
System properties

There are many ways to characterize a system. We can for example divide systems in stable/unstable
systems, controllable/uncontrollable systems or observable/unobservable systems. This chapter discusses
the meanings of these terms.

1 Stability

1.1 Definitions

Let’s consider the time-invariant systems ẋ = f(x). Given an initial point x0, the system will have a
solution x(t,x0). Now it’s time to make some definitions.

• We say that a vector x̄, which satisfies ˙̄x = f(x̄) = 0, is an equilibrium point. If we take x0 = x̄,
then x(t,x0) = x̄.

• An equilibrium point x̄ is called stable if, for every boundary ε > 0, there is a distance δ > 0 such
that, if ||x0 − x̄|| < δ, then ||x(t,x0)− x̄|| < ε for all t ≥ 0. An equilibrium point that is not stable
is termed unstable.

• A stable equilibrium point is also called asymptotically stable if limt→∞ ||x(t,x0) − x̄|| = 0,
given that ||x0 − x̄|| < δ for some δ > 0.

1.2 Eigenvalue method

The question is, how do we know if an equilibrium point is stable? There are several methods to find that
out. We start with the eigenvalue method. This trick works for linear time-invariant systems, with
ẋ = Ax. These systems have x̄ = 0 as equilibrium solution. (There are also other equilibrium solutions
if detA = 0, but we won’t go into detail on that.)

Let’s denote the k eigenvalues of A by λ1, λ2, . . . , λk. We now have to look at the real parts Re λi of
these eigenvalues.

• The point x̄ = 0 is asymptotically stable if and only if Re λi < 0 for all eigenvalues λi.

• The point x̄ = 0 is stable if Re λi ≤ 0 for all eigenvalues λi. Also, for the eigenvalues λi with
Re λi = 0, the algebraic multiplicity mi must equal the geometric multiplicity gi.

• In any other case, the point x̄ = 0 is unstable. So, either there is an eigenvalue λi with Re λi > 0,
or there is an eigenvalue λi with Re λi = 0 for which gi < mi.

Now we can ask ourselves, what do we do with a non-linear system ẋ = f(x) with equilibrium point
x̄ = 0? Well, we simply linearize it. In other words, we write it as ẋ = Ax + h(x), where h(x) only
contains higher-order terms of x. The stability of x̄ now depends on the matrix A. In other words, if the
eigenvalues of A all have negative real parts, then the equilibrium point x̄ = 0 is asymptotically stable.
There is one side-note though: h(x) has to be real and continuous for x near x̄ = 0.

1.3 Routh’s criterion

To apply the eigenvalue method, we need to find the eigenvalues λi. They are usually found, by solving
the characteristic polynomial

det (A− λI) = a0 + a1λ + a2λ
2 + . . . + anλn. (1.1)
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Especially for big n, it can be very difficult to solve the above equation. But, in fact, we don’t need to
know the exact eigenvalues. We only want to know whether they’re all in the negative (left) part of the
complex plane! And to find this out, we can use Routh’s criterion. According to Routh’s criterion, we
first construct the Routh table.

an an−2 an−4 . . .

an−1 an−3 an−5 . . .

bn−2 bn−4 bn−6 . . .

cn−3 cn−5 cn−7 . . .

dn−4 dn−6 dn−8 . . .
...

...
...

. . .

(1.2)

There are a few important rules. Any number with a negative coefficient (like for example a−1) is equal
to zero. You also continue calculating this pattern, until you wind up with only zeroes. (This happens
after at most n + 1 rows.) For the rest, you can find the coefficients bi, ci, di, etc. using

bn−2 =
an−1an−2 − anan−3

an−1
, bn−4 =

an−1an−4 − anan−5

an−1
, (1.3)

cn−3 =
bn−2an−3 − an−1bn−4

bn−2
, cn−5 =

bn−2an−5 − an−1bn−6

bn−2
. (1.4)

Do you see the pattern? To calculate a number x, you always use four numbers. Two of these numbers
come from the column just right of x. The other two numbers come from the leftmost column. All four
numbers come from the two rows just above x.

We still have one question remaining. What does this tell us about the eigenvalues? Well, according
to Routh’s criterion, we have to look at the left column. There must be n + 1 nonzero numbers in this
column. Also, all these numbers must have the same sign. Only if this is the case, then the eigenvalues of
A all have a negative real part. And this then of course implies that the system is asymptotically stable.

1.4 Lyapunov stability

There is another way in which we can determine whether a system ẋ = Ax is asymptotically stable. For
this method, we first have to define some kind of ‘generalized’ energy V (x(t)) = xT Px, where P is a
positive-definite matrix. (Positive-definite means that xT Px > 0 for all vectors x 6= 0. So, V is always
positive, unless x = 0.) The derivative of V is

d

dt
V (x(t)) = ẋT Px + xT P ẋ = xT

(
PA + AT P

)
x = −xTQx, (1.5)

where Q is defined as
Q = −

(
PA + AT P

)
. (1.6)

Now let’s look at what happens if Q is also positive definite. In this case, we have dV/dt < 0 as long
as x 6= 0. (V can only decrease.) But we also have V > 0 as long as x 6= 0. This implies that
limt→∞ V (x(t)) = 0. In other words, V eventually becomes zero, and so does x.

