UWE Bristol

Thermodynamics & Fluids

FLUIDS Lecture 6: Fluids Revision

Today's Lecture

- Manipulating Bernoulli's Equation
- Laminar Flow
- Turbulent Flow
- Minor Losses
- Fluid Machines
- Fluid Momentum

Bernoulli's Equation

Always start with Bernoulli's Equation*

Bernoulli's Equation

- Most problems: certain terms can be neglected:
 - Closed reservoirs:
 - $C_1 = C_2 = 0 \rightarrow$ neglect dynamic pressures
 - Open reservoirs:
 - $p_1 = p_2 = p_{atm} \rightarrow neglect static pressures$
 - $C_1 = C_2 = 0 \rightarrow$ neglect dynamic pressures
 - Horizontal system:
 - z terms can be neglected

Bernoulli's Equation

- Most problems: certain terms can be neglected:
 - With height difference:
 - Lowest point: z = 0
 - Heighest point: *z* = height *difference*
 - No pump: $\Delta p_P = 0$

Laminar Flows

• Laminar:

- Layers of adjacent fluid slide over each other
- Streamlines are straight
- Flow near wall slower than centre
- Example: honey falling off spoon
- Reynolds number < 2000</p>

Laminar Flow

• Flow rate

$$\dot{V} = \frac{\pi}{8\mu} \frac{\Delta p_L}{L} R^4$$

• Pressure drop

$$\Delta p_L = \frac{8\mu L\dot{V}}{\pi R^4}$$

Turbulent Flow

• Turbulent:

- Particle paths irregular and chaotic
- Large scale mixing
- Flow in radial direction
- Example: smoke billowing from chimney
- Reynolds Number > 3000

Turbulent Flow

• Pressure drop:

$$\Delta p = \frac{fL}{D} \frac{1}{2} \rho c^2$$

- -L = pipe length
- -D = pipe diameter
- -C = flow velocity
- -f = friction factor

Turbulent Flow

- Friction Factor:
 - Depends on
 - Reynolds number:

$$\operatorname{Re} = \frac{\rho CD}{\mu} = \frac{CD}{\upsilon}$$

Relative Roughness:

Relative Roughness
$$=\frac{\mathcal{E}}{D}$$

- Use *Moody Chart* to determine f

Notionogonio

Minor Losses

- Pressure drop caused by
 - Frictional effects in straight pipes
 - What about other components?
 - Bends
 - Entrances
 - Exits
 - Section Changes
 - Junctions
 - Filters
 - Valves

All contribute to pressure drop

Minor Losses

• Systems with more than one loss:

– Effective *k* is sum of *k* factors

$$k_e = k_1 + k_2 + \dots + k_n = \sum_{i=1}^n k_i$$

$$\Delta p = k_e \frac{1}{2} \rho c^2 = \sum_{i=1}^n k_i \frac{1}{2} \rho c^2$$

Minor Losses

• Total pressure drop in pipe due to minor losses *and* friction:

 $\Delta p = \text{drop due to friction} + \text{drop due to losses}$

$$\Delta p = \frac{fL}{D} \frac{1}{2} \rho c^{2} + k_{e} \frac{1}{2} \rho c^{2}$$

$$\Delta p = \left(\frac{fL}{D} + k_e\right) \frac{1}{2}\rho c^2$$

Type 1 Problem

- Given:
 - Diameter use to calculate Reynolds number and relative roughness → Friction factor
- Apply equation to determine Δp

$$\Delta p = \left(\frac{fL}{D} + k_e\right) \frac{1}{2}\rho c^2$$

Type 2 Problem

- Given:
 - $-\Delta p$ and Pipe diameter
- Need to find flow rate $(\dot{V} = Ac)$
 - We don't have *c*, so cannot determine Re
 - How to find f?
 - Need to assume full turbulence (no need for Reynolds number), then check answer
 - Iteration if necessary

Type 2 Problem

• Flow chart:

Type 3 Problem

- Given:
 - $-\Delta p$ and \dot{V}
- Need to find D
 - We can calculate neither Re nor ε/D
 - Assume f = 0.03 (middle of Moody)
 - Check solution and iterate if necessary

