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Students must read through these notes and wavkghrthe various exercises in their own

time in parallel with the course of lectures.
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1 Fluid Flow with Friction

In Semester 1, we covered fluid flow through pipmsking at the Continuity Equation and
Bernoulli’'s equation. One of the assumptions we enadout the flow is that it was fric-
tionless. In real systems however, friction betwéss fluid molecules and solid surfaces
(like the pipe walls), as well as between the floidlecules themselves, cause a pressure loss
to occur in the fluid.

P1 Diameter,D

Figure 1: Fluid flowing through a pipe, with walear stressg,,

Figure 1 illustrates a pipe with fluid flowing thrgh it. While similar to what we previously
studied in the first semester, this time, thershisar stressoccurring between the fluid and
the solid pipe wall, represented fy

Without friction, Bernoulli’'s equation gives:

Totalpressure= p +%pC2 + pgz = constant
So:
1 . _ 1
p1+510c1 +P0% = P, +§pC2 + 097,

The effect of friction is that shear stresses atwhall of the pipe,, cause a drop in total
pressure along the flow direction 4yp.

The equation becomes:

1 1
P+ 5 AC + 092 = P, + 2 pC; + pgz, + Ap (1)

This section of work is about determinifg.

The termz, represents the shear stress occurring in the #lutie wall of the pipe. Being a
stress, it is defined asfarce divided by an area In this case, it is the force required to
move the fluid along the pipe wall area:
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F

r,=—
A

whereAs is the internal surface area of the pipe.

The force required to overcome this shear stresbesdrop in pressure multiplied by the
cross sectional area. This equals the shear sin@l$iplied by the surface area over which the
shear stress is occurring. Mathematically:

ApA=T1 A

ool 2|1, (o)1)

Rearranging to solve for the shear stresses atalief the pipe:

whereL is the lengthD is the diameter anld is the radius.

The problem therefore becomes that of finding aw lthe shear stress varies with flow. The
way in which this is done depends on the natutbeflow.

1.1 Laminar Flow

At low velocities, a few duct flows exhibit tHeaminar flow characteristics, where layers of
adjacent fluid slide over each other in an ordenediner, exerting shear forces because of the
relative movement. Fluid particle paths (streand)nare straight, with fluid near stationary
solid surfaces (pipe wall) moving more slowly tiand away from solid surfaces.

The velocity in the flow direction is constant asigady and does not vary with time. The
velocity perpendicular to the flow direction is aat all times. Laminar flow is illustrated in
Figure 2(a).

1.2 Turbulent Flow

Turbulent flow is one of the last great mysteries of physicsthede is a Nobel Prize wait-
ing for the person who can uncover its mysteri¢® tinexplained facts are that if the veloc-
ity of a laminar flow is gradually increased the@@mes a point at which the nature of the
flow changes. Particle paths become irregular drabtic, leading to large scale mixing be-
tween adjacent layers. The flow becomes very tiegeddent as sudden bursts of chaotic
energy are created within it and then graduallgideated. It all appears random and unpre-
dictable. Turbulent flow is illustrated in Figuréo.

The structure is similar to large-scale turbulebetind a moving lorry or as you see when
looking down at the water flow around a supportpidar of a bridge. There are series of

circular motion eddies generated which gradualBsigiate in a wake behind the structure.
The difference in duct flow is that no physicalgea for the turbulence is apparent, as the
pipe walls are generally relatively smooth.
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1.3 Analysis of Flows

turbulent
‘\ flow -

A ‘
A

Figure 2: (a) Laminar flow; (b) Turbulent flow. Rig smoke demonstrates the transition
between laminar and turbulent flow.

Laminar flow can theoretically be analysed, bubtdent flow cannot, and the approach has
to be one of using validated experimental (empirioasults. Whether a flow is laminar or
turbulent is determined by the value of the kewflwon-dimensional number, thieynolds
number, Re.

The Reynolds number is defined as:

where p is the fluid densityg is the flow velocity,D is the pipe diameter andis the dy-
namic viscosity of the flow. (This term was definedt semester as part of the Dimensional
Analysis lecture).

The Reynolds number represents tato of the inertial to the viscous forces withinthe
flow. The termoc is the momentum per unit volume, so the highes the more likely there
is spare energy in the flow for turbulent behavidlthie higheD, the less restrained this ex-
cess energy is by the pipe walls, but the highttre more likely it is to be damped out.

Thecritical Re for pipe geometry is about 2000Below this, flow is laminar; above it, tur-
bulence tends to start. The figure is not defieitias laminar flow can sometimes be main-
tained up to 3000 where circumstances are favoeurdibtiepends upon the presence or oth-
erwise of turbulence initiators such as bendsnfit and fluid machines. The table below
summarises this:

Reynolds Number Flow

Less than approx. 2000  Laminar

2000 — 3000 Critical Region

Above 3000 Partial or fully turbulent

Most flows, especially those in pipes, are turbuléiris very unusual to achieve laminar pipe
flow. The velocity has to be low, the pipe smaltldahe fluid highly viscous. Laminar flow is
of greatest value in the analysis of thin flm$earings, shock absorbers and the like.
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Note the use of as the symbol for velocity in these notes. A Ibtexts use eitheu orv,
which can be confused with internal enewgyr specific volumey.

1.4 Shear Stress and Fluid Viscosity

Y ——>» Cc+dc
L, 1o
—»C

Figure 3: Two streamlines experiencing shear

The shear action is due to relative movement alirgli fluids layers. Figure 3 shows two
streamlines in laminar flow, with one streamlinavelling faster than the other. If the flow
direction isx and the direction perpendicular to the flow(see coordinate system in Figure
3) then the shear stress of one layer on the @tlggven by:

differencan speed

distancédetweerstreamling

(2)

r= ,u:—; = viscosityx

for a Newtonian fluid wherg is the fluiddynamic viscosity

As viscosity, i increases, the frictional effects increase/iscosity does not vary much with
pressure, but is highly temperature dependentedstrg rapidly with temperature for liquids
and increasing slowly with temperature for gases.

The SI unit is Pas (Pascal seconds), shear steisg measured in Pa (Nfjnfor a fluid.
Sometimes the same units are seen broken dowrefurtto kg/ms. The model is analogous
to that for solids, the velocity gradient is esgalytbeing a fluid measure of ‘strain’.

