System functions, requirements and resources

In this chapter, we examine the kind of functions systems can have. We also look at how requirements
are generated, and how we should deal with resources.

1 System functions

1.1 The Functional Flow Diagram

Every system has functions: It should do certain things. To accomplish these functions, several steps
(sub-functions) need to be taken. A good way to visualize this, is by using a Functional Flow Diagram
(FFD). An example of an FFD for an automobile can be seen in figure 1.

10
[rosuce | [ontmser [orerare
fRA'\.SPuRTArIn\ iIMNiI-tmTA'ﬂDN TRANSPORTATION TRANSPORTATION ’—; TR»\NSHNMTIDN
EAaBTY AABLTY || EARARITY xRy CAPRBIITY
i

SELECT
| AUTOMOBILE |
- I

L “

4.2
omatt ") T] [‘
e 4 — 5 I - _'—1

] i l

r

I
4
L LA 812 413

[compuer Fos CHECK. = T)
L6
| PREOPERATIONAL (= FLUD —=! TiRE IAWW,M“ ADRAST: ;‘I‘Q}‘“",
| ExaminaTion | uivis | eRessuRe | il |

=
i

2 422 423 LN 425
i [e F 1 ‘ mmﬂ

a2
’— 1
l_.wmmmrn |_’~”__r_'|_ an ’_-‘ ““l'_‘"u)_—l_jﬂ | EEARE J

A gEF —— e 32

413
- — e e T B
| pLact | I
FROM POINT 4 ,—- CARIN ACCELERATE l_. STEER uume ATE f_. sTOP
| GEan |

| ToroINT &

= i Sl w— — '_J'

Figure 1: An example of a Functional Flow Diagram for an automobile.

1.2 Time Line Analysis

The FFD shows the sequential relationship between functions. But it does not show the actual duration of
these functions. Time Line Analysis (TLA) does provide this functionality. When doing this analysis,
we represent functions by blocks. The width of the block then denotes the duration of the function. An
example of a TLA, for the European Robotic Arm (ERA), is shown in figure 2.

1.3 Functional Breakdown Structure

Quite often, a function isn’t as easy to understand as you might want. In that case, a Functional
Breakdown Structure (FBS) comes in handy.

In an FBS, a function is split up into several sub-functions. All of these sub-functions must be performed,
to perform the actual function. (The FBS is therefore an ‘and-tree’.) For example, let’s examine the
FBS shown in figure 3. Function A will only be done correctly, if the functions B, C, D and E are all
performed correctly.

£RA varming up —
Svitch on ERA]
Checkout lectrical [
Configure operation]
Checkout mechanical 1
EVAstart I
Detach O
Transter O
Atach O

Switen basepoint —

Detach O
Transter]
Attach O

Unfasten payload
Remove 0

Transkr —]

Transmit data to M1

o minves B @ E 2 "0

Figure 2: An example of a Time Line Analysis for the European Robotic Arm.

Figure 3: General form of the Functional Breakdown Structure.

1.4 Relations between functions

Let’s suppose we have N functions. There are often relationships between functions. One way to display
these relations, is by using an N2 diagram (also known as an interface diagram). The general form
of an N? diagram is shown in figure 4.

Input

Function

i [T T L
F2 Fd F5

1
1) F3

F*L Function
F2 oy e F2

2
(F2) F3 F4 F5
G F2

s ' Function
F3 F3 3 F3 F3
£l = F3 Function
L F4 .8 F4 Lef &

F4
(F4) °

F5

Function

Lo Lol Lo La|™

—
5) Output

T

Input

Figure 4: General form of the N2 diagram.

An N? diagram is, in fact, an N x N table. On the diagonal, we place the functions. We use the remaining
fields to display the relationships between functions. In those fields, we indicate which functions send
what data (as input/output) to what other functions. By convention, input is displayed vertically and
output is display horizontally.

You may wonder, how does this displaying work? Well, let’s suppose function 1 sends data to function
2. In this case, we write this down in the second column of the first row. If, however, function 1 does not
send anything to function 2, the corresponding cell remains empty.

2 Requirements

2.1 What are requirements?

Let’s suppose we’re designing a system. The requirements state what our system should do. When
designing the system, we should keep these requirements in mind a lot.

We can sort requirements, based on their importance. Key requirements are requirements having an
importance that is above average. There could also be requirements which have a very strong influence on
the project. Such requirements are often called driving requirements. Finally, killer requirements
are requirements driving the project to an unacceptable extent. In other words, they are virtually
impossible to reach.

Requirements can be about a lot of things. For example, they can be about. ..

Functions

Configurations

Interfaces

Looks

Environmental influences
Quality

Operation

Support

e Verification

2.2 Generating requirements

How do we get requirements? The requirements are usually set by the customers. They are derived
from the the POS and/or the MNS. Generating requirements is generally a difficult thing. There are
therefore tools that can help you with it. The Requirements Discovery Tree (RDT) is one of them.
An example of such a tree can be seen in figure 5.

Ferform rrission

Perform mission F'errorm'mssion
technically R
I I
Perform mission Perform mission o
with sufficent wih sifficient Pe”"m;ﬂ’@"’” Cost Schedule Legal o
output quartity output quality

Figure 5: A general example of a Requirements Discovery Tree.

To generate an RDT, we start with the main requirement. This requirement is split up into separate
sub-requirements. Fach of these sub-requirements is then again split up. And this continues, until the
requirement tree has sufficient detail. In this way, the whole Requirements Discovery Tree is generated.

