Closed Systems

1 Boundary Work

A closed system is, as was mentioned earlier, a system which can not exchange mass with its surround-
ings. The only way in which energy interaction with the surroundings is possible, is through heat transfer
and by work. Therefore we can derive the energy balance, stating that

AE = Ezn - Eout = an + Wzn - Qout - Wout' (11)

Usually it is assumed that the heat @ flows inward and the work W is the work performed by the system
(thus ”flowing” outward). This reduces the energy balance to

AE=Q—-W, & Ae=q—w. (1.2)

If the values of @ or W will turn out to be negative, then the wrong direction has been assumed.

2 Boundary Work

Let’s take a closer look at the work. Work is force times distance. The force comes from the pressure
inside the system. But to have a distance present, the boundary of the system must move. So there can
only be work done if there is compression/expansion of the system. The corresponding type of work is
called moving boundary work. The boundary work W} can be found using

2
OW, = Fds = PAds = PdV = Wb:/ Pdv, (2.1)
1

where V is the volume of the system. Note that the boundary work performed during a process per unit
mass is simply the area under a P — v diagram.

During processes, pressure and volume are often related by PV"™ = C, with V still the volume and n
and C constants. Any process of this kind is called a polytropic process. Using this relation (or, to
be more precise, P = CV~") the boundary work can be found. Sometimes the coefficient n first has to
be derived from the polytropic efficiency 1,01ytropic. This can be done using

-1 -1
Tpolytropic = S 7) if p decreases, and Npolytropic = 771/(71 ) if p increases.  (2.2)

n/(n—1) /(v —=1)

The coefficient v now does not denote the specific weight. It is the ratio of specific heats, which will be
defined in the next paragraph.

3 Specific Heats

The specific heat is defined as the energy required to raise the temperature of a unit mass of a substance
by one Kelvin. The amount of energy needed depends on the process. If the heating is done at constant
volume, we find the specific heat at constant volume c¢,. Identically, if the process is performed at
constant pressure, we find the specific heat at constant pressure c,. They can be found using

Oou oh
Cy = <8T>v and cp = <6T>p' (3.1)



For an ideal gas the internal energy u and the enthalpy h only depend on the temperature T'. So the
specific heats also depend on temperature only. Therefore we have

2 2
Au=uy —u; = / c(T)dT and Ah =hy — hy = / cp(T)dT. (3.2)
1 1

Usually the functions for ¢, and ¢, are unknown. However, there are tables with their values for given
temperatures. So, what we then do, is take the value of (for example) ¢, at 17 and T, take their average,
and use that value to calculate Au. In an equation this becomes
T5) — ¢, (T
Au = w (Ty = T1) = Coang (To — T1)  and identically A = cpang (T — T1). (3.3)
There is an important relation between ¢, and ¢,. We know (from the definition of enthalpy and the
perfect gas law) that dh = du + RdT. Differentiating with respect to temperature gives

cp =y + R, (3.4)

where R is, as we already know, the gas constant for ideal gases. We can also define the specific heat
ratio as c
v= 2. (3.5)

Cv

Like the specific heats, also the specific heat ratio v depends on the temperature T. The variation with
temperature is very small though, so usually this ratio is assumed to be constant.

4 Incompressible Substances

An incompressible substance is a substance whose specific volume v is constant. Solids and liquids
can be approximated as such substances. For such substances R = 0 and thus ¢, = ¢, = ¢. We now
would like to know how these substances respond to changes. Or, to be more specifically, how does the
enthalpy change during a process?

From the definition of enthalpy, we find that for incompressible substances
Ah=Au+vAP+PAv=Au+vAP =4y AT + v AP. (4.1)

Note that the term P Av has disappeared, since v is assumed to be constant. For liquids, we can
distinguish two special cases, being

e Constant pressure processes (AP = 0) where Ah = Au = ¢4y AT.
e Constant temperature processes (AT = 0) where Ah = v AP.

For solids the term v AP is insignificant, so all processes for solids can be approximated as constant
pressure processes.