Ty Most genuine fluids behave in
Pseudoplastic Newtonian a Newtonian manner, but

there are many substances

Dilatant which appear to be fluids that

contain significant numbers of
larger particles. These include
milk, blood and ink and ex-
hibit modified behaviour as a
result. It can be seen from
de/dy  €quation (2) that a Newtonian

fluid has a linear relationship
Figure 4: Newtonian and Non-Newtonian Fluids between shear stress and the
shear rate dddy). Non-
Newtonian fluids do not possess such a linearioglship, as shown in Figure 4.

You may also see viscosity referred tkasematic viscosity, represented by the Greek letter
nu,v and is determined by the following equation:

v=H

Yo,
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i.e. thedynamic viscosity divided by the density(Notice this is not the little letter)

Consequently, you may also see the Reynolds nuddiered as:

Re:C—D
7,

1.5 Summary

Bernoulli's Equation including pressure loss duérition is:

1 1
p1+§pCf+pgzl= p2+§pC§+pgzz+Ap

where theAp term is the pressure loss due to pipe frictiord (@ther losses)

The Reynolds number is defined as:
Re= £ = b
U v

and is used to define the state of the flow (eitharinar or turbulent). The following table
details this:

Reynolds Number Flow

Less than approx. 2000 Laminar

2000 - 3000 Critical Region

Above 3000 Partial or fully turbulent

Dynamic viscosity is represented using p and therkiatic viscosity i®. Density is used to
relate the two terms, where:

U=

RS
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2 Laminar Flow

The analysis ofaminar flow considers an element of fluak contained within a pipe, as
shown inFigure 5. The pipe radius R and the element radius iis All quantities are as-
sumed to be positive and increase in the flow tdwadn the lengthdx, and in the direction
perpendicular to the flow. If they decrease orreggative, the mathematics will indicate this.
Even the shear stregds assumed positive in the flow direction andraigown to be nega-
tive, as it is essentially friction acting agaitist flow.

Flow Direction — T A
| p+dp
lr
— R
T
dx

Figure 5: Element of Fluid
In the positivex direction, the forces acting are the presqumver areaA and the shear
stresses (which act on the surface area of theeelgmin the opposite direction, the force
acting is the pressur® ¢ dp) over areaA. Therefore, balancing the forces for the element
results in:

r(27m)dx+ pr? - (p+dp)m2 =0

Simplifying this equation and solving fargives us:
r(2mm)dx+ prr? = (p+dp)r?
2dx=(p+dp)r — pr
poPr dpr - pr
2dx

From the definition of viscosity, equation (2), aen say that:
rdp _ dc

EE 'udr

Because there is no flow in thelirection, it can be assumed tlpat also constant across the
section. Any change @ due to the height change is small, so is neglected

2.1 Fluid Velocity

The aim of this part of the analysis is to findoaty c as a function of the radius from cen-
tre-liner.
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Separating the variablesandr:

rdp_ dc
2 dx dr
Lﬂ)dr =dc
21 dx
iﬁ)rdr =dc
244 dx
Integrating:
Idc=i@jrdr
1 dX
_ 1dpr®
2udx 2 *

whereC, is the constant of integration.

The constanC; can be determined by applying the boundary camditihat when the radius
of the element is the at the pipe walR), the velocity of the flow is zero. This is knows
the condition of no slip, where at the boundaryhvatsolid surface the fluid molecules are
supposed to be in such intimate contact with théasa that there is no relative movement.

Applying this boundary conditioi;; is determined as:

__1dpR
Yo2udx 2
The overall situation is therefore:
_1dpr’_1dpR
2udx 2 2udx 2
= i%l(r 2 _ Rz)
2u dx 2
:—i%( 2—r2): iz% —(sz (3)
4u dx 4u dx R

This equation gives thelassic parabolic profile with a

maximum at the cetre (r = 0) and

reduction towards the wall which becomes increasamyd as the wall gets close, as shown

in Figure 6.
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Cmax

1

Flow
Direction

centre line of pipe

0 0

Figure 6: Velocity profile in pipe

The negative sign in equation (3) indicates thatafositivey, the pressure gradiedp/dx
must be negative, i.e. the pressure must decredbke direction of flow. Note that the maxi-
mum velocity at the centre line is given by:

¢ =_Rdp 1_(9j2 __Rdp
T 4 dx R 4u dx

Whilst of interest, knowledge of the velocity ptefis not the required end. The required end,

is insteadfo determine the pressure dropAp in terms ofvolumetric flow rate, V . To do
this, we must first determine volumetric flow rate.

2.2 Volumetric Flow Rate
The volumetric flow rate can found from:
Flow rate = arex velocity =Ac
with the complication that velocity varies acrole section. The approach is to takenzall

annular element between the centre line, shownhkigure 7, and the pipe radius and then
add up the flow through all such elements by irdggg betweem = 0 andr =R.
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Figure 7: Annular Element of Fluid in cross sectafipipe

The area of the element (the shaded area) is:
dA=27rdr

Therefore, the volumetric flow rate through thenedat is:
aV =cdA= (c)(27zdr)

& = _1dp R? —r?)|(27zdr
- L7 o)

4u dx
v =-= dp(R2 —r*Yar
4u dx
Integrating between= 0 andr = Rresults in:

V==L 90 (e -

4p dxs
g ol Rt rt
4udx| 2 4,
V=-TLdPp 4)
8,udx

So the volumetric flow rate is proportional to fhressure gradient.

2.3 Pressure Drop, Ap

It is important to note that, along a pipe, thass flow rate and the volumetric flow rate
are constant(following the continuity equation, when densigydonstant). AR and i are
constant, the pressure gradidptdx must also be constant.
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v

Py ( O P

L
Figure 8: Flow along a pipe

For a horizontal pipe with length
-Ap
=— 5
3 ()

Q_|Q.
% |©

Note that the change in pressure term in the nuorefs is negative since the pressprdan
Figure 8is greater than the pressyrg (i.e. p1 — p2 = Ap = positive value). The change in
pressure related tip is p, — p1 = -Ap.

