
Linear systems theory

What are systems? And how do we respresent them/deal with them? That is what this summary is all
about. In the first chapter, we look at what systems are, and how we deal with basic linear systems.
In the second chapter, we discuss system properties like stability and controllability. Thirdly, we give
some thoughts on how we can use feedback in controlling systems. And finally, in the fourth chapter,
we’ll examine transfer functions in detail. But first, we start by asking the fundamental question: what
is systems theory?

1 Basic systems theory principles

1.1 What is systems theory?

A system is a part of reality that can be seen as a separate unit. The reality outside the system is
known as the surroundings. Of course, the system and the surroundings influence each other. The
environment influences the system by input, denoted by the input vector u(t). Similarly, the system
influences the environment by means of the output y(t).

Mathematical systems theory (sometimes also called system theory) concerns the study and control
of systems. In particular, input/output phenomena are examined.

1.2 Modelling principles

Before we can actually concern ourselves with systems, we need to know how we can model them. This
is done, using modelling principles. The three most important ones are the following principles.

• Conservation laws state that certain quantities (like mass or energy) are conserved.

• Physical laws describe important relations between variables. (Think of Newton’s laws, or the
laws of thermodynamics.)

• Phenomenological principles are principles that are known from experience. (Examples are
Ohm’s law of electrical resistance and Fourier’s law of heat conduction.)

By using these principles, often a model of the system can be achieved. This model can then be used to
examine and control the system.

2 Making differential systems linear

The most easy type of differential systems is the linear one. What are linear differential systems? And
how do we get them?

2.1 What are linear differential systems?

A linear differential system is a system that can be written as

ẋ(t) = A(t)x(t) + B(t)u(t), (2.1)
y(t) = C(t)x(t) + D(t)u(t). (2.2)
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These equations are known as the state equation and the output equation, respectively. x(t) denotes
the (n× 1) state vector of the system, u(t) is the (m× 1) input vector and y(t) is the (p× 1) output
vector. Also, A(t) is the (n× n) state matrix, B(t) is the (n×m) input matrix, C(t) is the (r × n)
output matrix and D(t) is the (r ×m) direct (transmission) matrix. If the matrices A, B, C and
D do not depend on time, then the system is said to be time-invariant.

To solve the output y(t) of the system, two things need to be known. First of all, the initial state of
the system x(0) (often also denoted as x0) needs to be known. Second, the input u(t) must be given. If
these two things are given (and have the right properties), then the output y(t) is well defined.

2.2 Linearization

Linear systems are quite important in systems theory. This is mainly because they are easy to work with.
Non-linear systems are more difficult to work with. Luckily, non-linear systems can be approximated by
a linear system. This is called linearization. But how does it work?

Let’s suppose we have a non-linear system, described by

ẋ(t) = f(x,u) and y(t) = g(x,u). (2.3)

We also suppose that we have a solution x̃(t) and ỹ(t) for given initial conditions x̃0 and input ũ(t).
Now, let’s suppose that we have a problem with a slightly different input function ũ(t) + v(t). (v(t) is
thus the deviation from the original input function.) This will then give a solution x̃(t) + z(t) for the
state and ỹ(t) + w(t) for the output. (Again, z(t) and w(t) are deviations!) It can now be shown (using
a Taylor-expansion about the original solution) that we can write the system of equations as

ż(t) = A(t)z(t) + B(t)v(t), (2.4)
w(t) = C(t)z(t) + D(t)v(t). (2.5)

In other words, we have linearized the system! The matrices A, B, C and D can be found, using

A(t) =
∂f

∂x
(x̃, ũ) =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fn

∂x1
. . . ∂fn

∂xn

 , B(t) =
∂f

∂u
(x̃, ũ) =


∂f1
∂u1

. . . ∂f1
∂um

...
...

∂fn

∂u1
. . . ∂fn

∂um

 , (2.6)

C(t) =
∂g

∂x
(x̃, ũ) =


∂g1
∂x1

. . . ∂g1
∂xn

...
...

∂gn

∂x1
. . . ∂gn

∂xn

 , D(t) =
∂f

∂u
(x̃, ũ) =


∂g1
∂u1

. . . ∂g1
∂um

...
...

