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1 Fluid Flow with Friction 

In Semester 1, we covered fluid flow through pipes looking at the Continuity Equation and 
Bernoulli’s equation. One of the assumptions we made about the flow is that it was fric-
tionless. In real systems however, friction between the fluid molecules and solid surfaces 
(like the pipe walls), as well as between the fluid molecules themselves, cause a pressure loss 
to occur in the fluid. 

 

 

Figure 1 illustrates a pipe with fluid flowing through it. While similar to what we previously 
studied in the first semester, this time, there is shear stress occurring between the fluid and 
the solid pipe wall, represented by τw.  

Without friction, Bernoulli’s equation gives: 
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2
1

pressure Total 2 =++= gzCp ρρ  

So: 

 2
2
221

2
11 2

1
2
1

gzCpgzCp ρρρρ ++=++  

The effect of friction is that shear stresses at the wall of the pipe, τw, cause a drop in total 
pressure along the flow direction of ∆p. 

The equation becomes: 
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This section of work is about determining ∆∆∆∆p.  

The term τw represents the shear stress occurring in the fluid at the wall of the pipe. Being a 
stress, it is defined as a force divided by an area. In this case, it is the force required to 
move the fluid along the pipe wall area: 

Figure 1: Fluid flowing through a pipe, with wall shear stress, τw 
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where As is the internal surface area of the pipe.
 

The force required to overcome this shear stress is the drop in pressure multiplied by the 
cross sectional area. This equals the shear stress multiplied by the surface area over which the 
shear stress is occurring. Mathematically: 
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Rearranging to solve for the shear stresses at the wall of the pipe: 
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where L is the length, D is the diameter and R is the radius. 

The problem therefore becomes that of finding out how the shear stress varies with flow. The 
way in which this is done depends on the nature of the flow. 

1.1 Laminar Flow 

At low velocities, a few duct flows exhibit the laminar flow  characteristics, where layers of 
adjacent fluid slide over each other in an ordered manner, exerting shear forces because of the 
relative movement. Fluid particle paths (streamlines) are straight, with fluid near stationary 
solid surfaces (pipe wall) moving more slowly than fluid away from solid surfaces. 

The velocity in the flow direction is constant and steady and does not vary with time. The 
velocity perpendicular to the flow direction is zero at all times. Laminar flow is illustrated in 
Figure 2(a). 

1.2 Turbulent Flow 

Turbulent flow  is one of the last great mysteries of physics and there is a Nobel Prize wait-
ing for the person who can uncover its mysteries. The unexplained facts are that if the veloc-
ity of a laminar flow is gradually increased there comes a point at which the nature of the 
flow changes. Particle paths become irregular and chaotic, leading to large scale mixing be-
tween adjacent layers. The flow becomes very time dependent as sudden bursts of chaotic 
energy are created within it and then gradually dissipated. It all appears random and unpre-
dictable. Turbulent flow is illustrated in Figure 2(b). 

The structure is similar to large-scale turbulence behind a moving lorry or as you see when 
looking down at the water flow around a supporting pillar of a bridge. There are series of 
circular motion eddies generated which gradually dissipate in a wake behind the structure. 
The difference in duct flow is that no physical reason for the turbulence is apparent, as the 
pipe walls are generally relatively smooth.  
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1.3 Analysis of Flows 

   

Figure 2: (a) Laminar flow; (b) Turbulent flow. Rising smoke demonstrates the transition 
between laminar and turbulent flow. 

Laminar flow can theoretically be analysed, but turbulent flow cannot, and the approach has 
to be one of using validated experimental (empirical) results. Whether a flow is laminar or 
turbulent is determined by the value of the key flow non-dimensional number, the Reynolds 
number, Re.  

The Reynolds number is defined as: 

 µ
ρcD=Re  

where ρ is the fluid density, c is the flow velocity, D is the pipe diameter and µ is the dy-
namic viscosity of the flow. (This term was defined last semester as part of the Dimensional 
Analysis lecture).  

The Reynolds number represents the ratio of the inertial to the viscous forces within the 
flow. The term ρc is the momentum per unit volume, so the higher it is the more likely there 
is spare energy in the flow for turbulent behaviour. The higher D, the less restrained this ex-
cess energy is by the pipe walls, but the higher µ the more likely it is to be damped out. 

The critical Re for pipe geometry is about 2000. Below this, flow is laminar; above it, tur-
bulence tends to start. The figure is not definitive, as laminar flow can sometimes be main-
tained up to 3000 where circumstances are favourable. It depends upon the presence or oth-
erwise of turbulence initiators such as bends, fittings and fluid machines. The table below 
summarises this: 
 

Reynolds Number Flow 
Less than approx. 2000 Laminar 
2000 – 3000 Critical Region 
Above 3000 Partial or fully turbulent 

Most flows, especially those in pipes, are turbulent. It is very unusual to achieve laminar pipe 
flow. The velocity has to be low, the pipe small and the fluid highly viscous. Laminar flow is 
of greatest value in the analysis of thin films in bearings, shock absorbers and the like. 
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Note the use of c as the symbol for velocity in these notes. A lot of texts use either u or v, 
which can be confused with internal energy u or specific volume, v. 

1.4 Shear Stress and Fluid Viscosity 

 

 

The shear action is due to relative movement of sliding fluids layers. Figure 3 shows two 
streamlines in laminar flow, with one streamline travelling faster than the other. If the flow 
direction is x and the direction perpendicular to the flow, y, (see coordinate system in Figure 
3) then the shear stress of one layer on the other is given by: 

 
sstreamlinebetween  distance

speedin  difference
viscosity ×==

dy

dcµτ  (2) 

for a Newtonian fluid where µ is the fluid dynamic viscosity. 

As viscosity, µµµµ increases, the frictional effects increase. Viscosity does not vary much with 
pressure, but is highly temperature dependent, decreasing rapidly with temperature for liquids 
and increasing slowly with temperature for gases. 

The SI unit is Pas (Pascal seconds), shear stress being measured in Pa (N/m2) for a fluid. 
Sometimes the same units are seen broken down further into kg/ms. The model is analogous 
to that for solids, the velocity gradient is essentially being a fluid measure of ‘strain’.  

Most genuine fluids behave in 
a Newtonian manner, but 
there are many substances 
which appear to be fluids that 
contain significant numbers of 
larger particles. These include 
milk, blood and ink and ex-
hibit modified behaviour as a 
result. It can be seen from 
equation (2) that a Newtonian 
fluid has a linear relationship 
between shear stress and the 
shear rate (dc/dy). Non-

Newtonian fluids do not possess such a linear relationship, as shown in Figure 4. 