Rearranging equation (4) above éwdx
V = _ndp R* dp = _8_'u\] (6)

gudx  dx IR

Combining equations (5) and (6):

-Ap __ 8,u4v
L R
Rearranging, aequation for Ap can be determined:

_8uLV
- 7'R4 (7)

Ap

Equation (7) allows us to determine ghssure drop in a pipe in which the flow is lami-
nar. This pressure drop can then be used in the fdrBemoulli’'s equation defined at the
start:

1 1
P+ PCL+ 097 = P, + 5 £C; + 09z, +Ap
2.4 Average Velocity

Rearranging equation (7) to solve for the voluneeflow rate results in:
7R4

8y v
Bp=— LV =V = Ap

Since the volumetric flow rate equals the velocrtyltiplied by the cross sectional area, it
follows that the average velocity is:

V _(Rpp) 1 R?A
Caverage:z\z( Sij(mzj: 8[I|_p (8)

If we substitute equation (5) above into the equmafor the maximum velocity, we have:

10
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-_Rdp_R24p

C — 9
max 4/de 4[1 L ()

Comparing equations (8) and (9) it is clear totha¢
c _RAp _ Crax
average 8,U|_ 2

2.5 Power Consumed

It is also important to be able to relate the pressirop to thggower consumed(or equiva-
lently, the power required by a pump). Fluid systeéhat transport fluid over significant dis-
tances are greatly affected by friction. Where fiassthe flow is driven by a height differ-
ence between the inlet and outlet of the systemirnbmany cases a pump is required to es-
tablish the flow. Analysis of fluid systems is tafare closely related to the analysis of fluid
machine performance.

[EEN
1N

pA

|

Figure 9: Fluid moves from 1 to 2 under fop®

In Figure 9, the fluid moves from section 1 to gtk in 1 second, under the action of force
pA. The power applied is the work done because ip&ap in 1 second, and this can be cal-
culated from forcex distance:

Power= Forcex Distance= pAc= pV

This is the power at any point in the flow, soritfion causes a pressure duyp, the power
loss is:

I Poweross= ApV

In this analysis, the average velocity has beed,wdthough denoted lwyinstead ofayerage
Strictly, this is not correct and the shape ofwbkcity profile should be taken into account
when calculating power or the dynamic pressure. él@w, it is common not to bother and
does not lead to much loss of accuracy.

11
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2.6 Summary

The following itemises the information that you dee solve the problems associated with
laminar flow in pipes:
» Bernoulli’s equation taking into account a pressine:

1 1
p1+§pCf+p921= p2+§pC§+pgzz+Ap

* The Reynolds number helps to determine whethesva il laminar or turbulent:

Re: m_D :2
)7 v

* The shear stress experienced in the fluid at tHeoka pipe:

‘, -F_DAp_RAp

» The velocity profile is defined as:

2 2
c= —&ﬂ) 1- (Lj
44 dx R
* The pressure drop associate with fluid frictioraitaminar flow in a pipe is derived
as:

8uLV
]ﬂ4
» The power loss (or power required) is:

I PowerLoss= ApV

Ap =

Using these equations, you should be able to shlv@roblems on the following page.

12
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2.7 Example

Oil of density 900 kg/rhand viscosity of 0.17 Pas is pumped through a bdiameter pipe
750 m long at the rate of 2.7 kg/s. If the critiBaynolds number is 2300, show that the criti-
cal velocity is not exceeded and calculate theguresrequired at the pump and the power
required. The pipe is horizontal.

13
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2.8 Laminar Flow in Pipes Exercises

1.

Oil of density 850 kg/rhis pumped along a horizontal pipe 100 mm diametelr
1300 metres long. The quantity of oil passing thfothe pipe is 0.01 s and the
pump, which has an efficiency of 60%, takes 5 kWrige it. Assuming laminar flow
(check this) obtain the viscosity and kinematicuewty of the oil.

(0.057 Pas; 6.65 x T0m?/s; Re = 1911)

The velocity along the centre line of a 150 mm détan pipe conveying oil under
laminar conditions is 3 m/s. The pipe is horizomatadl the viscosity of the oil is 0.12
Pas and its density is 900 kgir€alculate:

a. The quantity flowing in nfs
b. The shear stress at the pipe wall
c. The total horizontal force produced on the pipeiciwis 500 m long
(0.0265 ni/s; 9.6 N/m, 2261 N; Re = 1688)

Oil of viscosity 0.05 Pas flows through a horizémti@e 19 mm diameter with a mean
velocity of 0.3 m/s. Assuming that the flow is lavar (check this), calculate the pres-
sure drop over 45 m length of pipe. Also calcuthtevelocity at a point 5 mm from
the wall of the pipe, and the shear stress in thet this point. Assuming density is
900 kg/nf.

(600 mbar; 0.465 m/s; 2.99 N

Glycerine, with a density of 1260 kginviscosity 0.9 Pas is pumped at 20 li-
tres/second through a straight 100 mm diameter, gipen long inclined at P30 the
horizontal. The gauge pressure at the lower inldta the pipe is 5.85 bar. Verify
that the flow is laminar, and calculate the presggauge) at the outlet end and the
shear stress at the wall.

(Re = 357; 1.11 bar; 183.3 Nn

Oil of density 910 kg/rhand viscosity 0.124 Pas is pumped through a 75diame-
ter pipe at 425 litres/min. Show that the flowaminar and find the power require to
pump the oil through 75 m of pipe, which rises 3 m.

(Re = 883; 790.5 Watts)

14



Thermodynamics & Fluids UFMEQU-20-1 2010-2011 Semester 2

3 Turbulent Flow

The basis of the experimental results used in amagyurbulent flow lies in Dimensional
Analysis, which you have previously studied. Thalgsis starts by listing the variables that
are felt to influence the process, in this casge iow. Most of these can be found from the
laminar flow analysis, with the addition of pipener surface roughness, which tends to in-
crease the level of turbulence in the flow.

3.1 Shear Stress

These variables are listed in the following table.
Variable Description
Wall shear stress (the variable we wish to invesgiy
Density
Viscosity
Average velocity
Pipe diameter (bore)
Pipe roughness

> Oox o &

A relationship of the form below is assumed to espnt the functional dependence on the
listed variables:

r,=¢(o.u.c,D e -1, =Ko c' Do (10)

whereK is a non-dimensional constant aadb, d, e andf are unknown exponents to be
found by experiment.

Inserting the fundamental dimensions of each viiab

MLT 2 = (ML P (ML P (LT (L)e(L)" (11)
Equating powers of each dimension on both sides:
For M: l=a+b (12a)
For L: —1=-3a-b+d+e+f (12b)
For T: -2=b-d (12c)

We have 3 equations and 5 unknown powers, so welegmmine 3 powers in terms of the
other two. The rule is to keep the powers that app®st frequently in the equation. Clearly,
b is the only power to appear in all equations, sckeep it.