∂gn

∂u1
. . . ∂gn

∂um

 . (2.7)

In other words, you first find the derivative matrices (like ∂f
∂x ). You then insert the original solution x̃, ũ

into this matrices, and the linearization is complete!

However, it is very important to remember that you are dealing with deviations from the original solution.
In other words, your quantities v, z and w are not the real physical quantities. And, to make things even
worse, books often use the symbols u, x and y to indicate both the normal physical quantities, and the
deviations from the original solution. Always make sure that you know what each symbol exactly means!

2.3 Solving linear differential systems

Let’s suppose we have a linear differential system ẋ(t) = A(t)x(t) + B(t)u(t). We now would like to find
a solution. To do this, we need to perform four steps.

1. Find the n independent solutions ξ1(t), ξ2(t), . . . , ξn(t) of the so-called autonomous state equa-
tion ẋ = A(t)x.
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2. Assemble the fundamental matrix Y (t), according to

Y (t) =
[
ξ1(t) ξ2(t) . . . ξn(t)

]
. (2.8)

3. Assemble the transition matrix Φ(t, s) according to

Φ(t, s) = Y (t)Y −1(s). (2.9)

This matrix has several interesting properties, like

Φ(t, t) = I, Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) and Φ−1(t, s) = Φ(s, t). (2.10)

4. Find the solution x(t) of the state of the system, using

x(t) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s) B(s)u(s) ds (2.11)

3 Time-invariant systems

A time-invariant system is a system described by ẋ(t) = Ax(t) + Bu(t). In other words, the matrices
do not depend on time. How do we deal with this kind of systems?

3.1 The solution for time-invariant systems

Time-invariant systems are a lot more easy to solve than time-dependent systems. Normally, it can be
very time-consuming to find the transition matrix Φ. However, for time-invariant systems, we simply
have

Φ = e(t−s)A. (3.1)

By the way, the exponential of a matrix is defined as an infinite series, according to

etA = I + tA +
t2A2

2!
+

t3A3

3!
+ . . . =

∞∑
i=0

tiAi

i!
. (3.2)

There’s just one problem. To find etA, we have to compute an infinite series. And this usually takes quite
a long time. But luckily, there are some tricks. But before we examine those tricks, we need to recap on
linear algebra.

3.2 Linear algebra recap

Let’s suppose we have an n × n matrix A. This matrix has k eigenvalues λ1, λ2, . . . , λk. Each of these
eigenvectors λi has an algebraic multiplicity mi and a geometric multiplicity gi. The algebraic
multiplicity mi is the number of times which λi appears as a root of the characteristic polynomial
det (λI −A). The geometric multiplicity gi is the number of eigenvectors qij corresponding to the eigen-
value λi. In other words, it is the number of linearly independent solutions qij to the equation

(λiI −A)qij = 0. (3.3)

The geometric multiplicity is never bigger than the algebraic multiplicity. So, gi ≤ mi. Also, the sum of
all algebraic multiplicities equals the size of the matrix n. So,

∑k
i=1 mi = n.
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We say that the matrix A is diagonalizable if there exists an invertible matrix T such that T−1AT = D,
where D is a diagonal matrix. It can be shown that A is only diagonalizable, if gi = mi for all eigenvalues
λi. If this is indeed the case, then D is the matrix of eigenvalues D = diag (λ1, . . . , λk). In other words,
it is the matrix with the k eigenvalues on its diagonal. (By the way, if an eigenvalue λi has a multiplicity
of mi, then it also appears mi times in D. So, D is an n× n matrix.) Similarly, T is the matrix with as
columns the corresponding eigenvectors qi.