You may also see viscosity referred to as kinematic viscosity, represented by the Greek letter 
nu, υ and is determined by the following equation: 

 
ρ
µυ =  

Figure 3: Two streamlines experiencing shear 
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i.e. the dynamic viscosity divided by the density. (Notice this is not the little letter v.)  

Consequently, you may also see the Reynolds number defined as: 

 
υ
cD=Re

 

1.5 Summary 

Bernoulli’s Equation including pressure loss due to friction is: 

 pgzCpgzCp ∆+++=++ 2
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where the ∆p term is the pressure loss due to pipe friction (and other losses) 

The Reynolds number is defined as: 

 υµ
ρ cDcD ==Re  

and is used to define the state of the flow (either laminar or turbulent). The following table 
details this: 

Reynolds Number Flow 
Less than approx. 2000 Laminar 
2000 – 3000 Critical Region 
Above 3000 Partial or fully turbulent 

 
Dynamic viscosity is represented using µ and the kinematic viscosity is υ. Density is used to 
relate the two terms, where: 

 ρ
µυ =  
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2 Laminar Flow 

The analysis of laminar flow  considers an element of fluid dx contained within a pipe, as 
shown in Figure 5. The pipe radius is R and the element radius is r. All quantities are as-
sumed to be positive and increase in the flow direction in the length dx, and in the r direction 
perpendicular to the flow. If they decrease or are negative, the mathematics will indicate this. 
Even the shear stress τ is assumed positive in the flow direction and later shown to be nega-
tive, as it is essentially friction acting against the flow.  

 

In the positive x direction, the forces acting are the pressure p over area A and the shear 
stresses (which act on the surface area of the element). In the opposite direction, the force 
acting is the pressure (p + dp) over area A. Therefore, balancing the forces for the element 
results in: 
 ( ) 0)(2 22 =+−+ rdpprpdxr πππτ   

Simplifying this equation and solving for τ gives us: 
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From the definition of viscosity, equation (2), we can say that: 

 
dr

dc

dx

dpr µτ ==
2

 

Because there is no flow in the r direction, it can be assumed that p is also constant across the 
section. Any change of p due to the height change is small, so is neglected. 

2.1 Fluid Velocity 

The aim of this part of the analysis is to find velocity c as a function of the radius from cen-
tre-line r. 

Figure 5: Element of Fluid 
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Separating the variables c and r: 
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Integrating: 
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where C1 is the constant of integration. 

The constant C1 can be determined by applying the boundary condition that when the radius 
of the element is the at the pipe wall (r = R), the velocity of the flow is zero. This is known as 
the condition of no slip, where at the boundary with a solid surface the fluid molecules are 
supposed to be in such intimate contact with the surface that there is no relative movement. 
Applying this boundary condition, C1 is determined as: 
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The overall situation is therefore: 
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This equation gives the classic parabolic profile with a maximum at the centre (r = 0) and 
reduction towards the wall which becomes increasing rapid as the wall gets close, as shown 
in Figure 6. 
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Figure 6: Velocity profile in pipe 

The negative sign in equation (3) indicates that for a positive µ, the pressure gradient dp/dx 
must be negative, i.e. the pressure must decrease in the direction of flow. Note that the maxi-
mum velocity at the centre line is given by: 

 
dx

dpR

Rdx

dpR
c

µµ 4
0

1
4

222

max −=




















−−=  

Whilst of interest, knowledge of the velocity profile is not the required end. The required end, 
is instead, to determine the pressure drop ∆∆∆∆p in terms of volumetric flow rate, V& . To do 
this, we must first determine volumetric flow rate. 

2.2 Volumetric Flow Rate 

The volumetric flow rate can found from: 

Flow rate = area × velocity = Ac 

with the complication that velocity varies across the section. The approach is to take a small 
annular element between the centre line, shown in Figure 7, and the pipe radius and then 
add up the flow through all such elements by integrating between r = 0 and r = R.  

cmax 
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The area of the element (the shaded area) is: 
 rdrdA π2=   

Therefore, the volumetric flow rate through the element is: 

 

( )( )

( ) ( )

( )drrrR
dx

dp
Vd

rdrrR
dx

dp
Vd

rdrccdAVd

32

22

4

2
4
1

2

−−=








 −−=

==

µ
π

π
µ

π

&

&

&

  

Integrating between r = 0 and r = R results in: 
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So the volumetric flow rate is proportional to the pressure gradient. 

2.3 Pressure Drop, ∆∆∆∆p 

It is important to note that, along a pipe, the mass flow rate and the volumetric flow rate 
are constant (following the continuity equation, when density is constant). As R and µ are 
constant, the pressure gradient dp/dx must also be constant. 
  

Figure 7: Annular Element of Fluid in cross section of pipe 
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For a horizontal pipe with length L: 

 
L

p

dx

dp ∆−=  (5) 

Note that the change in pressure term in the numerator, ∆p is negative since the pressure p1 in 
Figure 8 is greater than the pressure p2, (i.e. p1 – p2 = ∆p = positive value). The change in 
pressure related to dp is p2 – p1 = –∆p. 

Rearranging equation (4) above for dp/dx: 

 V
Rdx
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R
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V &&
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4 8

8 π
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µ
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Combining equations (5) and (6): 
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Rearranging, an equation for ∆∆∆∆p can be determined: 
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π
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Equation (7) allows us to determine the pressure drop in a pipe in which the flow is lami-
nar. This pressure drop can then be used in the form of Bernoulli’s equation defined at the 
start: 
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2.4 Average Velocity 

Rearranging equation (7) to solve for the volumetric flow rate results in: 

 p
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VVL

R
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Since the volumetric flow rate equals the velocity multiplied by the cross sectional area, it 
follows that the average velocity is: 
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If we substitute equation (5) above into the equation for the maximum velocity, we have: 

Figure 8: Flow along a pipe 
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Comparing equations (8) and (9) it is clear to see that: 
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2.5 Power Consumed 

It is also important to be able to relate the pressure drop to the power consumed (or equiva-
lently, the power required by a pump). Fluid systems that transport fluid over significant dis-
tances are greatly affected by friction. Where possible, the flow is driven by a height differ-
ence between the inlet and outlet of the system, but in many cases a pump is required to es-
tablish the flow. Analysis of fluid systems is therefore closely related to the analysis of fluid 
machine performance. 

