 26.06%. (1.10)

5. The Carnot efficiency (the maximally achievable efficiency) can be found using

ηCarnot = 1 − QL

QH
= 1 − TL

TH
= 1 − 298

973
= 0.6937 = 69.37%. (1.11)

6. The first principle states that energy is conserved. The energy going into the system is the heat
entering the system Qin. The energy leaving the system is the net work Pin and the heat leaving
the system Qout. This heat is given by

Qout = cpṁ (T4 − T1) = 666.1KJ/s. (1.12)

Now we see that
Qin − Pnet − Qout = 900.8 − 234.8 − 666.1 = 0KJ/s. (1.13)

The first principle still holds.

2 The Hirn cycle

Consider the Hirn cycle, described below. The working fluid is water/vapor.

1. From point 3 to point 4, the water/vapor passes through a pump. This pump delivers work Wp2.

2. From point 4 to point 5 the water/vapor moves through a heater.

3. From point 5 to point 6 the water/vapor moves through a high pressure turbine.

4. At point 6 the channel splits up. One part, with mass flow ṁs, goes to the mixer. The other part,
with mass flow ṁ − ṁs, goes to a low pressure turbine. After this low pressure turbine we arrive
at point 7. (By the way, ṁ is the total mass flow in the points 3, 4 and 5.)

5. From point 7 to point 1 the water/vapor goes through a condenser.

6. From point 1 to point 2 the water/vapor goes through a pump. This pump delivers work Wp1.
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7. From point 2 to point 3 the water/vapor goes through the mixer, where it is joined with (part of)
the water/vapor coming from point 6.

Assuming that:

1. the steam enters the high pressure (HP) turbine at p5 = 3.5MPa and T5 = 400◦C. It exits the HP
turbine at p6 = 0.4MPa and exits the LP turbine at 10kPa.

2. The working fluid is under the state of saturated liquid at the inlet of both pumps.

3. The heating and cooling processes taking place within the heater and the condenser are isobaric.

4. The mixer is perfectly insulated.

5. The pumping work is negligible.

6. The pumps and the turbines are adiabatic and reversible.

Answer the following questions:

1. Depict the evolution of the cycle in the T − s plane.

2. Find the ratio ṁs/ṁ.

3. Determine the work per unit mass produced by the HP turbine and the quality of the working fluid
at the outlet of the turbine.

4. Determine the work per unit mass produced by the LP turbine and the quality of the working fluid
at the outlet of the turbine.

5. Determine the heat per unit mass received by the working fluid in the heater.

6. Determine the heat per unit mass released to the cold source by the working fluid.

7. Determine the thermal efficiency of the power plant.

8. Verify that the first principle of thermodynamics is indeed satisfied (both numerically and theoret-
ically. What’s the relative influence of the pumps’ work?).

2 Solution

To solve this question, you need tables with a lot of numbers concerning water. In these tables you can,
for example, look up the saturation temperatures of water at different pressures. Without these tables,
you can only qualitatively examine the Hirn cycle.

1. We start by drawing a T −s graph, with the characteristic bell-curved shape of the saturation lines.
We also draw the three isobaric lines (lines of constant pressure) for p = 3.5MPa, p = 0.4MPa
and p = 0.010MPa.

Now we draw point 5. At point 5 the temperature is high, and the pressure is high as well. So the
point must be somewhere to the right top of the graph.

Next we draw point 6. The HP turbine decreases the temperature, but it does this at constant
entropy. (The pumps and the turbines are both adiabatic and reversible. They are thus isentropic.)
So point 6 is directly below point 5.

We also draw point 7. This one is (for the same reason) directly below point 6.
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Figure 2: The T − s graph of the Hirn cycle.

The reaction in the condenser is isobaric. So p7 = p1. We also know that the water at the start of
the pump is a saturated liquid. So point 1 must lie at the intersection of the saturated liquid line
and the p = 0.010MPa line.

Between point 1 and point 2 the water passes through an isentropic pump. This pump causes
the pressure to increase. Since points 2 and points 6 are about to be mixed together, they must
have the same pressure. So p2 = p6. Therefore point 2 must lie directly above point 1 on the line
p = 0.40MPa.

The mixer operates at a constant pressure. So p3 = 0.40MPa. We also know that the water in
point 3 (just before the second pump) is a saturated liquid. So point 3 must lie on the saturated
liquid line. This is how we determine point 3.

Now all we need to do is determine point 4. The heater after point 4 operates at constant pressure, so
p4 = p5 = 3.5MPa. To reach point 4 (from point 3), we once more pass through an isentropic pump.
So from point 3, we go straight up (with constant entropy) until we reach the line p = 3.5MPa.
That is where point 4 is.

So, all the points on the graph are known. Isn’t it great? It’s now time to calculate the values of
the pressure and the temperature in every point. We also find the entropy s, the quality of the
mixture x (if a mixture is present) and the enthalpy h. You never know when we might need it.

Luckily, we already know the pressures in every point. They are p7 = p2 = 0.010MPa, p2 = p3 =
p6 = 0.40MPa and p4 = p5 = 3.5MPa. We also know that T5 = 400◦C. From this follows that
the water/vapor in point 5 is actually entirely a vapor. The entropy in point 5 can be looked up to
be s5 = 6.847kJ/kg K. (We used p5 = 3.5MPa and T5 = 400◦C to look up this value.) Also, we
can look up the enthalpy. We find h5 = 3223kJ/kg.