3.3 Solutions for diagonalizable systems

Now it’s time to find an alternate expression for etA. Let’s suppose that A is diagonalizable. Then, we
have T−1AT = D. It can now be shown that

etA = Tet(T−1AT)T−1 = TetDT−1 = T


eλ1t 0 0

0
. . . 0

0 0 eλkt

T−1. (3.4)

Let’s denote the rows of T by w1, . . . ,wn. The columns are still denoted by q1, . . . ,qn.We can now also
write

A =
n∑

i=1

λiqiwi, and similarly, etA =
n∑

i=1

etλiqiwi. (3.5)

Let’s suppose that the system has no input. (Thus, u(t) = 0.) The solution x(t) of the system is now
known as the free response of the system. It is given by

x(t) = e(t−t0)Ax0 =
n∑

i=1

e(t−t0)λiqiwix0 =
n∑

i=1

µie
(t−t0)λiqi, (3.6)

where µi = wix0. (Remember that wi is a row vector.) The above equation implies an interesting
fact. The free response of a system x(t) can be decomposed along the eigenvectors qi. The solution
corresponding to one eigenvector qi is called a mode of the system. A system will be in mode i, if the
initial vector x0 is aligned with the eigenvector qi.

3.4 The Jordan form

We now know what to do with systems if A is diagonalizable. But what if A is not diagonalizable? In this
case, we don’t have T−1AT = D. Instead, we will use T−1AT = J . In this equation, J is the so-called
Jordan form of A. It has a block-diagonal structure J = diag (J1, J2, . . . , Jk). Every submatrix Ji is an
mi ×mi matrix and corresponds to the eigenvalue λi. In fact, it has the form

Ji =



λi γi1 0 · · · 0

0 λi γi2
. . .

...

0 0 λi
. . . 0

...
. . . . . . . . . γi(mi−1)

0 · · · 0 0 λi


. (3.7)

In this equation, some of the values γij are 0, while others are 1. This, in fact, depends on how T is build
up. We can remember that T−1AT = J and thus AT = TJ . If the individual columns of T are written
as q1, . . . ,qn, then we have

Aqi = λqi + γqi−1, (3.8)
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with λ the corresponding eigenvalue in J . Note that, if γ = 0, then qi is an eigenvector of A, corresponding
to the eigenvalue λ. If, instead, γ = 1, then we have

qi−1 = (A− λI)qi. (3.9)

The vector qi is known as a generalized eigenvector. It can be derived from the (possibly generalized)
eigenvector qi−1.

We can now see a relation between the form of J and T . The zeroes in J correspond with the positions
of the normal eigenvectors in T . Similarly, the ones in J correspond to the positions of the generalized
eigenvectors in T .

4 System response

We now know how the state of a system behaves. But what about the output? That’s what we’ll look
at now.

4.1 The impulse response

The output of the system is given by

y(t) = C(t)x(t) + D(t)u(t) = C(t)Φ(t, t0)x0 +
∫ t

t0

C(t)Φ(t, s)B(s)u(s) ds + D(t)u(t). (4.1)

To simplify matters, we define K(t, s) such that

K(t, s) = C(t)Φ(t, s)B(s). (4.2)

Let’s assume that there is some time t0 for which x0 = 0. This eliminates the left term in the output
equation. What we remain with is some sort of mapping function: we map the output onto the input,
without having to know anything about the state. This thus gives us an external description of the
system.

Now, let’s assume that D(t) = 0. Also, the input function is given by u(t) = δ(t− t1)ei. In this relation,
δ denotes the unit impulse function and ei denotes the i’th basis vector. The output y(t) is now given
by

y(t) =
∫ t

t0

K(t, s)δ(s− t1)ei ds = K(t, t1)ei = the i’th column of K(t, t1). (4.3)

The matrix K(t, t1) can thus be seen as the response to an impulse function. For this reason, K(t, t1) is
known as the impulse response matrix.

4.2 The step response

After examining the impulse function, we will now look at the step function. This time, we assume that
the input is given by u(t) = H(t− t1)ei, where H(t) is known as the unit step function. This results
in an output

y(t) =
∫ t

t0

K(t, s)H(s− t1)ei ds =
∫ t

t1

K(t, s)ei ds = S(t, t1)ei. (4.4)

The matrix S(t, t1) is known as the step response matrix. It is related to K(t, s) according to

S(t, t1) =
∫ t

t1

K(t, s) ds and
d

ds
S(t, s) =

d

ds

∫ t

s

K(t, τ) dτ = −K(t, s). (4.5)

You might wonder why the minus sign on the right side is present. In short, this is because s is the lower
limit of the integration.
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