2.3 The Requirements Traceability Matrix

When generating the requirements, we have seen that requirements often originate from other require-
ments. In fact, requirements usually have parent and children requirements. The relation between these
requirements is summarized in a Requirements Traceability Matrix (RTM). By the way, the RTM
looks quite a lot like the Requirements Discovery Tree.

The RTM is quite handy to check the requirement structure. If a certain requirement has no parent, then
something has gone wrong. It could, on the other hand, also occur that a rather general requirement
does not have any children. In this case, further requirements need to be added.

2.4 Valuing requirements

Let’s suppose we have a list of requirements. Of course, some requirements are more important than
others. To determine which requirements are more important than others, we can use a Quality Func-
tion Deployment (QFD) diagram. The general shape of a QFD diagram is shown in figure 6. A QFD
diagram is often also called a house of quality, due to its house-like shape.

Let’s suppose we're generating the QFD diagram for the requirements of a wooden desk. To generate it,
we have to take certain steps.

1. First we write down the product attributes. These are the properties of the product, as seen by
the customer. (The looks of the desk, the ease in use, the strength, etcetera.)

2. We then indicate the importance of the product attributes, according to the customer. This goes
on a scale from 1 to 5. (The customer could, for example, want a very efficient desk. Then the ease
in use would get a 5, while the looks would only get a 2.)

27
a 2
2 [
E g 2 E
58 =) T8
(©)strong =9 < 8 i £ £sg
2 L i3d
OMedium=3 relation between g9 €5 L] g
echnical-paramet 55 853 -
Weak = 1 85 258 gfis
=8 OS5 a 2222
Technical 8 i
pical par 7 | ER 12345 8E=Z=2
1al
< sance of tech™ .=
P o)
.E\~Xm“‘)a\ aeters | o
S pa m
1 3 : 2 |F3 =4~
i Dk | anm
&
S &
] |
Sum of s¢ores
Priority (score in %) M Product 1
I Product 2
Unit X = importance * weight (%)
Our product 7
Competitor’s product
Objective 9

Figure 6: The general shape of the Quality Function Deployment diagram.

. We will be comparing our product design to other similar products. To do this, we need to find out
what our customer thinks of those other products. We do this for all product attributes. (So, for
example, we have to know what our customer thinks of the looks, the ease in use and the strength
of that brand new IKEA desk.)

. We continue by setting the objectives for our product. This is again on a scale from 1 to 5. (How
good do we want our desk to look? How strong should it be?) Once we have done this, we can also
fill in the remaining columns on the right of the QFD. This eventually gives us the weight of the
product attributes.

. We then start to write down the technical parameters. These are the parameters, as seen by the
designers. (Examples are the thickness of the wooden planks, the number of supporting beams, the
wood type, the paint quality, etcetera.)

. It is time to fill in the middle part of the QFD. Here, we insert the effect of the technical parameters
on the product attributes. This can be either strong (9), medium (3), low (1) or non-existing (0).
(For example, the thickness of the wooden planks effects the strength a lot (9), but it effects the
looks only a bit (3 or 1). Also, the quality of the paint effects the looks quite a bit (9 or 3), but it
does not effect the strength at all (0).) Once we know the effects, we multiply them by the weight
(determined at step 4) to find the importance.

. The hardest part is now over. To fill in the fields of the bottom rows, we simply need to add up all
the values of the columns above them.

. We can also indicate the correlation between the technical parameters. They can effect each other
in a strong way (9), a medium way (3) a light way (1) or not at all (0). We do this for every
pair of technical attributes. (For example, the number of supporting beams in the desk effects the
thickness of the wooden planks. More supports means that the planks can be lighter.)

. Finally, based on the results that were found, we give actual values to the technical parameters.
(We can, for example, decide that we want wooden planks of exactly 1 centimeter thick.)

3 Resource Management

3.1 Technical Resource Budget

Let’s suppose we’re designing a system, like an aircraft. This design has several technical resources, like
mass, capacity, availability, and so on. The set of all these parameters, which determine the success/failure
of the project, is called the Technical Resource Budget (TRB).

During the design process, the technical resources change. However, they usually change in a bad way.
(The mass usually increases during design.) It is our task to make sure they don’t increase too much.
(We should not consume too many technical resources.) The process of doing this is called Technical
Performance Measurement (TPM). The technical resources involved in this are therefore also called
TPM parameters.

3.2 Applying Technical Performance Measurement

How does Technical Performance Measurement work? To apply TPM, we need to set four values.

e First we set a specification value for our TPM parameters. This is the maximum our parameter
may be. For example, we can say that the mass of our aircraft should be at most 100 tons.

e The next step is to construct a target value. This is the target we are strifing for. It is slightly
below the specification value. For example, it could turn out that (during aircraft design) the mass
often turns out to be 25% higher than planned. (This percentage is called the contingency.) In
this case the target value for the mass will thus be 80 tons. (If the mass now rises by 25%, we're
still not above the specification level.)

e The third step is to find the actual value. For example, it could be that (according to our current
design) our satellite will weigh 88 tons.

e Finally, we determine the current value. It is equal to the actual value, plus the contingency. In
our example, we would have a current value of 110 tons (being 25% above 88 tons).

When the current value is bigger than the specification value, there is a problem. There are three things
that can be done. We could either improve our design, change the specification value, or change the
uncertainty in our estimates (the contingency).