First we will find T6. We know that the entropy in points 5 and 6 is equal. So we have s6 = s5 =
6.847kJ/kg K. We also have p6 = 0.40MPa. If we try to look up the corresponding temperature
T6 we kind of run into a problem. We can’t find the temperature, since the water/vapor mixture
is in some kind of transition state. This implies that the temperature T6 must be the saturation
temperature at p6 = 0.40MPa. This saturation temperature is T6 = 143.6◦C. Since we have a
water/vapor mixture at point 6, we can also calculate the quality of the mixture at point 6. This
quality is

x6 =
s − st

sg − st
=

6.847 − 1.777
6.897 − 1.777

= 0.99. (2.1)

So most of the water/vapor mixture is still vapor. Finally, using this quality, we can calculate the
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enthalpy. We will get

h6 = ht + xhtg = 604.8 + 0.99 · 2134 = 2718kJ/kg. (2.2)

Now let’s look at T7. We can similarly find that the water/vapor at point 7 is a saturated wa-
ter/vapor mixture. However, the saturation temperature at p7 = 0.010MPa is T7 = 45.8◦C. The
quality of the mixture is

x7 =
s − st

sg − st
=

6.847 − 0.649
8.151 − 0.649

= 0.826. (2.3)

From this we can find the enthalpy. We will get

h7 = ht + xhth = 191.9 + 0.826 · 2393 = 2169kJ/kg. (2.4)

We move on to point 1. The water/vapor mixture has passed through a condenser. In point 1 the
pressure is p1 = 0.010MPa. Also, the water is a saturated liquid, so the quality of the mixture
x1 = 0. Using these two data, we can find that T1 = T7 = 45.8◦C. (The water is still saturated at
p1 = p7.) We can also look up that the entropy in point 1 is equal to s1 = 0.649kJ/kg K. Finally,
the enthalpy is h1 = 191.9.

It’s time to examine point 2. The water has now gone through an isentropic pump. So p2 =
0.40MPa and s2 = s1 = 0.649kJ/kg K. We were allowed to assume that the pumping work is
negligible. So we don’t need to take that into account. Based on the entropy and the pressure, we
could use tables to extrapolate the temperature and the entropy. We will find that T2 = 46.2◦C and
h2 = 193.5kJ/kg. By the way, from our graph follows that we are now dealing with a compressed
(subcooled) liquid.

We continue with point 3. We know that at this point the water/vapor mixture is, in fact, a
saturated liquid. So the quality of the mixture x3 = 0. We also know that the pressure is equal to
p3 = 0.40MPa. This implies that the temperature in this point must be equal to the saturation
temperature at p = 0.40MPa. And this temperature can be looked up. We will find T3 = 143.6◦C.
Also, the entropy in this point is s3 = 1.777kJ/kg K. The enthalpy is h3 = 604.8kJ/kg.

Our final point is point 4. Now p4 = 3.5MPa. The water has gone through an isentropic pump,
so s4 = s3 = 1.777kJ/kg K. Just like for point 2, we can find the temperature and enthalpy by
extrapolating the table data. We will find that T4 = 144.3◦C and h4 = 609.8kJ/kg. We are dealing
with a compressed liquid, so there is no water/vapor mixture or anything of that kind.

2. Let’s find the ratio ṁs/ṁ. Let’s apply the conservation of energy principle to the mixer. The
energy going in is ṁsh6 + (ṁ − ṁs) h2. The energy going out is ṁh3. It follows that

ṁs

ṁ
=

h3 − h2

h6 − h2
=

604.8 − 192
2718 − 192

= 0.1634. (2.5)

3. We already know the quality of the working fluid at the outlet of the turbine. This was x6 = 0.99.
The work produced per unit mass by the HP turbine is simply equal to

WHP = h5 − h6 = 3223 − 2718 = 505kJ/kg. (2.6)

4. We already know the quality of the working fluid at the outlet of the turbine. This was x7 = 0.826.
Also, the work produced per unit mass by the LP turbine is equal to

WLP = h6 − h7 = 2718 − 2169 = 549kJ/kg. (2.7)

5. To find the heat per unit mass received by the working fluid in the heater, we use

Qin = h5 − h4 = 3223 − 606.9 = 2616kJ/kg. (2.8)
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6. The heat per unit mass released to the cold source is given by

Qout = h7 − h1 = 2169 − 191.9 = 1977kJ/kg (2.9)

7. The thermal efficiency is given by ”energy in” divided by ”useful output”. The energy in is Qin =
2616kJ/kg. The ”useful output” is the work done. However, this is NOT WHP + WLP . That is
because not all the mass passes through the LP turbine. Instead, only n = 1 − 0.1634 = 0.8366
part of the mass passes through the LP turbine. So we should take that into account. This implies
that the thermal efficiency is equal to

ηthermal =
WHP + nWLP

Qin
=

505 + 0.8366 · 549
2616

= 0.3686. (2.10)

8. We need to verify that energy is maintained. The energy going into the system is Qin,total = Qin =
2616kJ/kg. To find the energy leaving the system, we should take into account n = 0.8366 once
more. So

Qout,total = WHP + nWLP + nQout = 505 + 0.8366 · 549 + 0.8366 · 1977 = 2618kJ/kg. (2.11)

There is a very small difference. This difference is partially caused by errors when reading data
from tables. It is also partially caused by the work done by the pumps. Because we haven’t taken
into account the pumps’ work, Qin,total seems to be lower than it actually should be.

So, even the small difference has been explained. This means that the first principle still holds.
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