Equation (12a) is thus used to get ricacnd equation (12c) is used to get riddoThis is to
get rid of eithee orf using equation (12b). Let us get rideof

a=1-b

d=2-b

e=3a+b-d-f-1=31-b)+b-(2-b)-f -1

e=-b-f

Substituting these into the general equation (M)

15
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TW = Kpa,Ude Deff = K,Ol_b,ubCZ_bD_b_fEf
b f

F kot i}

T (pcDj (D

Rearranging:

The non-dimensional wall shear stress (seethat a pressure, divided by dynamic pressure,

and is thus non-dimensional) depends on two noredsional variables:
pocD
TheReynolds number _,U

£
Therelative roughness D

Therelative roughnessis a non-dimensional ratio that describes thermatesurface of the
pipe. Pipes can be made out of a wide variety denads, and each material has a particular
type of surface. These different surfaces can tffex pressure drop in the system, and are
hence important to know.

3.2 Pressure Drop, Ap

The nature of the dependence can be investigateskpgriment. The general form of the
relationship is

" :F(pCD’iJ:F -1, (13)
2 u D 2
EPC

whereF is a function to be found experimentally, and i&iaction of the Reynolds number
and the relative roughness.

Recall that the shear force experienced at theafalipe is:

r,=———=—— 14
4L 2L (14)
Substituting equation (13) into equation (14):
D Ap 1,
r,=——=F= 15
w2 > ° (15)
Rearranging equation (15) fAp gives us:
_4FL1
Ap=——=
D 2

16
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If F is known, the pressure drop for a given averagdecitg of flow rate can be found, as
was done by analysis for laminar flow. The variablés known as thd-anning Friction
Factor. Often, though not in all textbooks, the factéris replaced byf, known as the (non-
dimensional) friction factor or thBarcy Friction Factor. This is the form used from this
point onwards.

The final equation to calculate the pressure diopl(m? or Pa):

i1
Ap = EEpCZ (16)

The value found foAp can then be incorporated into the form of Bernsu#quation de-
scribed at the start:

1 1
p1+§pCf + 00z = p2+§pC§ + 09z, + Ap

3.3 Determining the Friction Factor

The experimental results determining the frictiaetébr,f, can be viewed graphically or as
equations. The graphical representation is morailpo@and is known as the Moody Chart,
after the person that first presented the resultkis way. It is a log/log plot of friction factor
against Reynolds number, Re, with different cufeedifferent values of relative roughness.
This is shown in Figure 10elow:

Moody Diagram
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Figure 10: Moody Chart (a larger version of thiautlappears on page 23).
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There are four zones in the Moody Chart:
1. Laminar Region: Using the equation fakp found in the Laminar Flow analysis sec-
tion (equation (7)), and matching this up to equaf(il6), we can do the following
analysis to determine the friction factor for taeninar case:

_8ulv _fL1 ,
Ap=—"—p=—=
R D2
ReplacingR with D/2, andV with Ac (which in turn equalsiD’c/4) and simplifying
results in the following:

32uc _ fL1
HLC _ oc?

D? D 2
Solving for the friction factorf, gives:
64u _ 64
mxD Re

So, knowing this relationship, we can use eitheratiqn (7) directly for laminar
problems, or equation (16) knowing that the frintfactor is 64/Re.

2. The Critical Region: The lines here are dotted because we are ndy s2ak whether
the flow is laminar or turbulent. None of your plains will rely on determining the
pressure drop in this region.

3. The Transition Region In the Moody diagram, this is the area belowdhshed line
(labelled ‘Complete Turbulence’). In this regiohetfriction factor depends on the
Reynolds number and the relative roughne§s, To determine the friction factor, se-
lect the relevant relative roughness line, andhatpoint of the relevant Reynolds
number, read across to the left to determine flogdn factor.

4. The Fully Turbulent Region: In the Moody diagram, this is the area above the
dashed line. As can be seen, the lines for relatiughness are flat, meaning that the
Reynolds number has no effect on the friction factberefore, the friction factor de-
pends solely on the relative roughness.

Note the table on the chart lists the roughnessev@) for various materials.

Instead of the chart, some time has been spemédbgle who have evidently too much free
time) developing equations to determine frictiootéa from the Reynolds number and the
relative roughness factor. These are not derived, lineit listed below:

For the turbulent zone in general:
f= = i
111
Re (37D
For the fully turbulent region:
f= ! 5
£
114-2log —
{ g(Dﬂ
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Although these can be used as alternatives torthe, 6t isoften quicker to choose the
value from the Moody chart, as entering these rather complex equations ictculator
without mistakes can be challenging.

3.4 Solving Problems
There are 3 types of problems that you will comess:

3.4.1 Type 1 — Pressure Drop

This is the pump selection problem. You are gehegiven thevolumetric flow rate, V ,

and thepipe diameter, D, so that both the Reynolds number, Re, and tla¢ivelroughness,
¢/D, are known, sd can be read directly from the chart. The presdoo@, Ap, can then be
calculated using equation (16) which will provideuywith the details of the pump you need
to select (that which can provide the necessargspre to overcome the loss in pressure due
to friction; i.e.Ap).

So, in summary, Figure 11 illustrates the procegsired for a type 1 problem:

D——_ | Calculate Re .| Determine f Determine Ap
y———"| andeD | (Moody Chart) (equation (14))

Figure 11: Flow chart for a type 1 problem
3.4.2 Type 2 — Flow Rate

This is where you have the pump and pipe systethyan wish tdind the flow rate, it will

give you, i.e.V . You are generally given thgressure dropAp, Thediameter, D, is also
known, so the relative roughnesf), can be determined. The Reynolds number, Re; how
ever is not known since the velocity, is unknown. This problem is solved by assuming
firstly, that the flow is fully turbulent (zone 4p the friction factorf can be determined from
just the relative roughness. You can then use equél6) to determine. It is useful to rear-
range equation 14 to the following:

fL1 20pD
AD=—=pc? , c= |[===2
‘ P=p 2" \ AL

You then compute the Reynolds number from the Yiadtie ofc, and looking at the Moody
chart, if the flow is fully turbulent, your calcuian is completed and you can now determine

the flow rate,V (rememberV =Ac).

17)

If, however, your value of Reynolds number indisateat the flow is not fully turbulent, but
transitional, then you have to determine the negtién factor,f from the Moody chart, and
again use equation (17) to determamethernew value forc, which you can then use to get
anothervalue for Reynolds number and so on. This iteeafivocess can go until successive
values forc do not change significantlyt is seldom necessary to do more than two esti-

mates ofc. Oncec is computed the flow rat&/ , may be found (remembev: =Ac).
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So, in summary, Figure 12 illustrates the procegsired for a type 2 problem.

