
Bending, Shear and Torsion

It is time to examine some basic loads that beams can be subject to. We especially look at thin-walled
beams, as they frequently occur in Aerospace Engineering. We can then derive general methods and
equations. With those, we can find the stresses that are present in the beam.

1 Bending of Beams

We start by examining bending. This is because we need the bending equations when we examine shear.

1.1 Definitions and conventions for bending

Let’s examine a beam of any shape. Just like in the previous chapter, its longitudinal axis lies on the
z-axis. Now the beam is subject to a bending moment M . We can dissolve this bending moment M into
a component Mx about the x-axis and a component My about the y-axis.

Let’s discuss the sign convention of these moments. We say a moment Mx is positive, if it causes (positive)
tensile stresses in the region y > 0. Similarly, My is positive, if it causes tensile stresses in the region
x > 0. We can see that Mx satisfies the right hand rule (it is directed counterclockwise if you look at it
from the positive x-direction). However, the moment My does not satisfy this rule. If you look at it from
the positive y-axis, it is directed clockwise.

When evaluating bending, we will have to use moments of inertia. There are the moment of inertia
about the x-axis Ixx, the moment of inertia about the y-axis Iyy and the product of inertia
Ixy. They are defined as

Ixx =
∫

A

y2 dA, Iyy =
∫

A

x2 dA and Ixy =
∫

A

xy dA. (1.1)

1.2 The general bending equation

The bending moments Mx and My cause the beam to bend. Now let’s look at the cross-section of the
beam. Part of the beam is subject to tensile stresses, while the other part is in compression. The line
separating these two regions is called the neutral axis. It can be shown that this is a straight line. It
always goes through the center of gravity of the cross-section.

It would be great to know what stresses are present in the beam. And the good part is, a general equation
can be derived for that. What we wind up with is

σz =
(

MyIxx −MxIxy

IxxIyy − I2
xy

)
x +

(
MxIyy −MyIxy

IxxIyy − I2
xy

)
y =

(
Iyyy − Ixyx

IxxIyy − I2
xy

)
Mx +

(
Ixxx− Ixyy

IxxIyy − I2
xy

)
My. (1.2)

In the above equation, you find two relations for σz. As you can see, they are equivalent. You can use
either one of them. Which one is the most convenient depends on the circumstances.

If the cross-section of the beam is symmetric about the x-axis or about the y-axis (or both), then we
have Ixy = 0. This simplifies the above equation drastically. We then remain with

σz =
Mx

Ixx
y +

My

Iyy
x. (1.3)
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1.3 Beams of multiple materials

Sometimes beams are made of multiple materials. Different materials generally have different stiffnesses,
so also different values of E. How do we take this into account? Well, to do that, we define the weighted
cross-sectional area A∗ as

dA∗ =
E

Eref
dA, which implies that A∗ =

∫
A

E

Eref
dA. (1.4)

Here Eref is just some reference E-modulus. Although it can be anything, it’s usually taken to be the
E-modulus of one of the present materials. We can now also define the weighted moment of inertias as

I∗xx =
∫

A

y2 dA∗, I∗yy =
∫

A

x2 dA∗ and I∗xy =
∫

A

xy dA∗. (1.5)

Based on these definitions, we can derive a new expression for σz. We now find that

σz =
E

Eref

((
MyI∗xx −MxI∗xy

I∗xxI∗yy − I∗2xy

)
x +

(
MxI∗yy −MyI∗xy

I∗xxI∗yy − I∗2xy

)
y

)
. (1.6)

Note that E in the above equation is the E-modulus at the position where you want to know σz.

1.4 The neutral axis

We already know that the neutral axis is a straight line that passes through the COG of the cross-section.
What we don’t know, is its orientation. We define α as the clockwise angle between the x-axis and the
neutral axis. (So if the neutral axis is pointing 30◦ upwards, then α = −30◦.)

Let’s find α. We know that for every point on the neutral axis xna, yna we have σz = 0. We can insert
this into the previously derived equation for σz. We then find that

yna

xna
= −MyIxx −MxIxy

MxIyy −MyIxy
. (1.7)

We can also see that tanα = −yna/xna. It follows that

α = arctan
(

MyIxx −MxIxy

MxIY Y −MyIxy

)
. (1.8)

We haven’t considered the case where the beam consists of multiple materials. However, that case works
exactly the same. Just add stars to the Is in the above equation.