Type 3 Problem

• Flow chart

 $\frac{\int fL}{\Lambda} \frac{8\rho V^2}{r^2}$ $\Delta p = \frac{fL}{D} \frac{1}{2} \rho C^2 = \frac{fL}{D^5} \frac{8\rho}{\pi^2} \dot{V}^2 \rightarrow D = 5$

Fluid Machines: Pump

Pump Characteristic

 A_1 and A_2 are constants specific to pumpeter

Fluid Machines: Pipe

• A and B are reservoirs, so c_A and c_B are zero:

$$p_{A} + \frac{1}{2}\rho c_{A}^{2} + \rho g z_{A} + \Delta p_{p} = p_{B} + \frac{1}{2}\rho c_{B}^{2} + \rho g z_{B} + \Delta p_{L}$$

$$p_{A} + \rho g z_{A} + \Delta p_{p} = p_{B} + \rho g z_{B} + \Delta p_{L}$$

$$\Delta p_{p} = (p_{B} - p_{A}) + \rho g (z_{B} - z_{A}) + \Delta p_{L}$$

$$\Delta p_{p} = (p_{B} - p_{A}) + \rho g h + \Delta p_{L}$$

• Pressure loss (excluding minor losses!):

$$\Delta p_L = \frac{fL}{D} \frac{1}{2} \rho c^2 = \frac{8 fL \rho}{\pi^2 D^5} \dot{V}^2$$
 better together

Fluid Machines: Pipe

• Substituting:

$$\Delta p_{p} = ((p_{B} - p_{A}) + \rho gh) + \begin{pmatrix} \frac{8 fL\rho}{\pi^{2} D^{5}} \end{pmatrix} \times \dot{V}^{2}$$
Static lift (not dependent
on flow rate)
$$\hat{C}_{1}$$
Flow rate
dependent term
$$\hat{C}_{2}$$
Pipe characteristic:
$$\Delta p_{P} = C_{1} + C_{2} \dot{V}^{2}$$

Fluid Machines: Operating Point

• Two equations for Δp_P : – For pump characteristic:

$$\Delta p_P = A_1 - A_2 \dot{V}^2$$

– For pipe characteristic:

$$\Delta p_P = C_1 + C_2 \dot{V}^2$$

$$A_1 - A_2 \dot{V}^2 = C_1 + C_2 \dot{V}^2$$

Fluid Momentum

- Force acting on the fluid is
 - Mass flow rate multiplied by
 - Change in velocity

$$F = \dot{m}(C_2 - C_1)$$

So force on object by the fluid is:

$$-F = -\dot{m}(C_2 - C_1)$$

Fluid Momentum

• Use components:

$$-C_{x1}$$
 and $C_{x2} \longrightarrow F_x = \dot{m}(C_{x2} - C_{x1})$

$$-C_{y_1} \text{ and } C_{y_2} \longrightarrow F_y = \dot{m}(C_{y_2} - C_{y_1})$$

Summary

• Bernoulli's Equation:

- know how to manipulate it!

$$p_1 + \frac{1}{2}\rho C_1^2 + \rho g z_1 + \Delta p_P = p_2 + \frac{1}{2}\rho C_2^2 + \rho g z_2 + \Delta p_L$$

• Pressure Loss:

$$\Delta p = \left(\frac{fL}{D} + k_e\right) \frac{1}{2}\rho c^2$$

- f determined from Reynolds number & ε/D
- Know how to manipulate it!

• Fluid Machines:

- Pump characteristic has form:

$$\Delta p_P = A_1 - A_2 \dot{V}^2$$

– Pipe characteristic has form:

$$\Delta p_P = C_1 + C_2 \dot{V}^2$$

- Equate to find operating point and flow rate

$$A_1 - A_2 \dot{V}^2 = C_1 + C_2 \dot{V}^2$$

- Fluid Momentum:
 - allows us to calculate forces on fluid and on object by fluid

$$F = \dot{m}(C_2 - C_1)$$

- Use components if there is a direction change:

$$F_x = \dot{m} (C_{x2} - C_{x1})$$

$$F_{y} = \dot{m} \left(C_{y2} - C_{y1} \right)$$

Don't Forget!

• Volumetric Flow Rate:

$$\dot{V} = AC$$

Mass Flow Rate

$$\dot{m} = \rho A C$$

• Area of Flow
$$A = \frac{\pi D^2}{4}$$
 bettertogether