The conclusion? Let’s suppose we can find any positive definite matrices P and Q that satisfy the so-
called Lyapunov equation (1.6). In this case, x will converge to 0 and the system is thus asympotically
stable.

1.5 Interval stability

Let’s again examine the polynomial

p(λ) = a0 + a1λ + a2λ
2 + . . . + λn. (1.7)
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(Note that this time we have divided out an. This of course does not change the roots of the equation.)
Sometimes, the coefficients ai are not exactly known. Instead, we only know the interval [a−i , a+

i ] in which
the coefficient ai must lie. We usually denote this by the interval polynomial

p(λ, [a−,a+]) = [a−0 , a+
0 ] + [a−1 , a+

1 ]λ + [a−2 , a+
2 ]λ2 + . . . + [a−n−1, a

+
n−1]λ

n−1 + λn. (1.8)

Associated to this polynomial are four polynomials, called the Kharitonov polynomials. They are

p−−(λ) = a−0 + a−1 λ + a+
2 λ2 + a+

3 λ3 + a−4 λ4 + a−5 λ5 + a+
6 λ6 + . . . + λn, (1.9)

p+−(λ) = a+
0 + a−1 λ + a−2 λ2 + a+

3 λ3 + a+
4 λ4 + a−5 λ5 + a−6 λ6 + . . . + λn, (1.10)

p−+(λ) = a−0 + a+
1 λ + a+

2 λ2 + a−3 λ3 + a−4 λ4 + a+
5 λ5 + a+

6 λ6 + . . . + λn, (1.11)
p++(λ) = a+

0 + a+
1 λ + a−2 λ2 + a−3 λ3 + a+

4 λ4 + a+
5 λ5 + a−6 λ6 + . . . + λn. (1.12)

Note that all these polynomials alternately have two pluses and two minuses. The subscripts of p simply
indicate the start of the series.

The Karitonov polynomials are important when determining the stability of the system. Let’s suppose
that all eigenvalues of all these four polynomials p have a negative real part. Only in this case will all
eigenvalues of every polynomial p(λ,a) (with parameter vector a ∈ [a−,a+]) have a negative real part.
In other words, if the Karitonov polynomials are asymptotically stable, then every polynomial within the
interval is asymptotically stable, and vice versa.

1.6 Input-output stability

Let’s examine a system in state-space form. So,

ẋ(t) = A(t)x(t) + B(t)u(t), (1.13)
y(t) = C(t)x(t) + D(t)u(t). (1.14)

Let’s suppose that the input u(t) is bounded. (There is a constant c such that ||u(t)|| ≤ c for all t.) If the
output y(t) also remains bounded (||y(t)|| ≤ k for some k), then the system is said to be BIBO stable.
(BIBO stands for bounded input, bounded output.)

BIBO stability is often also referred to as external stability. (It concerns the external parts u and y of
the system.) On the other hand, the stability of ẋ = Ax is referred to as internal stability. A system
that is internally stable is always externally stable as well. But the opposite is not always true.

2 Controllability

2.1 Definitions

Next to stability, also controllability is an important aspect of systems. Let’s examine a system (A,B, C, D).
If both the initial state x0 and the input u(t) at any time t are given, then the solution x(t,x0,u) is fully
determined.

Now let’s suppose that we have a system (A,B,C, D) and a desired state x1. We say that the system
is controllable if there is an input u(t) such that the state of the system x(t,x0,u) equals x1 at some
finite time t1 > 0. (This must hold for every desired state x1.)

Sometimes it is assumed that x1 = 0 with x0 6= 0: we want to achieve/keep a zero state. In this case,
we are talking about null-controllability. On the other hand, sometimes it is assumed that x1 6= 0
but x0 = 0: we want to reach a certain point x1 starting from zero. In this case, we are talking about
reachability. However, it can be shown that the controllability-problem, the null-controllability-problem
and the reachability problem are equivalent. (If a system is controllable, it is also reachable and vice
verse.) So, we will only consider ourselves with the controllability problem.
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2.2 The controllability matrix

An important aspect in controllability is the controllability matrix R. It is defined as the n × nm
matrix

R =
[
B AB A2B . . . An−1B

]
. (2.1)

Now let’s look at the image of R, denoted by im R. (The image of R means the column space of R. It
consists of all vectors b that can be reached by linear combinations of the columns of R: Ra = b.) It
can be shown that this image consists of all reachable vectors. In other words, all linear combinations of
R are reachable. For this reason, im R is also known as the reachable subspace or the controllable
subspace.

Based on the above fact, we can find something very important. If the matrix R has rank n (meaning
that all n rows of R are linearly independent), then the system (A,B) is controllable! This condition
is known as the rank condition for controllability. (Note that we have denoted the system by (A,B).
This is because C and D don’t influence the controllability of the state.)