 

In Figure 9, the fluid moves from section 1 to section 2 in 1 second, under the action of force 
pA. The power applied is the work done because it happens in 1 second, and this can be cal-
culated from force × distance: 
 VppAc &==× Distance  Force =Power  

This is the power at any point in the flow, so if friction causes a pressure drop ∆p, the power 
loss is: 

 Vp &∆=LossPower  

In this analysis, the average velocity has been used, although denoted by c instead of caverage. 
Strictly, this is not correct and the shape of the velocity profile should be taken into account 
when calculating power or the dynamic pressure. However, it is common not to bother and 
does not lead to much loss of accuracy.  
  

Figure 9: Fluid moves from 1 to 2 under force pA 
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2.6 Summary 

The following itemises the information that you need to solve the problems associated with 
laminar flow in pipes: 

• Bernoulli’s equation taking into account a pressure drop: 

 pgzCpgzCp ∆+++=++ 2
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• The Reynolds number helps to determine whether a flow is laminar or turbulent: 

 υµ
ρ cDcD ==Re  

• The shear stress experienced in the fluid at the wall of a pipe: 
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• The velocity profile is defined as: 
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• The pressure drop associate with fluid friction in a laminar flow in a pipe is derived 
as: 

 4

8

R

VL
p

π
µ &

=∆   

• The power loss (or power required) is: 

 Vp &∆=LossPower  

Using these equations, you should be able to solve the problems on the following page. 
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2.7 Example 

Oil of density 900 kg/m3 and viscosity of 0.17 Pas is pumped through a 75 mm diameter pipe 
750 m long at the rate of 2.7 kg/s. If the critical Reynolds number is 2300, show that the criti-
cal velocity is not exceeded and calculate the pressure required at the pump and the power 
required. The pipe is horizontal. 
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2.8 Laminar Flow in Pipes Exercises 
 

1. Oil of density 850 kg/m3 is pumped along a horizontal pipe 100 mm diameter and 
1300 metres long. The quantity of oil passing through the pipe is 0.01 m3/s and the 
pump, which has an efficiency of 60%, takes 5 kW to drive it. Assuming laminar flow 
(check this) obtain the viscosity and kinematic viscosity of the oil. 

(0.057 Pas; 6.65 × 10–5 m2/s; Re = 1911) 
 

2. The velocity along the centre line of a 150 mm diameter pipe conveying oil under 
laminar conditions is 3 m/s. The pipe is horizontal and the viscosity of the oil is 0.12 
Pas and its density is 900 kg/m3. Calculate: 
 

a. The quantity flowing in m3/s 
b. The shear stress at the pipe wall 
c. The total horizontal force produced on the pipe, which is 500 m long 

(0.0265 m3/s; 9.6 N/m2, 2261 N; Re = 1688) 

 
3. Oil of viscosity 0.05 Pas flows through a horizontal pipe 19 mm diameter with a mean 

velocity of 0.3 m/s. Assuming that the flow is laminar (check this), calculate the pres-
sure drop over 45 m length of pipe. Also calculate the velocity at a point 5 mm from 
the wall of the pipe, and the shear stress in the oil at this point. Assuming density is 
900 kg/m3. 

(600 mbar; 0.465 m/s; 2.99 N/m2) 

 
4. Glycerine, with a density of 1260 kg/m3, viscosity 0.9 Pas is pumped at 20 li-

tres/second through a straight 100 mm diameter pipe, 45 m long inclined at 15º to the 
horizontal. The gauge pressure at the lower inlet end of the pipe is 5.85 bar. Verify 
that the flow is laminar, and calculate the pressure (gauge) at the outlet end and the 
shear stress at the wall. 

(Re = 357; 1.11 bar; 183.3 N/m2) 
 

5. Oil of density 910 kg/m3 and viscosity 0.124 Pas is pumped through a 75 mm diame-
ter pipe at 425 litres/min. Show that the flow is laminar and find the power require to 
pump the oil through 75 m of pipe, which rises 3 m.  

(Re = 883; 790.5 Watts) 
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3 Turbulent Flow 

The basis of the experimental results used in analysing turbulent flow  lies in Dimensional 
Analysis, which you have previously studied. The analysis starts by listing the variables that 
are felt to influence the process, in this case, pipe flow. Most of these can be found from the 
laminar flow analysis, with the addition of pipe inner surface roughness, which tends to in-
crease the level of turbulence in the flow. 

3.1 Shear Stress 

These variables are listed in the following table. 
Variable Description 

τw Wall shear stress (the variable we wish to investigate) 
ρ Density 
µ Viscosity 
c Average velocity 
D Pipe diameter (bore) 
ε Pipe roughness 

A relationship of the form below is assumed to represent the functional dependence on the 
listed variables: 
 ( ) fedba

ww DcKDc εµρτεµρϕτ =→=  , , , ,  (10) 

where K is a non-dimensional constant and a, b, d, e and f are unknown exponents to be 
found by experiment. 

Inserting the fundamental dimensions of each variable: 

 ( ) ( ) ( ) ( ) ( ) fedba
LLLTTMLMLMLT 1-1-1-3-2- =  (11) 

Equating powers of each dimension on both sides: 
 For M: 1 = a + b (12a) 
 For L: – 1 = –3a – b + d + e + f (12b) 
 For T: – 2 = – b – d (12c) 

We have 3 equations and 5 unknown powers, so we can determine 3 powers in terms of the 
other two. The rule is to keep the powers that appear most frequently in the equation. Clearly, 
b is the only power to appear in all equations, so we keep it.  

Equation (12a) is thus used to get rid of a and equation (12c) is used to get rid of d. This is to 
get rid of either e or f using equation (12b). Let us get rid of e: 

 ( ) ( )
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fbbbfdbae

bd

ba

−−=
−−−−+−=−−−+=

−=
−=

121313

2

1

   

Substituting these into the general equation (10) gives: 
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Rearranging: 
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The non-dimensional wall shear stress (see that τw is a pressure, divided by dynamic pressure, 
and is thus non-dimensional) depends on two non-dimensional variables: 

 The Reynolds number: µ
ρcD

 

 The relative roughness: D

ε

 

The relative roughness is a non-dimensional ratio that describes the internal surface of the 
pipe. Pipes can be made out of a wide variety of materials, and each material has a particular 
type of surface. These different surfaces can affect the pressure drop in the system, and are 
hence important to know. 

