UWE Bristol

Thermodynamics & FluidsUFMEQU-20-1

FLUIDS Lecture 1: Flow with Friction &Laminar Flow

Today's Lecture

- Fluid flow with Friction
- Nature of flows: Laminar and Turbulent
- Shear Stress and Fluid Viscosity
- Laminar Flow
	- Flow veloci Flow velocity
	- **Links of the Company** Flow Rate
	- **Links of the Company** Pressure Drop
	- and the state of the Power
- Example

Fluid Flow with Friction

- Assumption has been no friction
- Bernoulli's Equation:

Total pressure =
$$
p + \frac{1}{2}\rho C^2 + \rho gz = \text{constant}
$$

$$
p_1 + \frac{1}{2}\rho C_1^2 + \rho g z_1 = p_2 + \frac{1}{2}\rho C_2^2 + \rho g z_2
$$

Fluid Flow with Friction

- Now, shear stresses in fluid and with pipe
- Shear stress works against flow

• Bernoulli's equation:

$$
p_1 + \frac{1}{2}\rho C_1^2 + \rho g z_1 = p_2 + \frac{1}{2}\rho C_2^2 + \rho g z_2 + \Delta p
$$

\n
$$
\Delta p = \text{pressure drop}
$$

• How do we determine Δ*p*?

Nature of Flows

- Δp due to shear stresses
- Vary depending on nature of flow
- Two types (in general)
	- and the state of the state — Laminar
	- –**Turbulent**

Laminar and Turbulent Flows

• Laminar:

- and the state of the state Layers of adjacent fluid slide over each other
- –Streamlines are straight
- and the state of the state Flow near wall slower than centre
- –Example: honey falling off spoon

Laminar and Turbulent Flow

• Turbulent:

- and the state of the state Particle paths irregular and chaotic
- –Large scale mixing
- and the state of the state Flow in radial direction
- –Example: smoke billowing from chimney

Laminar and Turbulent

- Transition between laminar and turbulent flow
- Related to fluid density, fluid viscosity, flow velocity and pipe diameter

Laminar and Turbulent

• Reynolds number:

$$
\text{Re} = \frac{\rho c D}{\mu}
$$

is viscosity?

- and the state of the state Non -dimensional number
- –Helps to determine nature of flow:

Shear Stress and Fluid Viscosity

- Relative movement of sliding fluids layers
- Shear stress:

distance between layers $\tau = \mu \times \frac{\text{difference in speed (between layers)}}{\text{m}}$

- •*µ* = dynamic viscosity
- As *µ* increases, shear stresses increase
	- **Links of the Company** High viscosity: honey, toothpaste
	- –Low viscosity: water, alcohol
	- –Generally, viscosity decreases with increase in temperature

Shear Stress and Fluid Viscosity

- •*µ* = dynamic viscosity
- •*υ* $v =$ kinematic viscosity
- Relationship:

$$
v=\frac{\mu}{\rho}
$$

• Reynolds number:

$$
Re = \frac{\rho cD}{\mu} = \frac{cD}{\nu}
$$

Laminar Flow – Flow Velocity

- Element of fluid
	- **Links of the Company** Pipe radius R
	- and the state of the Element radius ^r
	- –Length dx
	- –Force on LHS: pA
	- **Links of the Company** Force RHS: $-(p + dp)A$
	- and the state of the Shear stresses: *^τ*
- Analysis on pp 6-7 shows that velocity in pipe is:

$$
c = -\frac{R^2}{4\mu} \frac{dp}{dx} \left(1 - \left(\frac{r}{R}\right)^2 \right)
$$

Laminar Flow – Flow Velocity

 Ω

 Ω

Laminar Flow – Volumetric Flow

- Volumetric Flow Rate: \dot{V}
	- –Cannot just use \dot{V} = \dot{a} ^{*i*} = *Ac*
	- and the state of the state Velocity not constant across cross section
	- –Analysis pp 8 -9:

$$
\dot{V} = -\frac{\pi}{8\mu} \frac{dp}{dx} R^4
$$

Laminar Flow – Pressure Drop

L

dx

=

• Fluid element:

bettertogether

• Consider Pipe:

Laminar Flow – Pressure Drop

- Using: *Ldx pdp*− Δ $=$ $-$
- Velocity: $\bigg($ 2 $\bigg($ $\bigg)$ \int $\left(\begin{array}{c} R \end{array}\right)$ \int \setminus $\bigg($ =−2 $-\frac{\mu p}{\mu}$ | 1 $4\mu dx$ \mid R *rdx* $c = -\frac{R^2}{\mu} \frac{dp}{dt}$ $4\mu dx$ (R) $4\mu L$ (R) \int $\left(\begin{array}{c} R \end{array}\right)$ \int $\bigg)$ \setminus $\bigg($ − Δ $=$ $-$ 2 $2 \Lambda n (r)$ $-\frac{\Delta V}{I}$ 1 4*RrLRp* $c =$ — — 4μ
- Flow rate:

$$
\dot{V} = -\frac{\pi}{8\mu} \frac{dp}{dx} R^4 \qquad \vec{V} = \frac{\pi}{8\mu} \frac{\Delta p}{L} R^4
$$

Laminar Flow – Pressure Drop

• From Flow Rate:
$$
\dot{V} = \frac{\pi}{8\mu} \frac{\Delta p}{L} R^4
$$

\n- Rearranging:
$$
\Delta p = \frac{8\mu L \dot{V}}{\pi R^4}
$$
\n- Bernoulli's Equation: $p_1 + \frac{1}{2} \rho C_1^2 + \rho g z_1 = p_2 + \frac{1}{2} \rho C_2^2 + \rho g z_2 + \Delta p$

Laminar Flow – Power

• Consider force applied to fluid

• Power = force **×** velocity

Force =
$$
pA
$$

\nVelocity = c

\n \therefore Power = $pAc = p\dot{V} \rightarrow$ Power Loss = $\Delta p\dot{V}$

Example

Oil of density 900 kg/m³ and viscosity 0.17 Pas is pumped through a 75 mm diameter pipe 750 m long at the rate of 2.7kg/s. If the critical Reynolds number is 2300, show that the critical velocity is not exceeded and calculate the pressure required at the pump and the power required. The pipe is horizontal.

Today's Lecture

- Fluid flow with friction:
	- –Friction produces pressure drop
	- and the state of the state **Bernoulli's equation:** $p_1 + \frac{1}{2}\rho C_1^2 + \rho g z_1 = p_2 + \frac{1}{2}\rho C_2^2 + \rho g z_2 + \Delta p$ $p_1 + \frac{1}{2}\rho C_1^2 + \rho g z_1 = p_2 + \frac{1}{2}$ 1 $2^{\rho C_1 + \rho_{\delta C_1} + \rho_2 + \rho_3}$ 1 $-\rho C_1^2 + \rho g z_1 = p_2 + \rho C_2^2 + \rho g$
- Nature of flow determined by Reynolds number

$$
\text{Re} = \frac{\rho c D}{\mu} = \frac{c D}{v}
$$

- – $Re < 2000 \rightarrow$ Laminar Flow
- – $Re > 3000 \rightarrow$ Turbulent Flow

Today's Lecture