I
I
|
A ine |
P—a| Calculate || Assume full | || Determine | Calculate ¢ ——»

I

I

I

I

|

I

I

I

I

I

I

I

Determine
Re

p—> elD turbulence f

Determine
new f

_______________________________

Use cto get
flow rate

Figure 12: Flow chart for a type 2 problems
3.4.3 Type 3 — Pipe Diameter

This is the pipe design problem, where the presauadable from the pump allowp to be
known, the required flow is known, but the pipendéer needed is not. In this case, neither
Re nore/D is know, sof has to be randomly guessed as being near thesagitine Moody
Chart, say = 0.03.

This guess is used to find an estimat®©pfrom which Re and/D are estimated and better
guess off found. This process is then iterated until no ificent change oD occurs. For
these problems, as velocityis unknown, because ar@as unknown, equation (16) is more
usefully express in the form:

« N\ 2 2
pp=ttlpe L1 p(xj =E1p(v)2( 4 j =L%ye-z (s

A D 2 D?) D P

whereK is:

which is constant if is constant (fully turbulent condition). Hencer tarbulent flow, the
pressure drop is proportional to the square ofltve rate whereas for laminar flow, the drop
is directly proportional to the flow rate and tledationship is linear.

Since we are trying to determie equation (18) is more usefully written:

(19)

So, in summary, Figure 13 illustrates the procegsired for a type 3 problem:
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Iterate until D does not vary significantly

v—> f=0.03 (equation 18) and /D new f

:
[}
[}
Ap—a Guess _L Calculate D Calculate Re Determine
:
I
[}
[}
|
[}
I

Figure 13: Flow chart for a type 3 problem
3.5 Summary

Remember that we can confirm that a flow is turbuley checking the Reynolds number. In
general, we can safely assume that the flow isutarth if the Reynolds number is greater
than 3000.

* The standard equation to use to determine theymesglsop is:

fL 1
Ap=—=pc?
=55/

whereL is length,D is the diameter of the pipg,is the density of the fluid, andlis
the average velocity of the flow. The tefns known as thériction factor , and is de-
termined from thévloody Chart.

» There are four zones of the Moody Chart: Laminarez@ritical region, transitional
turbulent, and complete turbulent.

* Toread a friction factor from the Moody Chart, yeeed to know the Reynolds num-
ber and the Relative Roughness. If you are dealittythe completely turbulent re-
gion, then just having the Relative Roughnessfiscgent to determine the friction
factor.

* There are three types of problems:

1. Type 1: Determine pressure drop
» Given:Pipe DiameterandFlow Rate
* DetermineRe ande/D
» Determinefriction factor , f
» Use standard equation to determixge(equation 14)
2. Type 2: Determine flow rate € is unknown)
* Given:Pipe DiameterandPressure Drop
* Determinex/D
» Determinefriction factor from Moody Charassuming full turbulence
» Use standard equation to determine valudlfay velocity, ¢
* DetermineRe
* Use Moody Chart to determinenaw friction factor (If full turbulence,
this value ofc is valid)
» Use standard equation (in the form shown in equoéti®) to determine
new value for flow velocity, ¢
» lIterate untilc does not vary significantly
« Remembery =Ac
3. Type 3: Determine Pipe Diameter
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» Given:Flow rate andpressure drop
* Assumefriction factor, f =0.03
» Use rearranged form of standard equation (equa®yno determineli-

ameter
fL. 80, flL 8oV?
Ap=—-"CV2 . Dzs/—
D® 77 Ap 77

e Use value for diameter to determiRe ande/D
» Determinenew friction factor, f

» Determinenew diameter,D

» lIterate untilD does not vary significantly

With the above information, you should be equipfmednswer the questions on the following
pages.

A full page Moody Chart is given on page 23.
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3.6 Moody Chart
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3.7 Example

Water flows through a 150 mm diameter pipe for \uttive relative roughnesgD is 0.0002
at a rate of 0.1 fifs. Calculate the pressure drop over a 100 m levfgtipe. Take: = 0.001
kg/ms.
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3.8 Turbulent Flow in Pipes Exercises

1.

Find the power required to pump 10000 tonnes/hburater { = 0.8 x 10° kg/ms)
along 3 km of pipe witla = 0.05 mm. The pipe diameter is 1 m, and the érnldeo
pipe is 20 m above the entry.

(1134 kW)

A pressure difference of 0.0032 bar is requirepump air of density 1.3 kg/fand
kinematic viscosity 1.4 x T®m%s along a horizontal pipeline 0.75 m diameter, and
length 500 m. Given that= 0.15 mm, calculate the flow rate of the air.

(3 n/s)

The power required to pump 50 litres/s of petren@ity 700 kg/m) along a horizon-
tal pipeline of length 1 km is 16 kW. Given tha¢ tkinematic viscosity of petrol is
0.5 x 10° m?%s, and that the roughness of the pipe3s0.000075 m, find the size of
the pipe used.

(0.15 m diameter)

Oil of density 880 kg/rhand kinematic viscosity of 0.37 x £an?/s flows at 1515 li-
tres/min through an asphalted cast iron pipe (0.00012 m) of diameter 152 mm.
The pipe is 805 m long and slopes upward®dab&he horizontal. Determine the pres-
sure difference across the pipe, and the powelnezjurhe flow is upward.

(10.695 bar; 27.0 kW)

Water flows at 0.03 fits through a 75 mm diameter pipe of length 100romfa con-
stant level reservoir. Calculate the height thatrésservoir level must be above the
pipe outlet. The discharge is a free jet to atmespfthe pipe is hydraulically smooth,
and g = 0.001 kg/ms.

(43.1m)

A pipe of 150 mm diameter and 54 m long is conreetden large tank, the entrance
to the pipe being 10 m below the surface level. [blaeer end of the pipe is 20 m be-
low the upper end, and is joined to a horizontpemf diameter 240 mm and length
75 m, which discharges to atmosphere. The roughaes$.2 mm for both pipes. As-
suming that the flow in both pipes is fully turbotedetermine the flow rate. Check
your assumptions. The water temperature is 15°C.