3.2 Pressure Drop, ∆∆∆∆p 

The nature of the dependence can be investigated by experiment. The general form of the 
relationship is 

 2

2 2

1
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2
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cFF
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=  (13) 

where F is a function to be found experimentally, and is a function of the Reynolds number 
and the relative roughness. 

Recall that the shear force experienced at the wall of pipe is: 
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Substituting equation (13) into equation (14): 
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L

pD
w ρτ =∆=  (15) 

Rearranging equation (15) for ∆p gives us: 

 2

2
14

c
D
FL

p ρ=∆   
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If F is known, the pressure drop for a given average velocity of flow rate can be found, as 
was done by analysis for laminar flow. The variable F is known as the Fanning Friction 
Factor. Often, though not in all textbooks, the factor 4F is replaced by f, known as the (non-
dimensional) friction factor or the Darcy Friction Factor . This is the form used from this 
point onwards. 

The final equation to calculate the pressure drop (in N/m2 or Pa): 

 
2

2
1

c
D

fL
p ρ=∆  (16) 

The value found for ∆p can then be incorporated into the form of Bernoulli’s equation de-
scribed at the start: 

 pgzCpgzCp ∆+++=++ 2
2
221

2
11 2

1
2
1 ρρρρ   

3.3 Determining the Friction Factor 

The experimental results determining the friction factor, f, can be viewed graphically or as 
equations. The graphical representation is more popular and is known as the Moody Chart, 
after the person that first presented the results in this way. It is a log/log plot of friction factor 
against Reynolds number, Re, with different curves for different values of relative roughness. 
This is shown in Figure 10 below: 

 

Figure 10: Moody Chart (a larger version of this chart appears on page 23). 
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There are four zones in the Moody Chart: 
1. Laminar Region: Using the equation for ∆p found in the Laminar Flow analysis sec-

tion (equation (7)), and matching this up to equation (16), we can do the following 
analysis to determine the friction factor for the laminar case: 

2
4 2

18
c

D

fL

R

VL
p ρ

π
µ ==∆

&

 

Replacing R with D/2, and V&  with Ac (which in turn equals πD2c/4) and simplifying 
results in the following: 

2
2 2

132
c

D

fL

D

Lc ρµ =  

Solving for the friction factor, f gives: 

Re

6464 ==
cD

f
ρ

µ
 

So, knowing this relationship, we can use either equation (7) directly for laminar 
problems, or equation (16) knowing that the friction factor is 64/Re. 

2. The Critical Region: The lines here are dotted because we are not really sure whether 
the flow is laminar or turbulent. None of your problems will rely on determining the 
pressure drop in this region. 

3. The Transition Region: In the Moody diagram, this is the area below the dashed line 
(labelled ‘Complete Turbulence’). In this region, the friction factor depends on the 
Reynolds number and the relative roughness, ε/D. To determine the friction factor, se-
lect the relevant relative roughness line, and at the point of the relevant Reynolds 
number, read across to the left to determine the friction factor. 

4. The Fully Turbulent Region: In the Moody diagram, this is the area above the 
dashed line. As can be seen, the lines for relative roughness are flat, meaning that the 
Reynolds number has no effect on the friction factor. Therefore, the friction factor de-
pends solely on the relative roughness.  

Note the table on the chart lists the roughness value (ε) for various materials.  

Instead of the chart, some time has been spent (by people who have evidently too much free 
time) developing equations to determine friction factor from the Reynolds number and the 
relative roughness factor. These are not derived here, but listed below: 

For the turbulent zone in general: 

 2
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For the fully turbulent region: 
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Although these can be used as alternatives to the chart, it is often quicker to choose the 
value from the Moody chart, as entering these rather complex equations into a calculator 
without mistakes can be challenging. 

3.4 Solving Problems 

There are 3 types of problems that you will come across. 

3.4.1 Type 1 – Pressure Drop 

This is the pump selection problem. You are generally given the volumetric flow rate, V& , 
and the pipe diameter, D, so that both the Reynolds number, Re, and the relative roughness, 
ε/D, are known, so f can be read directly from the chart. The pressure drop, ∆p, can then be 
calculated using equation (16) which will provide you with the details of the pump you need 
to select (that which can provide the necessary pressure to overcome the loss in pressure due 
to friction; i.e. ∆p).  

So, in summary, Figure 11 illustrates the process required for a type 1 problem: 

 

Figure 11: Flow chart for a type 1 problem 

3.4.2 Type 2 – Flow Rate  

This is where you have the pump and pipe system, and you wish to find the flow rate, it will 
give you, i.e. V& . You are generally given the pressure drop ∆∆∆∆p, The diameter, D, is also 
known, so the relative roughness, ε/D, can be determined. The Reynolds number, Re, how-
ever is not known since the velocity, c, is unknown. This problem is solved by assuming 
firstly, that the flow is fully turbulent (zone 4) so the friction factor, f can be determined from 
just the relative roughness. You can then use equation (16) to determine c. It is useful to rear-
range equation 14 to the following: 

 fL

pD
cc

D

fL
p

ρ
ρ ∆=→=∆ 2

2

1 2
 (17) 

You then compute the Reynolds number from the first value of c, and looking at the Moody 
chart, if the flow is fully turbulent, your calculation is completed and you can now determine 
the flow rate, V&  (remember: V& =Ac). 

If, however, your value of Reynolds number indicates that the flow is not fully turbulent, but 
transitional, then you have to determine the new friction factor, f from the Moody chart, and 
again use equation (17) to determine another new value for c, which you can then use to get 
another value for Reynolds number and so on. This iterative process can go until successive 
values for c do not change significantly. It is seldom necessary to do more than two esti-
mates of c. Once c is computed the flow rate, V& , may be found (remember: V& =Ac).  
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So, in summary, Figure 12 illustrates the process required for a type 2 problem. 

 

Figure 12: Flow chart for a type 2 problems 

3.4.3 Type 3 – Pipe Diameter  

This is the pipe design problem, where the pressure available from the pump allows ∆p to be 
known, the required flow is known, but the pipe diameter needed is not. In this case, neither 
Re nor ε/D is know, so f has to be randomly guessed as being near the centre of the Moody 
Chart, say f = 0.03.  

This guess is used to find an estimate of D, from which Re and ε/D are estimated and better 
guess of f found. This process is then iterated until no significant change of D occurs. For 
these problems, as velocity c is unknown, because area A is unknown, equation (16) is more 
usefully express in the form: 
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where K is: 
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K =  

which is constant if f is constant (fully turbulent condition). Hence, for turbulent flow, the 
pressure drop is proportional to the square of the flow rate whereas for laminar flow, the drop 
is directly proportional to the flow rate and the relationship is linear. 

