
Feedback control

When controlling a system, the trick is to provide the right input. But what input will control the
system? And how do we find it? That’s what we’ll look at in this chapter.

1 State feedback

1.1 Definitions

Let’s suppose we’re controlling a boat. When doing this, we use the output (the current heading) to
determine the rudder position. In this case, the output is used to determine the input. When this is
the case, we are dealing with a feedback control system, also known as a closed-loop system. When
the input is independent of the output, then we have an open-loop system. In this chapter, we will
examine closed-loop systems.

The important question is, how do we choose our input? Well, let’s suppose that C = I and D = 0.
Thus, the output y(t) equals the state x(t). In this case, we can take u(t) = Fx(t), with F a matrix.
This is called state feedback. The equation u = Fx is called a control law. In fact, this specific
control law is known as a static compensator. (This is because F does not vary with time.)

1.2 Stabilizability

With the static compensator, our system equation turns into ẋ = Ax + Bu = (A + BF )x. We should
choose our F, such that the system A + BF is stable. In other words, the eigenvalues of A + BF should
all have a negative real part. We call the system stabilizable if there is a matrix F , such that A + BF
is stable.

You may wonder, when is a system stabilizable? To find this out, we can use the Hautus test for
stabilizability. This test states that the system (A,B) is stabilizable if and only if, for all (possibly)
complex s with Re(s) ≥ 0, we have

rank
[
(sI −A) B

]
= n. (1.1)

Again, note that the rank of the above matrix always equals n, when s is not an eigenvalue. We thus
only need to check the above equation for values s = λi, where λi is (in this case) an unstable eigenvalue.
(Also note that stable systems are stabilizible by default, since they don’t have any unstable eigenvalues.
Similarly, controllable systems are also always stabilizable.)

1.3 The pole-assignment theorem

Let’s suppose that the system (A,B) is controllable. The pole-assignment theorem now states that we
can actually choose the poles of (A + BF ) ourselves! This implies that the system is surely stabilizable.
(We can simply choose poles with negative real parts.) All we need to do is choose F in the right way.
But how do we choose F? That is, however, not very easy. But we will describe the process here for the
single-input case.
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The first step is to put the matrices A and B into so-called controller (canonical) form, being

Ā = T−1AT =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1

−p0 −p1 · · · −pn−2 −pn−1

 and B̄ = T−1B =



0
0
...
0
1

 . (1.2)

In this equation, the coefficients p1, . . . , pn−1 are the coefficients of the characteristic polynomial of A. In
fact, we have

det(λI −A) = det(λI − Ā) = p(λ) = λn + pn−1λ
n−1 + . . . + p1λ + p0. (1.3)

The only difficult part here is finding the right transformation matrix T . Luckily, T can be constructed.
We simply have T = [q1 q2 . . . qn], where the vectors q1, . . . ,qn are defined as

qn = B, (1.4)
qn−1 = AB + pn−1B = Aqn + pn−1qn, (1.5)
qn−2 = A2B + pn−1AB + pn−2B = Aq1 + pn−2qn, (1.6)

... (1.7)
q1 = An−1B + pn−1A

n−2B + . . . + p1B = Aq2 + p1qn. (1.8)

Once we have put A and B into the controller form, we can continue with step 2. Let’s suppose that
we want to have a certain set of poles. These poles then fully determine the characteristic equation of
A + BF , being

det(λI − (A + BF )) = r(λ) = λn + rn−1λ
n−1 + . . . + r1λ + r0. (1.9)

Now, all we need to do is define

F̄ =
[
p0 − r0 p1 − r1 . . . pn−1 − rn−1.

]
(1.10)

This immediately gives Ā+ B̄F̄ the required eigenvalues, and thus also A+BF . (Linear transformations
don’t change the eigenvalues of a matrix.) Once we know F̄ , finding F itself is not difficult. We just use
F = F̄ T−1.