(0.113 ni/s)

Two reservoirs are connected by three cast iroespip series. 1= 600 m, Q = 0.3

m; L, =900 m, B =0.4 m; I3 = 1500 m, @ = 0.45 m. When the flow rate is 0.11

m3/s of water, for whiclu = 0.00114 kg/s, determine the difference in serfavels.
(8.13m)

25



Thermodynamics & Fluids UFMEQU-20-1 2010-2011 Semester 2

8. A large tank supplies water to a point 30 m belbwlevel in the tank through a pipe
of length 3000 m and diameter 0.6 m. The pipe e®ssidge whose summitis 9 m
above and 300 m distance (along the pipe) fromete in the tank. For the pipe,
relative roughnes#/D = 0.006;u = 0.001 kg/ms, angym= 1 bar. Assume that the
flow is fully turbulent. Determine:

* The flow rate, assuming that the discharge isajieto atmosphere

* The depth below the ridge at which the pipe mudalgkif the absolute
pressure in the pipe is not to fall below 3 m oteva

* Check that the flow is fully turbulent

(541 litres/s; 4.98 m)
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4 Minor Losses and Valves

The above analysis allows for the frictional efteof straight lengths of pipe. There are a lot
of other components in fluid systems which causditexhal losses, often termed minor
losses. These include things such as bends, eagramd exits from reservoirs, changes of
section, T-junctions and filters. It also includedves for which losses are not minor but de-
liberately introduced in order to control the floate.

All of these cause additional loss through adddalamirbulence or swirling imparted to the
flow. The devices are usually considered to beewd Zength, but their effects are often no-
ticed many pipe diameters of length upstream angndtveam of the fitting, particularly
downstream. Thus when there are two or more fitimgclose proximity, the effects can be
complex.

However, it is sufficient simply to add the indivial effects to get the overall effect. As some
fairly rapid changes in direction take place in tlosv, flows through the fittings are consid-
ered fully turbulent.

For turbulent flow, the pressure loss due to prpion, as defined in equation (16):

L1 ,
Ap=—=
p=F5/

L
For minor losses, we retain the in the equation, but add a loss factqrdepending on the
fitting. Therefore, the loss associated with a congnt or fitting only is:

bp =k e’ (20)
If there are multiple fittings for a particular $gs (such as multiple bends, junctions etc.),
then these loss factotg, ky, ks, ... can be summed together to produce a overallfigor:

Effective Loss Factor k, = > k =k +k, +---+k,

i=1
So, the overall pressure loss through the systerorbes:

oo\,
Ap:(BJf keji'oc ‘ (21)

Tables identifying values fd«for various components are available in many baokfluids.
Many are itemised in the following table.

With a valve, the loss coefficient is identifiedlgsandis dealt in the same, way, except that

the value ok, varies according to the valve opening. A grapk,afgainst degree of opening
is known as the valve characteristic. A list ofitgb values is provided on page 28.
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4.2 Minor Losses Example

1. The flow rate from A to B is 565 litres/s. Determithe power required from the
pump. Takev = 0.113x 10 m%s. ¢ for a commercial steel pipe is 0.000045 m.

3m

Zm . E
200-mm . ‘ :
commercial = - I — ’
steel pipe
/ 65m !\ B
K=09 | K=
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4.3 Minor Losses in Pipeline Systems Exercises

1. What pressurgy is needed to cause 100 litres/s to flow into teeak at a pressure
p2 of 0.4 bar (gauge)? The pipe has a diameter 150sm.046 mm, anad= 0.114

x 10° m’/s.
(26.74 bar)
Py Device
K=09 260m
K=
B
160 m
4 T S
325 m K=09

2. In a processing plant, turpentine is pumped fromtp® to a delivery point at B,
where the turpentine emerges as a free jet at atmeos pressure. The pipeline con-
sists of 60 m of 150 mm diameter pipe, followedBym of 100 mm diameter pipe.
= 0.000046 m for both pipes. The flow rate is (. For turpentinep = 870
kg/m® andy = 1.375x 10° kg/ms. Determine:

a. The pressure difference

b. The power required
(1.37 bar; 6.85 kW)

90° BEND K = 0.31
45° BEND K = 0.17

Ac = 6om

€= 0:00004(un

D= (50 TN
= ! 2T
03 ATE VALVE =y
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3. The system shown delivers water from one tank tdhear. A globe valve (K = 10)
controls the flow. The water issues as a freetjatraospheric pressure at B. The total
pipe length is 25 m, and the pipe diameter is 4Q ifime pipe has a roughness
0.00025 m. Taker = 10° m?/s. Determine the flow rate.

(2.4 x 10° m¥s)

0) .
- e e £
- "‘/ 7)»«
» qob(:ogl o 9
[ —E__*—-— —
/ - T L -
L= 2% GLege VALNE - -~
:D’Alou-\ K;IO'
(6" GEND
K=0-20
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5 Fluid Machines

5.1 Machine characteristics

Fluid machines either take energy from the flow @gample a turbine or a motor) or give
energy to the flow (examples are pump, fan or ce@sgor).

Taking the pump example, the simplest way of regrsg its performance is that it gives a
constant pressure ridg, regardless of the volumetric flow raté,. The characteristic of
the pump, which is a plot @fp, againstV then appears as below in Figure 14.

App

Figure 14: Pump Characteristic: Constant Pressige R

This representation is rather unrealistic exceptr @vlimited range of flows, the reason being

that it implies asV increases so does the power given to the flow. IRémapower is volu-
metric flow rate multiplied by the pressure riséefefore:

Power to the flowr Ap V (22)

This would eventually become infinite. Whatevervds the pump has a maximum possible
power it can deliver.

We can also define efficiency for the machine.
_ Power totheflow _ Ap,V

- Powerconsumptio P (23)
whereP is the power consumption. We can rearrange equéi®) solving forAp,:
Ap Vv nP
= L Ap =" 24
= Pp = (24)
If » andP are constant, then:
constant
Ap, :T (25)
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The characteristic curve appears as in Figure 18.cah also plot another characteristic
curve ofy againstV .

App
0 \Y;
n
0 \Y;

Figure 15: Pressure Rise as a function of flow rate

In practicey is not constant because the blade shapes ar@piiiyal for a certain combina-

tion of angular speedrand flow rateV . The power input (power consumed) can usually be
varied to produce a variety of angular speeds. fidsslts in a set of characteristics for each
machine in Figure 16 overleaf.

The characteristic curves can often be represag@dirve-fitted equations such as:
Ap,=A-AN® (26)

whereA; andA; are constants specific to the pump (or machine).
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App

Low-flew

Increasingw

High flow
Low Ap,

Figure 16: Pressure Rise for different pump angudéwcities

5.2 Machine Operation

The operation point on the characteristic depemus uhe pipe and system it is attached to.
Take the example shown in Figure 17.