Since we are trying to determine D, equation (18) is more usefully written: 
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So, in summary, Figure 13 illustrates the process required for a type 3 problem: 
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Figure 13: Flow chart for a type 3 problem 

3.5 Summary 

Remember that we can confirm that a flow is turbulent by checking the Reynolds number. In 
general, we can safely assume that the flow is turbulent if the Reynolds number is greater 
than 3000.  

• The standard equation to use to determine the pressure drop is: 

 
2

2
1

c
D

fL
p ρ=∆  

where L is length, D is the diameter of the pipe, ρ is the density of the fluid, and c is 
the average velocity of the flow. The term f is known as the friction factor , and is de-
termined from the Moody Chart. 

• There are four zones of the Moody Chart: Laminar zone, critical region, transitional 
turbulent, and complete turbulent. 

• To read a friction factor from the Moody Chart, you need to know the Reynolds num-
ber and the Relative Roughness. If you are dealing with the completely turbulent re-
gion, then just having the Relative Roughness is sufficient to determine the friction 
factor. 

• There are three types of problems: 
1. Type 1: Determine pressure drop 

• Given: Pipe Diameter and Flow Rate 
• Determine Re and ε/D 
• Determine friction factor , f 
• Use standard equation to determine ∆∆∆∆p (equation 14) 

2. Type 2: Determine flow rate (c is unknown) 
• Given: Pipe Diameter and Pressure Drop 
• Determine: ε/D 
• Determine friction factor  from Moody Chart assuming full turbulence 
• Use standard equation to determine value for flow velocity, c 
• Determine Re 
• Use Moody Chart to determine a new friction factor  (If full turbulence, 

this value of c is valid) 
• Use standard equation (in the form shown in equation 17) to determine 

new value for flow velocity, c 
• Iterate until c does not vary significantly 
• Remember, V& =Ac 

3. Type 3: Determine Pipe Diameter 
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• Given: Flow rate and pressure drop 
• Assume friction factor, f = 0.03 
• Use rearranged form of standard equation (equation 19) to determine di-

ameter 
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∆
=→=∆  

• Use value for diameter to determine Re and ε/D 
• Determine new friction factor, f 
• Determine new diameter, D 
• Iterate until D does not vary significantly 

With the above information, you should be equipped to answer the questions on the following 
pages. 

A full page Moody Chart is given on page 23. 
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3.6 Moody Chart 

 



Thermodynamics & Fluids UFMEQU-20-1  2010-2011 Semester 2 

24 

 

3.7 Example 

Water flows through a 150 mm diameter pipe for which the relative roughness, ε/D is 0.0002 
at a rate of 0.1 m3/s. Calculate the pressure drop over a 100 m length of pipe. Take µ = 0.001 
kg/ms. 
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3.8 Turbulent Flow in Pipes Exercises 
 

1. Find the power required to pump 10000 tonnes/hour of water (µ = 0.8 × 10–3 kg/ms) 
along 3 km of pipe with ε = 0.05 mm. The pipe diameter is 1 m, and the end of the 
pipe is 20 m above the entry. 

(1134 kW) 

 
2. A pressure difference of 0.0032 bar is required to pump air of density 1.3 kg/m3 and 

kinematic viscosity 1.4 × 10–5 m2/s along a horizontal pipeline 0.75 m diameter, and 
length 500 m. Given that ε = 0.15 mm, calculate the flow rate of the air. 

(3 m3/s) 
 

3. The power required to pump 50 litres/s of petrol (density 700 kg/m3) along a horizon-
tal pipeline of length 1 km is 16 kW. Given that the kinematic viscosity of petrol is 
0.5 × 10–6 m2/s, and that the roughness of the pipe is ε = 0.000075 m, find the size of 
the pipe used. 

(0.15 m diameter) 

 
4. Oil of density 880 kg/m3 and kinematic viscosity of 0.37 × 10–5 m2/s flows at 1515 li-

tres/min through an asphalted cast iron pipe (ε = 0.00012 m) of diameter 152 mm. 
The pipe is 805 m long and slopes upward at 8º to the horizontal. Determine the pres-
sure difference across the pipe, and the power required. The flow is upward. 

(10.695 bar; 27.0 kW) 
 

5. Water flows at 0.03 m3/s through a 75 mm diameter pipe of length 100 m, from a con-
stant level reservoir. Calculate the height that the reservoir level must be above the 
pipe outlet. The discharge is a free jet to atmosphere, the pipe is hydraulically smooth, 
and µ = 0.001 kg/ms. 

(43.1 m) 
 

6. A pipe of 150 mm diameter and 54 m long is connected to a large tank, the entrance 
to the pipe being 10 m below the surface level. The lower end of the pipe is 20 m be-
low the upper end, and is joined to a horizontal pipe of diameter 240 mm and length 
75 m, which discharges to atmosphere. The roughness, ε = 1.2 mm for both pipes. As-
suming that the flow in both pipes is fully turbulent, determine the flow rate. Check 
your assumptions. The water temperature is 15°C.  

(0.113 m3/s) 
 

7. Two reservoirs are connected by three cast iron pipes in series. L1 = 600 m, D1 = 0.3 
m; L2 = 900 m, D2 = 0.4 m; L3 = 1500 m, D3 = 0.45 m. When the flow rate is 0.11 
m3/s of water, for which µ = 0.00114 kg/s, determine the difference in surface levels. 

 (8.13 m) 
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8. A large tank supplies water to a point 30 m below the level in the tank through a pipe 
of length 3000 m and diameter 0.6 m. The pipe crosses a ridge whose summit is 9 m 
above and 300 m distance (along the pipe) from the level in the tank. For the pipe, 
relative roughness, ε/D = 0.006; µ = 0.001 kg/ms, and patm = 1 bar. Assume that the 
flow is fully turbulent. Determine: 

• The flow rate, assuming that the discharge is a free jet to atmosphere 
• The depth below the ridge at which the pipe must be laid if the absolute 

pressure in the pipe is not to fall below 3 m of water 
• Check that the flow is fully turbulent 

(541 litres/s; 4.98 m) 
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4 Minor Losses and Valves 

The above analysis allows for the frictional effects of straight lengths of pipe. There are a lot 
of other components in fluid systems which cause additional losses, often termed minor 
losses. These include things such as bends, entrances and exits from reservoirs, changes of 
section, T-junctions and filters. It also includes valves for which losses are not minor but de-
liberately introduced in order to control the flow rate. 