2.3 The modal form

If A is diagonalizable, we can apply a little trick. In this case, we can write A = TDT−1. Now, let’s
define

Ã = D = T−1AT, B̃ = T−1B, C̃ = CT, and D̃ = D. (2.2)

If we also define x̃ = T−1x, then we can rewrite the state space representation to

˙̃x = Ãx̃ + B̃u and y = C̃x̃ + D̃u. (2.3)

This system has exactly the same properties as the old (A,B,C, D) system. (Only the state parameters
have changed.) But now, we have a matrix A which is diagonal! For diagonal matrices, it’s not hard to
find the controllability matrix. So, solving this problem further won’t be difficult.

2.4 Seperating noncontrollable parts

Let’s suppose that we have a noncontrollable matrix. What do we do now? Well, there is a way in which
we can separate the noncontrollable part from the controllable part. We’ll examine that method now.

First, we find the matrix R. Let’s denote the dimension of im R as k = rank R < n. We can find a
basis {q1, . . . ,qk} of k linearly independent vectors qi for the subspace im R. Let’s add (n − k) more
vectors qk+1, . . . ,qn to this basis, such that we have n linearly independent vectors. We now put all
these vectors in a matrix. So,

T =
[
q1 q2 . . . qn

]
. (2.4)

Just like in the previous paragraph, we can define Ã = T−1AT and B̃ = T−1B. This again gives us an
equivalent system. But we now have

Ã =

[
Ã11 Ã12

0 Ã22

]
and B̃ =

[
B̃1

0

]
. (2.5)

In this equation, A11 has size k× k. (The rest of the matrices are sized accordingly.) The controllability
matrix of our new system is

R̃ = TR =
[
B̃ ÃB̃ Ã2B̃ . . . Ãn−1B̃

]
=

[
B̃1 Ã11B̃1 Ã2

11B̃1 . . . Ãn−1
11 B̃1

0 0 0 . . . 0

]
. (2.6)

So, we have split up our system into a controllable part and an uncontrollable part.
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3 Observability

3.1 Definitions and theorems

Let’s suppose that we have some system (A,B,C, D), of which we do not know the initial state x0. But
we are observing the output y(t), and also the input u(t) is known. If, after some time t1, we are always
able to uniquely determine the initial state x0 of the system, then the system is called observable. This
must hold for every input function u(t).

Just like controllability completely depends on A and B, so does observability completely depend on A
and C. We therefore usually talk about the system (C,A). (Note that this time A is mentioned last.)
Now, let’s define the observability matrix W as

W =



C

CA

CA2

...
CAn−1

 . (3.1)

The size of W is np× n (with p the height of C). It can be proven that the system (C,A) is observable
if and only if rank W = n. (This condition is known as the rank condition for observability.) In other
words, this is the case if all n columns of W are linearly independent.

Let’s look at the kernel ker W of W . (The kernel is also known as the null-space: all x for which Wx = 0.)
It can be shown that ker W is the non-observable subspace. In other words, any vectors x0 and x1

in the kernel of W (thus satisfying Wx0 = Wx1 = 0) can not be destinguished from each other by just
looking at the output.

3.2 Seperating nonobservable parts

Previously, we have separated the noncontrollable part of a system. Now, we will separate the nonobserv-
able part from a nonobservable system. We denote the dimension of ker W as k = n− rank W . We can
find a basis {q1, . . . ,qk} of k linearly independent vectors qi for the subspace ker W . Let’s again add
(n− k) more vectors qk+1, . . . ,qn to this basis, such that we again have n linearly independent vectors.
Once more, we put all these vectors in a matrix T = [q1 q2 . . . qn]. This time we have

Ā = T−1AT =

[
Ā11 Ā12

0 Ā22

]
and C̄ = CT =

[
0 C̄2

]
. (3.2)

Again, A11 has size k × k. (The rest of the matrices are sized accordingly.) The observability matrix of
our new system now is

W̄ = WT =



C̄

C̄Ā

C̄Ā2

...
C̄Ān−1

 =



0 C̄2

0 C̄2Ā22

0 C̄2Ā
2
22

0
...

0 C̄2Ā
n−1
22

 . (3.3)

And we have split up the system into an observable part and a nonobservable part.
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3.3 The Hautus test

There are plenty of other ways in which to check if a system is controllable/observable. Although we
won’t treat all of them, we will treat the Hautus test.

• The Hautus test for controllability states that the pair (A,B) is controllable if and only if, for all
(possibly) complex s, we have

rank
[
(sI −A) B

]
= n. (3.4)

• Similarly, the Hautus test for observability states that the pair (C,A) is controllable if and only if,
for all (possibly) complex s, we have

rank

[
(sI −A)

C

]
= n. (3.5)

It is nice to note that sI −A already has rank n for all s unequal to an eigenvalue λi. So, you only have
to check the above matrices for values of s equal to one of the eigenvalues of A. That should save us some
work. Finally, it is interesting to note that, if the pair (A,B) is controllable, then the pair (BT , AT ) is
observable and vice verse.
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