Figure 17: Example Fluid Machine System
The pump has to overcome the héa@quivalent to hydrostatic pressysgh) and the pres-
sure differencep — ps) before any flow can occur, the remaining presswaglable from the
pump being lost to friction.

When dealing with a machine system, Bernoulli’'saun has terms representing the pres-
sure provided by the pump as well as the lossesalfnetion:
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P +£pcz+png+Ap =p +£pcz+png+Ap
A 2 A p B 2 B L (27)

whereAp, is the pressure provided by the pump, Apdis the pressure drop due to friction
and minor losses in the pipe system. If we taketipos A andB to be the surfaces of the
reservoirs A and B, the velocities at these panésnegligible compared to the velocity of
flow in the pipe, so the dynamic pressure termsiagdected. Rearranging equation (27), we
get the following:

Pa +%mi + 09z, +4p, = pg +%p<:é + 092, +Ap,
Pa * 002, + AP, = Py + 097, + A,
Ap, = (s = Pa)*+ 29(2 ~2,)+ A,
Ap, = (ps = Pa)+ P+ Ap,

We can replacé&p, with the following (see section 3.4.3 on page 2Be-g¢ection on Type 3
turbulent flow problems—for the derivation of tl@quation):

fL 1 8fLp,
Ap =—=pc% = V2
P szc 7°D°

Substituting this in, the equation is now:

8fLp,;
Ap, = (P~ p,)+ Agh+ 3 LV? (28)

We can see that this equation has the same foeqgusgion (26), in that there is a term unre-
lated to the volumetric flow ratep{ — ps) + pgh which is known as thstatic lift and aflow

dependent term isz . As such, we can rewrite equation (28) as:
DS

Ap,=C, +CV? (29)

whereC; andC; are the static lift and the flow dependent terspestively. Note the similar-
ity of this equation with equation (26}, is a constant, an@; is a constant if is constant,
which is true for fully turbulent flow.

— 72
Equation (26) is known as tipaimp characteristic: Ap, =A-AV

Equation (28) is known as tipgpe characteristic: Ap, =G +CV*

Theoperating point is found where these two equations result in #mesvalue. Thus:

IA-AV2=C +CV? (30)

Alternatively, plotting these equations graphicadlg shown in Figure 18, the operating point
is the point wheréhe pump characteristic and the pipe characteristiantersect The flow
rate can then be determined by inspection.
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App

Aq
APpo-

Ci

0 pump characteristic

1o

Figure 18: Graphical technique to determine opeggboint
The subscripb in the labels attached to Figure 18 indicate therating points.

The efficiency characteristic (as shown in the loplet in Figure 18) can be used to find the
power consumption (and hence running costs) ofracpiar system. As can be seen, this
particular system is not running at peak efficiency

5.3 Using Head Rise Instead of Pressure

It is common to use characteristics and calculatibat use heads (in metres) instead of pres-
sures. When dealing with fluid machines, hddds defined as the following:

_P
A9

wherep is the pressure, is the density and is the gravitational acceleration.

This is valid for fluid machines because for anyegi machine, the head characteristjc
againstV is independent of the fluid pumped, provided thedfremains incompressible.
The exact reason for this can only be understoomligh a study of pump design, which is

beyond the scope of this work. All of the analysa® be repeated usitg instead ofp, the
only adjustments being that all the equations aneled through byg.

36



Thermodynamics & Fluids UFMEQU-20-1 2010-2011 Semester 2

5.4 Summary

The pump characteristic is given by:
Op, = A~ AV?
where A and A are machine specific constants.

The pipe characteristic is given by:

Ap, =C, +CV?

where G and G are static lift and flow dependent term respedtyive
o Static lift is: 0a— Ps) +pgh

8fLp

mD°

o Flow dependent term is:

When equations (26) and (29) are equated, a valukofv rate for the operating
point can be determined. The operating point cafobed graphically by locating the
flow rate for the point of intersection.

[A-AVZ=C +CV?

Efficiency is given by

=

_ Power tatheflow :Appv
Powerconsumptio P

When dealing with head isnetad of pressure, remeioldivide all terms byg, as:

H="
29
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5.5 Fluid Machines Example

The diagram shows a pumped water system contrblledvalve. The friction factor for the
flow in the pipe i = 0.025. The pump characteristic is given by; =1000-10°V 2

The loss through the valve is given hp, = kvé,oc2 wherec is the mean velocity in the

pipe. Ignoring all minor losses, calculate the woduflow rate when the valve is wide open
andk, = 10.
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5.6 Fluid Machines Exercises

1. The diagram shows a pumped system controlled ahev

The pump characteristic is given by:
H, =1000-10°V?
The loss through the valve is given by:

ap, =525

whereC is the mean velocity in the pipe.

Ignoring all minor losses, calculate the volumenl@ate when the value is wide open
andk, = 10 and when the valve is 50% closed knd 100.

The efficiency of the pump is given by:

n=-280/%+28/
Calculate the power consumption of the pump andtimaal running costs of the sys-
tem if the pump operates continuously. The valveully open. Pump power costs

3p/kWhr.

(0.087 ni/s; 0.069 n¥s, 657 kW, £173,000)
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2. A centrifugal pump has the following characteristic
Q(m¥s) |0 0.1 0.15 0.20 0.25 0.3
AH (m) 40 37.5 33 27.5 20 12
n (%) 0 73 82 81 71 48

It is attached to a pipe with the outlet 10 m abtheeinlet and with equal static pres-
sure. Assume flow is fully turbulent in all conoits.

Find theAH,, power given to the flow and power consumed if floes through the
system is 0.22 f¥fs.

Assuming a friction factoir = 0.02 = constant, and the the pipe is circulatise, find
the pipe diameter if its length is 100 m.

(0.25 m, 54 kW, 69 kW, 0.222 m)

3. The same pump as in Q2 is used with a differeriesy$n which a pipe connects two
reservoirs at equal pressure, one of which hauiface 5 m above that of the other.
Flow is an upward direction. If the pipe lengti®0 m, diameter 0.1 m, roughness of
0.5 mm, find the volume flow rate up the pipe.

A valve in the pipe is shut until the equivalenpgiength of the total system is 280
m. Calculate the reduced flow rate

(0.036 ni/s, 0.022 n¥s)
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6 Fluid Momentum

The momentum equation for fluids helps us to da#t vorces in the fluid flow. For exam-
ple, we need to use the momentum equation to leetaldalculate the force produced by the
thrust of a rocket engine, or the force producead gt of fluid impinging on a turbine blade.