All of these cause additional loss through additional turbulence or swirling imparted to the 
flow. The devices are usually considered to be of zero length, but their effects are often no-
ticed many pipe diameters of length upstream and downstream of the fitting, particularly 
downstream. Thus when there are two or more fittings in close proximity, the effects can be 
complex.  

However, it is sufficient simply to add the individual effects to get the overall effect. As some 
fairly rapid changes in direction take place in the flow, flows through the fittings are consid-
ered fully turbulent. 

For turbulent flow, the pressure loss due to pipe friction, as defined in equation (16): 

 2

2
1

c
D

fL
p ρ=∆   

For minor losses, we retain the D

fL

 in the equation, but add a loss factor, k, depending on the 
fitting. Therefore, the loss associated with a component or fitting only is: 

 2

2
1

ckp ρ=∆  (20) 

If there are multiple fittings for a particular system (such as multiple bends, junctions etc.), 
then these loss factors, k1, k2, k3, … can be summed together to produce a overall loss factor: 
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So, the overall pressure loss through the system becomes: 
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Tables identifying values for k for various components are available in many books on fluids. 
Many are itemised in the following table. 

With a valve, the loss coefficient is identified as kv, and is dealt in the same, way, except that 
the value of kv varies according to the valve opening. A graph of kv against degree of opening 
is known as the valve characteristic. A list of typical values is provided on page 28. 
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4.1 Minor Losses Fittings 
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4.2 Minor Losses Example 
1. The flow rate from A to B is 565 litres/s. Determine the power required from the 

pump. Take ν = 0.113 × 10–5 m2/s. ε for a commercial steel pipe is 0.000045 m. 
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4.3 Minor Losses in Pipeline Systems Exercises 

 
1. What pressure, p1 is needed to cause 100 litres/s to flow into the device at a pressure 

p2 of 0.4 bar (gauge)? The pipe has a diameter 150 mm, ε = 0.046 mm, and ν = 0.114 
× 10-5 m3/s. 

(26.74 bar) 

 
 

2. In a processing plant, turpentine is pumped from point A to a delivery point at B, 
where the turpentine emerges as a free jet at atmospheric pressure. The pipeline con-
sists of 60 m of 150 mm diameter pipe, followed by 22 m of 100 mm diameter pipe. ε 
= 0.000046 m for both pipes. The flow rate is 0.05 m3/s. For turpentine, ρ = 870 
kg/m3 and µ = 1.375 × 10–3 kg/ms. Determine: 

a. The pressure difference 
b. The power required 

(1.37 bar; 6.85 kW) 

 
 
  



Thermodynamics & Fluids UFMEQU-20-1  2010-2011 Semester 2 

31 

 

3. The system shown delivers water from one tank to another. A globe valve (K = 10) 
controls the flow. The water issues as a free jet at atmospheric pressure at B. The total 
pipe length is 25 m, and the pipe diameter is 40 mm. The pipe has a roughness ε = 
0.00025 m. Take ν = 10–6 m2/s. Determine the flow rate. 

(2.4 × 10-3 m3/s) 
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5 Fluid Machines 

5.1 Machine characteristics 

Fluid machines either take energy from the flow (for example a turbine or a motor) or give 
energy to the flow (examples are pump, fan or compressor).  

Taking the pump example, the simplest way of representing its performance is that it gives a 
constant pressure rise ∆pp regardless of the volumetric flow rate, V& . The characteristic of 
the pump, which is a plot of ∆pp against V&  then appears as below in Figure 14. 

 

Figure 14: Pump Characteristic: Constant Pressure Rise 

This representation is rather unrealistic except over a limited range of flows, the reason being 
that it implies as V& increases so does the power given to the flow. Recall the power is volu-
metric flow rate multiplied by the pressure rise. Therefore: 

 Power to the flow Vpp
&∆=  (22) 

This would eventually become infinite. Whatever drives the pump has a maximum possible 
power it can deliver. 

We can also define efficiency for the machine. 

 P

Vpp
&∆

==
nconsumptioPower 

flow  thePower toη  (23) 

where P is the power consumption. We can rearrange equation (23) solving for ∆pp: 

 
V

P
p

P

Vp
p

p

&

& ηη =∆→
∆

=  (24) 

If η and P are constant, then: 

 
V

pp &

constant=∆  (25) 

∆pp 

V&



Thermodynamics & Fluids UFMEQU-20-1  2010-2011 Semester 2 

33 

 

The characteristic curve appears as in Figure 15. We can also plot another characteristic 
curve of η against V& . 

 

Figure 15: Pressure Rise as a function of flow rate 

In practice, η is not constant because the blade shapes are only optimal for a certain combina-
tion of angular speed ω and flow rate V& . The power input (power consumed) can usually be 
varied to produce a variety of angular speeds. This results in a set of characteristics for each 
machine in Figure 16 overleaf. 

The characteristic curves can often be represented as curve-fitted equations such as: 

 
2

21 VAApp
&−=∆  (26) 

where A1 and A2 are constants specific to the pump (or machine).  
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Figure 16: Pressure Rise for different pump angular velocities 

5.2 Machine Operation 

The operation point on the characteristic depends upon the pipe and system it is attached to. 
Take the example shown in Figure 17. 

 

The pump has to overcome the head h (equivalent to hydrostatic pressure ρgh) and the pres-
sure difference (pA – pB) before any flow can occur, the remaining pressure available from the 
pump being lost to friction. 