2 The observer

2.1 Detectability

Previously, we have assumed that C = I. In other words, the state x(t) was known. But this is of course
not always the case. What do we do if we don’t know the state x? One option is to approximate it,
by using an observer. This observer uses the input u(t) and the output y(t) to make an estimate x̂
of the state x. The observer can now be modeled as a separate system. This system has as output the
estimated state x̂ of the system. We thus have

˙̂x = P x̂ + Qu + Ky and x̂ = Ix̂. (2.1)

The question remains, what should P , Q and K be? We use two simple rules to derive them. First of all,
if we have a correct estimate of the state at some time, then we would like to keep the estimate correct.
So, if x = x̂, then we want to have

d

dt
(x− x̂) = 0 = Ax + Bu− P x̂−Qu−Ky = (A−KC)x− P x̂ + (B −Q)u, (2.2)
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where we have used y = Cx. The above equation should hold for every u(t). By using this fact, and by
also using x = x̂, we can find that

A−KC = P and B = Q. (2.3)

Second, we would like the error e = x− x̂ to decrease to zero. The derivative of this error is given by

ė =
d

dt
(x− x̂) = (A−KC) (x− x̂) = (A−KC) e. (2.4)

This means that, if A−KC is asymptotically stable, then the error will converge to 0. The observer will
thus be able to estimate the state x. We therefore say that a system is detectable if there is a matrix
K such that the eigenvalues of A−KC all have negative real parts.

The question remains, when is a system detectable? Again, there is a test. A system is detectable if and
only if, for all (possibly) complex s with Re(s) ≥ 0, we have

rank

[
(sI −A)

C

]
= n. (2.5)

Again, we only need to check the above equation for values s = λi, where λi is an unstable eigenvalue.
(Also note that stable and observable systems are always detectable.)

2.2 Again the pole-assignment theorem

Let’s suppose that (C,A) is observable. In this case, we can again select the poles of A−KC. In fact, for
every polynomial w(λ) = λn +wn−1λ

n−1 + . . .+w1λ+w0, there is a K such that det (λI − (A−KC)) =
w(λ). Thus, observable systems are always detectable. We just need to select K in the correct way. But
how do we find K?

First, we remember that, if (C,A) is observable, then (AT , CT ) is controllable. The system (AT , CT ) is
thus also stabilizable. There thus is an F such that det

(
λI − (AT + CT F )

)
= w(λ). (To find F , use the

set of steps discussed earlier in this chapter.) If we now take K = −FT , then there is of course also a K
such that

det
(
λI − (AT − CT KT )

)
= det (λI − (A−KC)) = w(λ). (2.6)

So, in this way, the correct matrix K can be chosen for the observer.

3 The dynamic compensator

3.1 Combining state feedback with an observer

Let’s summarize matters. In the first part of this chapter, we saw how we can stabilize a system, if we
know the state. In the second part, we saw how we can estimate the state. What if we use the estimate
of the state to stabilize the system? We simply connect the observer to the static compensator. Doing
this will give us a dynamic compensator (also known as a dynamic controller). This dynamic
compensator can be seen as a separate system. Its input will be the output y of the original system,
while its output is the input u to the original system. The dynamic compensator can thus be described
by

˙̂x = (A + BF −KC)x̂ + Ky, (3.1)
u = F x̂. (3.2)
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By connecting the dynamic compensator to the original system, we actually get a combined system
without any inputs and outputs. This combined system can be described by ẋc = Acxc, where

xc =

[
x
x̂

]
and Ac =

[
A BF

KC A + BF −KC

]
. (3.3)

3.2 Stability of the combined system

Let’s ask ourselves, is the combined system stable? To answer that question, we need to examine the
eigenvalues of the matrix Ac. These are given by det (λI −Ac). Interestingly enough, it can be shown
that [

ẋ
ė

]
=

[
A + BF −BF

0 A−KC

] [
x
e

]
. (3.4)

This implies that
det (λI −Ac) = det (λI − (A + BF )) · det (λI − (A−KC)) . (3.5)

In other words, the set of eigenvalues of Ac is the union of the set of eigenvalues of the state feedback
A + BF and the set of eigenvalues of the observer A−KC. This means that the state feedback and the
observer can be designed independently. (This is known as the separation principle.) It also means
that, if the system is both stabilizable and detectable, then there are F and K such that Ac is stable.
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