
Closed Systems

1 Boundary Work

A closed system is, as was mentioned earlier, a system which can not exchange mass with its surround-
ings. The only way in which energy interaction with the surroundings is possible, is through heat transfer
and by work. Therefore we can derive the energy balance, stating that

∆E = Ein − Eout = Qin + Win −Qout −Wout. (1.1)

Usually it is assumed that the heat Q flows inward and the work W is the work performed by the system
(thus ”flowing” outward). This reduces the energy balance to

∆E = Q−W, ⇔ ∆e = q − w. (1.2)

If the values of Q or W will turn out to be negative, then the wrong direction has been assumed.

2 Boundary Work

Let’s take a closer look at the work. Work is force times distance. The force comes from the pressure
inside the system. But to have a distance present, the boundary of the system must move. So there can
only be work done if there is compression/expansion of the system. The corresponding type of work is
called moving boundary work. The boundary work Wb can be found using

∂Wb = F ds = PA ds = P dV ⇒ Wb =
∫ 2

1

P dV, (2.1)

where V is the volume of the system. Note that the boundary work performed during a process per unit
mass is simply the area under a P − v diagram.

During processes, pressure and volume are often related by PV n = C, with V still the volume and n
and C constants. Any process of this kind is called a polytropic process. Using this relation (or, to
be more precise, P = CV −n) the boundary work can be found. Sometimes the coefficient n first has to
be derived from the polytropic efficiency ηpolytropic. This can be done using

ηpolytropic =
γ/(γ − 1)
n/(n− 1)

if p decreases, and ηpolytropic =
n/(n− 1)
γ/(γ − 1)

if p increases. (2.2)

The coefficient γ now does not denote the specific weight. It is the ratio of specific heats, which will be
defined in the next paragraph.

3 Specific Heats

The specific heat is defined as the energy required to raise the temperature of a unit mass of a substance
by one Kelvin. The amount of energy needed depends on the process. If the heating is done at constant
volume, we find the specific heat at constant volume cv. Identically, if the process is performed at
constant pressure, we find the specific heat at constant pressure cp. They can be found using

cv =
(

∂u

∂T

)
v

and cp =
(

∂h

∂T

)
p

. (3.1)
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For an ideal gas the internal energy u and the enthalpy h only depend on the temperature T . So the
specific heats also depend on temperature only. Therefore we have

∆u = u2 − u1 =
∫ 2

1

cv(T ) dT and ∆h = h2 − h1 =
∫ 2

1

cP (T ) dT. (3.2)

Usually the functions for cv and cp are unknown. However, there are tables with their values for given
temperatures. So, what we then do, is take the value of (for example) cv at T1 and T2, take their average,
and use that value to calculate ∆u. In an equation this becomes

∆u =
cv(T2)− cv(T1)

2
(T2 − T1) = cv,avg (T2 − T1) and identically ∆h = cp,avg (T2 − T1) . (3.3)

There is an important relation between cp and cv. We know (from the definition of enthalpy and the
perfect gas law) that dh = du + R dT . Differentiating with respect to temperature gives

cp = cv + R, (3.4)

where R is, as we already know, the gas constant for ideal gases. We can also define the specific heat
ratio as

γ =
cp

cv
. (3.5)

Like the specific heats, also the specific heat ratio γ depends on the temperature T . The variation with
temperature is very small though, so usually this ratio is assumed to be constant.

4 Incompressible Substances

An incompressible substance is a substance whose specific volume v is constant. Solids and liquids
can be approximated as such substances. For such substances R = 0 and thus cp = cv = c. We now
would like to know how these substances respond to changes. Or, to be more specifically, how does the
enthalpy change during a process?

From the definition of enthalpy, we find that for incompressible substances

∆h = ∆u + v ∆P + P ∆v = ∆u + v ∆P = cavg ∆T + v ∆P. (4.1)

Note that the term P ∆v has disappeared, since v is assumed to be constant. For liquids, we can
distinguish two special cases, being
• Constant pressure processes (∆P = 0) where ∆h = ∆u = cavg ∆T .
• Constant temperature processes (∆T = 0) where ∆h = v ∆P .

For solids the term v ∆P is insignificant, so all processes for solids can be approximated as constant
pressure processes.
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