When dealing with a machine system, Bernoulli’s equation has terms representing the pres-
sure provided by the pump as well as the losses due to friction: 

Figure 17: Example Fluid Machine System 
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pA +

1
2

ρcA
2 + ρgzA + ∆pp = pB +

1
2

ρcB
2 + ρgzB + ∆pL  (27) 

where ∆pp is the pressure provided by the pump, and ∆pL is the pressure drop due to friction 
and minor losses in the pipe system. If we take positions A and B to be the surfaces of the 
reservoirs A and B, the velocities at these points are negligible compared to the velocity of 
flow in the pipe, so the dynamic pressure terms are neglected. Rearranging equation (27), we 
get the following: 

 

pA + 1
2

ρcA
2 + ρgzA + ∆pp = pB + 1

2
ρcB

2 + ρgzB + ∆pL

pA + ρgzA + ∆pp = pB + ρgzB + ∆pL

∆pp = pB − pA( )+ ρg zB − zA( )+ ∆pL

∆pp = pB − pA( )+ ρgh+ ∆pL

 

We can replace ∆pL with the following (see section 3.4.3 on page 20—the section on Type 3 
turbulent flow problems—for the derivation of this equation): 
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Substituting this in, the equation is now: 
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We can see that this equation has the same form as equation (26), in that there is a term unre-
lated to the volumetric flow rate: (pA – pB) + ρgh which is known as the static lift  and a flow 
dependent term, 

52

8

D

fL

π
ρ . As such, we can rewrite equation (28) as: 

 
2

21 VCCpp
&+=∆  

(29) 

where C1 and C2 are the static lift and the flow dependent term respectively. Note the similar-
ity of this equation with equation (26). C1 is a constant, and C2 is a constant if f is constant, 
which is true for fully turbulent flow.  

Equation (26) is known as the pump characteristic: 
2

21 VAApp
&−=∆  

Equation (28) is known as the pipe characteristic: 
2

21 VCCpp
&+=∆   

The operating point is found where these two equations result in the same value. Thus: 

 
2

21
2

21 VCCVAA && +=−  (30) 

Alternatively, plotting these equations graphically, as shown in Figure 18, the operating point 
is the point where the pump characteristic and the pipe characteristic intersect. The flow 
rate can then be determined by inspection.  
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Figure 18: Graphical technique to determine operating point 

The subscript o in the labels attached to Figure 18 indicate the operating points.  

The efficiency characteristic (as shown in the lower plot in Figure 18) can be used to find the 
power consumption (and hence running costs) of a particular system. As can be seen, this 
particular system is not running at peak efficiency.  

5.3 Using Head Rise Instead of Pressure 

It is common to use characteristics and calculations that use heads (in metres) instead of pres-
sures. When dealing with fluid machines, head, H is defined as the following: 

 
g

p
H

ρ
=  

where p is the pressure, ρ is the density and g is the gravitational acceleration.  

This is valid for fluid machines because for any given machine, the head characteristic Hp 
against V&  is independent of the fluid pumped, provided the fluid remains incompressible. 
The exact reason for this can only be understood through a study of pump design, which is 
beyond the scope of this work. All of the analysis can be repeated using H instead of p, the 
only adjustments being that all the equations are divided through by ρg. 

∆pp 

V&

V&

η 

0 

0 

operating point 

oV&

ηo 

∆ppo 

C1 

A1 

2
21 VCC &+  

2
21 VAA &−  

pipe characteristic 

pump characteristic 



Thermodynamics & Fluids UFMEQU-20-1  2010-2011 Semester 2 

37 

 

5.4 Summary 
• The pump characteristic is given by: 

 
2

21 VAApp
&−=∆  

where A1 and A2 are machine specific constants.  
 

• The pipe characteristic is given by: 

 
2

21 VCCpp
&+=∆  

where C1 and C2 are static lift and flow dependent term respectively.  
o Static lift is:    (pA – pB) + ρgh 

o Flow dependent term is:  
52
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• When equations (26) and (29) are equated, a value for flow rate for the operating 

point can be determined. The operating point can be found graphically by locating the 
flow rate for the point of intersection.  

 
2

21
2

21 VCCVAA && +=−  
 

• Efficiency is given by: 

 P

Vpp
&∆

==
nconsumptioPower 

flow  thePower toη  

 
• When dealing with head isnetad of pressure, remember to divide all terms by ρg, as: 

 g

p
H

ρ
=  
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5.5 Fluid Machines Example 

 
The diagram shows a pumped water system controlled by a valve. The friction factor for the 
flow in the pipe is f = 0.025. The pump characteristic is given by: 25101000 VH p

&−=  

The loss through the valve is given by: 2

2

1
ckp vv ρ=∆  where c is the mean velocity in the 

pipe. Ignoring all minor losses, calculate the volume flow rate when the valve is wide open 
and kv = 10. 
 
  

Pump 

2 

1 

20 m 

l = 100 

D= 0.1 m 

Valve 
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5.6 Fluid Machines Exercises 
 

1. The diagram shows a pumped system controlled by a valve. 

 

The pump characteristic is given by: 

25101000 VH p
&−=  

The loss through the valve is given by: 

2

2Ck
p v

v

ρ=∆  

where C is the mean velocity in the pipe. 

Ignoring all minor losses, calculate the volume flow rate when the value is wide open 
and kv = 10 and when the valve is 50% closed and kv = 100. 

The efficiency of the pump is given by: 

VV && 28280 2 +−=η  

Calculate the power consumption of the pump and the annual running costs of the sys-
tem if the pump operates continuously. The valve is fully open. Pump power costs 
3p/kWhr. 

(0.087 m3/s; 0.069 m3/s, 657 kW, £173,000) 

 
  

Pump 

2 

1 

20 m 

l = 100 

D= 0.1 m 

Valve 
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2. A centrifugal pump has the following characteristics: 

Q (m3/s) 0 0.1 0.15 0.20 0.25 0.3 

∆H (m) 40 37.5 33 27.5 20 12 

η (%) 0 73 82 81 71 48 

It is attached to a pipe with the outlet 10 m above the inlet and with equal static pres-
sure. Assume flow is fully turbulent in all conditions. 

Find the ∆Hp, power given to the flow and power consumed if the flow through the 
system is 0.22 m3/s. 

Assuming a friction factor f = 0.02 = constant, and the the pipe is circular section, find 
the pipe diameter if its length is 100 m. 

(0.25 m, 54 kW, 69 kW, 0.222 m) 

 
3. The same pump as in Q2 is used with a different system in which a pipe connects two 

reservoirs at equal pressure, one of which has its surface 5 m above that of the other. 
Flow is an upward direction. If the pipe length is 100 m, diameter 0.1 m, roughness of 
0.5 mm, find the volume flow rate up the pipe.  

A valve in the pipe is shut until the equivalent pipe length of the total system is 280 
m. Calculate the reduced flow rate  

(0.036 m3/s, 0.022 m3/s) 
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6 Fluid Momentum 

The momentum equation for fluids helps us to deal with forces in the fluid flow. For exam-
ple, we need to use the momentum equation to be able to calculate the force produced by the 
thrust of a rocket engine, or the force produced by a jet of fluid impinging on a turbine blade. 

Consider the steady flow of a fluid along a horizontal pipe, entering a particular section of the 
pipe at section 1 and leaving at section 2, as shown in Figure 19. 