Consider the steady flow of a fluid along a hortabpipe, entering a particular section of the
pipe at section 1 and leaving at section 2, as showigure 19.

1 2
\\
Fluid T~ Fluid
entering leaving
—_— e - —
_—

—

Figure 19: Steady flow in a horizontal pipe

Let the mass flow rate  kgls
Let the entry velocity €1 m/s
Let the exit velocity £, m/s

Then in1 second m kg of fluid undergoes aimcrease in velocity fromC; to C,. That is,
the m kg of fluid must experience an acceleration £G) m/s/1 s = (6— C) m/<.

But, in order to undergo an acceleration, the flaigst experience a force according to New-
ton’s Second Law of motion, given by: force = masscceleration:

F =ma=m(C, -C,)} (31)

Hence thdorce acting on the fluid = mass flow rate x changm velocity.

Note thatthe force must act in the same direction as the daction in which the change of
velocity occurs

Should the flow direction of the fluid change, thexlocity components must be used, in say
thex andy directions. Considering the flow through the pgb@wn in Figure 20.
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Ce ¢,

1

Cp cl
Ca

Figure 20: Flow through a curved pipe with velastshown as components

Let the flow have the following velocity components
* Cy inthexdirection at section 1
* Cyinthexdirection at section 2
» Cyinthey direction at section 1
* Cpinthey direction at section 2

Then theforce in the x direction is the mass flow rate multiplied by the changeatocity in
thex direction:

F,=m(C,, -C,) (32)

And the force in thg direction is similarly:
F, =m(C,, -C,,) (33)

y

Note that these momentum forces can be producqatdssure differences in the fluid, the
weight of the fluid or the force reaction from didmbject.

These forces are called momentum forces becauseentom = mass x velocity and obvi-
ously thenm(C, - C,) is therate of change of momentum which by Newton’s % Law

must equal the applied force.

Note that the velocities decomposed inendy components follow standard trigonometry:

C

1
1
1
1
I
I
I
1
1
1
1
»
»

Cx

where:
C,=Ccosf and C, =Csind
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6.1 Fluid Momentum Example

A flat plate of mass 10 kg is constrained horiztiyptut may move vertically without any
resistance. A jet of water of 0.2 m diameter impmat right angles on the underside of the
plate. What must be the velocity of the jet if flate is to remain stationary against the ac-
tion of gravity?
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6.2 Fluid Momentum Exercises

1.

In the above problem, if the jet is again vertigalpwards but the under-side of the
plate is in the form of a cone of 150° includedlangalculate the jet velocity neces-
sary to maintain equilibrium of the plate.

(2.05 m/s)

A jet of water having a velocity of 30 m/s impingasa series of vanes which divert
the water through 120°. If the jet diameter isf®.,3alculate the resultant force on the
vanes.

(110.2 kN)

A rocket burns its propellant at a rate of 7 k@ise exhaust gases leave the rocket at
a relative velocity of 1000 m/s. The mass of theked is initially 230 kg. Determine:
a. The rocket thrust.
b. The initial acceleration of the rocket if it takef$ vertically.
(7 kN; 20.62 m/y

A stationary curved vane deflects a 50 mm diamjetesf water through 150°. Be-
cause of friction over the surface, the water legthe vane has only 80% of its
original velocity. Determine
a. The mass flow rate necessary to produce a fore@@®d N on the vane in the
direction of the jet.
b. The force on the vane perpendicular to the jet.
(48.2 kgls; 472.9 N)

A toy balloon of mass 86 gm is filled with air omkity 1.29 kg/mh The small filling
tube of 6 mm bore is pointed vertically downwardd ¢e balloon is released. Calcu-
late the initial rate at which air escapes if thiéial acceleration is 15 nfls

(8.82 gm/s)

A curved plate deflects at 75 mm diameter jet ofewavhich is initially horizontal,
upwards through an angle of 45°. For a jet veloait$0 m/s, and ignoring friction,
calculate the total force acting on the plate,athbmagnitude and direction.

(5410 N at 67.5° to the horizontal)

. A square plate is hinged about its upper edge,wisiborizontal. The length of each

side is 0.4 m and the plate weights 200 N. A hariabjet of water issues from a long
horizontal slot 0.3 m by 2 mm and impinges on tla¢epat a vertical distance of 0.2
m below the hinge. The jet has a mass flow rat kaj/s.
a. Determine the force which must be applied to tlaepat its lower edge in or-
der to keep it vertical.
b. If the plate is now allowed to swing freely, det@methe inclination to the
vertical which the plate assumes.
(67.5 N; 42.6°)
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8. A stationary curved vane deflects a 40 mm dianmeteasf water through an angle of
120°. Due to friction over the surface of the vahe,water leaves the vane has only
90% of its original velocity. If the jet produce$aace 1000 N on the vane in the
original direction of the jet, determine:

The jet velocity at entry to the vane

The water mass flow rate

The force produced on the vane in the directiopg@edicular to the jet

The magnitude and direction of the resultant faxerted by the water on the

vane

apop

(23.43 m/s; 29.44 kg/s; 537.6 N; 1135 N at 28.3°)

9. A stationary curved vane deflects a 30 mm dianmeteasf water through an angle of
140°. Due to friction over the surface of the vahe,water leaves the vane has only
95% of its original velocity. If the jet produced$aace 500 N on the vane in the origi-
nal direction of the jet, determine:

a. The jet velocity at entry to the vane
b. The water mass flow rate
c. The force produced on the vane in the directiopg@edicular to the jet
d. The magnitude and direction of the resultant faxerted by the water on the
vane
(20.23 m/s; 14.3 kg/s; 176.7 N; 530.3 N at 19.5°)
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7 Formulae & Data
7.1 Fluids — General

Hydrostatic pressune= ogh whereh, is the pressure head

Note that b is sometimes represented lay as in Bernoulli’s equation below.

Bernoulli's equation: P, +%pclz + 00z = P, +%p022 + 09z, + Ap
Mass flow rateh = p,Ac, = p,AC, or m= AG - AG
Vl V2

Volume flowing per second, i.e. volumetric floweaV = Ac

7.2 Fluid Flow with Friction

Re= chD = % wherep is dynamic viscosity andis kinematic viscosity.

Ap = { f (%] +>'k }@ pczj Power loss ApV

i=1

For Laminar Flow Ap = BuLv and f= 64
R Re
For Turbulent flow in general: f= 1 5
69 l £ 111
—-18logl —— +(J
Re (37D
1
For Fully turbulent flow: f=

B0
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