
Control Volumes

1 Conservation of Mass

In the previous chapter we looked at closed systems. Now we look at control volumes. A control volume
is a fixed volume in space, where mass can move through. Just like we have applied conservation of energy
in closed systems, we can apply the conservation of mass principle in control volumes. So we have

∆m = min −mout. (1.1)

The mass flow rate ṁ is the mass flowing through a cross-section per unit time. Suppose we have a
pipe or duct. We can then determine the mass flow through this pipe using

ṁ =
∫

Ac

ρνn dAc = ρνn,avgAc, (1.2)

where Ac is the cross-sectional area of the pipe and νn is the velocity of the flow normal to this area.
Identically, we can define the volume flow rate V̇ as

V̇ =
∫

Ac

νn dAc = νn,avgAc = ṁv. (1.3)

We can now rewrite the conservation of mass principle as

dm

dt
= ṁin − ṁout. (1.4)

2 Energy of a Flowing Fluid

The interesting thing about a control volume, is that mass can enter it. What we want to know is how
much energy is added to the system when a piece of mass enters a control volume. First of all, we know
that the specific energy e consists of specific internal energy u, specific kinetic energy V 2/2 and specific
potential energy gz. But there is more.

When a mass enters a control volume, something pushes it in. This pushing performs so-called flow
work (also called flow energy), having magnitude

Wflow = PV, or, expressed per unit mass, wflow = Pv. (2.1)

So we find that the total energy of a flowing fluid per unit mass is

θ = wflow + e = Pv + u +
1
2
V 2 + gz = h +

1
2
V 2 + gz. (2.2)

3 Steady Flow Processes

During a steady flow process the properties inside the control volume do not change with time. Since
the total mass then is constant, we have dm/dt = 0 and thus

ṁin = ṁout. (3.1)

If the flow is also incompressible, then also

V̇in = V̇out. (3.2)
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For steady flow processes, also the energy stays constant. This implies that Ėin = Ėout, or equivalently,

Q̇in + Ẇin +
∑
in

ṁθ = Q̇out + Ẇout +
∑
out

ṁθ. (3.3)

If we define Q̇ = Q̇in − Q̇out as the heat that goes into the system and Ẇ = Ẇout − Ẇin as the work
done by the system, we will get

Q̇− Ẇ = ṁ

(
hout − hin +

V 2
out − V 2

in

2
+ g (zout − zin)

)
. (3.4)

Dividing by ṁ gives

q − w = hout − hin +
V 2

out − V 2
in

2
+ g (zout − zin) , (3.5)

where q = qin − qout and w = wout − win.

There are many examples of steady flow devices in real life. For example, a nozzle is a device that
increases velocity by decreasing the pressure. A diffuser does exactly the opposite. For both devices,
the amount of heat transferred ∆Q, the amount of work performed ∆W and the change in potential
energy ∆pe can be neglected. This reduces the energy balance equation to

hin +
1
2
V 2

in = hout +
1
2
V 2

out. (3.6)

A similar thing can be done for other devices with a steady flow processes, such as turbines and com-
pressors.

4 Unsteady Flow Processes

For many processes there are properties inside the control volume that change over time. Such processes
are called unsteady flow processes. The relations of the previous paragraph are not applicable to
those processes.

Dealing with unsteady flow processes is a lot more difficult. We therefore often assume that such processes
are uniform flow processes. A uniform flow process is a process for which the properties at the inlets
and outlets do not change with time or position.

Now let’s look at two situations in this flow: One initial situation (1) and one situation a bit later (2). A
heat Q has been added. The system has done an amount of work W . Also incoming mass has brought
an energy (mθ)in, and mass leaving the system has taken energy (mθ)out with it. Using these data, we
can set up the energy balance for uniform flow processes. We get

Q−W + (mθ)in − (mθ)out = m2e2 −m1e1. (4.1)

Once more this equation can be simplified, based on various assumptions.
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