 
 
Let the mass flow rate  = m&  kg/s 
Let the entry velocity  = C1 m/s 
Let the exit velocity  = C2 m/s 

Then in 1 second, m&  kg of fluid undergoes an increase in velocity from C1 to C2. That is, 
the m&  kg of fluid must experience an acceleration = (C2 – C1) m/s/1 s = (C2 – C1) m/s2. 

But, in order to undergo an acceleration, the fluid must experience a force according to New-
ton’s Second Law of motion, given by: force = mass × acceleration: 

 ( )12 CCmmaF −== &  (31) 

Hence the force acting on the fluid = mass flow rate × change in velocity. 

Note that the force must act in the same direction as the direction in which the change of 
velocity occurs. 

Should the flow direction of the fluid change, then velocity components must be used, in say 
the x and y directions. Considering the flow through the pipe shown in Figure 20. 

Figure 19: Steady flow in a horizontal pipe 

Fluid 
entering 

Fluid 
leaving 

2 1 
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Let the flow have the following velocity components: 
• Cx1 in the x direction at section 1 
• Cx2 in the x direction at section 2 
• Cy1 in the y direction at section 1 
• Cy2 in the y direction at section 2 

Then the force in the x direction is the mass flow rate multiplied by the change in velocity in 
the x direction: 
 ( )12 xxx CCmF −= &  (32) 

And the force in the y direction is similarly: 
 ( )12 yyy CCmF −= &  (33) 

Note that these momentum forces can be produced by pressure differences in the fluid, the 
weight of the fluid or the force reaction from a solid object.  

These forces are called momentum forces because momentum = mass × velocity and obvi-
ously then ( )12 CCm −&  is the rate of change of momentum, which by Newton’s 2nd Law 
must equal the applied force. 

Note that the velocities decomposed into x and y components follow standard trigonometry: 

 

where: 
 θθ sin   and   cos CCCC yx ==   

 

C 

Cx 

Cy 

θ 

Figure 20: Flow through a curved pipe with velocities shown as components 
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6.1 Fluid Momentum Example 

A flat plate of mass 10 kg is constrained horizontally but may move vertically without any 
resistance. A jet of water of 0.2 m diameter impinges at right angles on the underside of the 
plate. What must be the velocity of the jet if the plate is to remain stationary against the ac-
tion of gravity? 
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6.2  Fluid Momentum Exercises 

1. In the above problem, if the jet is again vertically upwards but the under-side of the 
plate is in the form of a cone of 150° included angle, calculate the jet velocity neces-
sary to maintain equilibrium of the plate. 

(2.05 m/s) 

2. A jet of water having a velocity of 30 m/s impinges on a series of vanes which divert 
the water through 120°. If the jet diameter is 0.3 m, calculate the resultant force on the 
vanes. 

(110.2 kN) 

3. A rocket burns its propellant at a rate of 7 kg/s. The exhaust gases leave the rocket at 
a relative velocity of 1000 m/s. The mass of the rocket is initially 230 kg. Determine: 

a. The rocket thrust. 
b. The initial acceleration of the rocket if it takes off vertically. 

(7 kN; 20.62 m/s2) 

4. A stationary curved vane deflects a 50 mm diameter jet of water through 150°. Be-
cause of friction over the surface, the water leaving the vane has only 80% of its 
original velocity. Determine 

a. The mass flow rate necessary to produce a force of 2000 N on the vane in the 
direction of the jet.  

b. The force on the vane perpendicular to the jet. 
 (48.2 kg/s; 472.9 N) 

5. A toy balloon of mass 86 gm is filled with air of density 1.29 kg/m3. The small filling 
tube of 6 mm bore is pointed vertically downwards and the balloon is released. Calcu-
late the initial rate at which air escapes if the initial acceleration is 15 m/s2.  

(8.82 gm/s) 

6. A curved plate deflects at 75 mm diameter jet of water, which is initially horizontal, 
upwards through an angle of 45°. For a jet velocity of 40 m/s, and ignoring friction, 
calculate the total force acting on the plate, in both magnitude and direction. 

(5410 N at 67.5° to the horizontal) 

7. A square plate is hinged about its upper edge, which is horizontal. The length of each 
side is 0.4 m and the plate weights 200 N. A horizontal jet of water issues from a long 
horizontal slot 0.3 m by 2 mm and impinges on the plate at a vertical distance of 0.2 
m below the hinge. The jet has a mass flow rate of 9 kg/s. 

a. Determine the force which must be applied to the plate at its lower edge in or-
der to keep it vertical. 

b. If the plate is now allowed to swing freely, determine the inclination to the 
vertical which the plate assumes. 

(67.5 N; 42.6°) 
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8. A stationary curved vane deflects a 40 mm diameter jet of water through an angle of 
120°. Due to friction over the surface of the vane, the water leaves the vane has only 
90% of its original velocity. If the jet produces a force 1000 N on the vane in the 
original direction of the jet, determine: 

a. The jet velocity at entry to the vane 
b. The water mass flow rate 
c. The force produced on the vane in the direction perpendicular to the jet 
d. The magnitude and direction of the resultant force exerted by the water on the 

vane 
 (23.43 m/s; 29.44 kg/s; 537.6 N; 1135 N at 28.3°) 

9. A stationary curved vane deflects a 30 mm diameter jet of water through an angle of 
140°. Due to friction over the surface of the vane, the water leaves the vane has only 
95% of its original velocity. If the jet produces a force 500 N on the vane in the origi-
nal direction of the jet, determine: 

a. The jet velocity at entry to the vane 
b. The water mass flow rate 
c. The force produced on the vane in the direction perpendicular to the jet 
d. The magnitude and direction of the resultant force exerted by the water on the 

vane 
(20.23 m/s; 14.3 kg/s; 176.7 N; 530.3 N at 19.5°) 
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7 Formulae & Data  

7.1 Fluids – General 

Hydrostatic pressure p = ρghp  where hp is the pressure head 

Note that hp is sometimes represented by ‘z’, as in Bernoulli’s equation below. 

Bernoulli's equation:  pgzcpgzcp ∆+++=++ 2
2
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Volume flowing per second, i.e. volumetric flow rate, AcV =&  

7.2 Fluid Flow with Friction 

υµ
ρ cDcD ==Re  where µ is dynamic viscosity and υ is kinematic viscosity. 
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For Turbulent flow in general: 
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For Fully turbulent flow:  2
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