2 Shear Forces and Thin-Walled Beams

In aerospace engineering, thin-walled beams often occur. Just think of stringers, stiffeners, or even whole
fuselages. How do those beams cope with shear stresses? Let’s see if we can find that out.

2.1 Conditions for thin-walled beams

Let’s examine a thin-walled beam (a beam with very small thickness). Its cross-section is just a curving
line with thickness t. It can be either a closed curve (giving a closed section beam) or an open curve
(resulting in an open section beam).

A shear force S is acting on our beam. We can split this force S up in a part Sx (pointing in the x-
direction) and a part Sy (pointing in the y-direction). This shear force causes stresses in the beam. First
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of all, there is the stress in z-direction σz. There are also stresses in x and y-direction. However, this
time we don’t write them as such. Instead, we only consider the so-called hoop stress σs. This is the
stress in circumferential direction (so the stress along the curve). Similarly, we only deal with one shear
stress, being τzs = τsz = τ . So the only stresses we are considering are σz, σs and τ .

We’re almost ready to examine stresses in the beam. But first we need to make another definition. The
shear flow q is defined as q = τt. Now it’s time to derive the equilibrium equations for our beam. We
find

∂q

∂s
+ t

∂σz

∂z
= 0 and

∂q

∂z
+ t

∂σs

∂s
. (2.1)

We can also examine the displacements. The displacement of a point in z-direction is denoted by w. We
also have the displacement in circumferential (tangential) direction vt and the displacement in normal
direction vn. Corresponding to these displacements are the strains εz, εs and γ. The strain εs isn’t
important, so we ignore that one. The relations for the remaining strains are

εz =
∂w

∂z
and γ =

∂w

∂s
+

∂vt

∂z
. (2.2)

2.2 Deriving an equation for the shear flow

Let’s see if we can find the shear flow q caused by the shear forces Sx and Sy. In equation (2.1) we saw
q. However, we also saw ∂σz/∂z. Let’s examine this σz a bit closer. What causes it?

The shear force Sx causes a bending moment My. Similarly, Sy causes Mx. These bending moments
then cause the stress σz. From basic mechanics we know that Sx = ∂My/∂z and Sy = ∂Mx/∂z. If we
apply this to the bending equation (1.2), we find that

∂σz

∂z
=

(
SxIxx − SyIxy

IxxIyy − I2
xy

)
x +

(
SyIyy − SxIxy

IxxIyy − I2
xy

)
y. (2.3)

By inserting this relation into the equilibrium equation (2.1), and by integrating, we find that

q(s)− q0 = −
(

SxIxx − SyIxy

IxxIyy − I2
xy

) ∫ s

0

tx ds−
(

SyIyy − SxIxy

IxxIyy − I2
xy

) ∫ s

0

ty ds. (2.4)

Here s is the (counterclockwise) distance along the cross-section, from some point 0 with shear flow q0.
This expression for q(s) is quite important, so keep it in mind.

2.3 Finding the shear center

When we apply a shear force S somewhere on the cross-section, then the beam will most likely twist.
There is only one point where we can apply S such that the beam does not twist. This point is called
the shear center, and has coordinates ξs, ηs. How do we find the position of this shear center? Let’s
look at that now. (We will only discuss how to find the x-coordinate ξs, since finding ηs goes similar.)

To find ξs, we assume a certain position where the shear force Sy applies. If Sx is actually acting on the
shear center, then the rate of twist dθ/dz must be zero. Using this condition, we calculate the shear flow
q(s).

We can now evaluate moments about any point. The moment caused by the force Sy should then be
equal to the moment caused by the shear flow. From this the position of Sy (and thus also ξs) can be
derived.

You may be wondering, how do we find the moment caused by the shear flow? To do that, we replace
the shear flow by forces. And I’m sure you know how to find the moment caused by a set of forces.
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If the cross-section consists of straight lines, we can split it up in parts. For every part i of the cross-
section, we can make the integral

Fqi =
∫ si

0

q(si) dsi. (2.5)

This Fqi
is then the resultant force of the shear flow in part i.

Things are slightly more difficult if the cross-section is curved. Splitting the cross-section up in parts
isn’t possible anymore. However, we can also find the moment caused by the shear forces directly. Let’s
suppose we take moments about some point B. We then have

Mq =
∫ s

0

q(s)p ds, (2.6)

where the variable p is the shortest distance between point B and the line tangential to the part ds of
the cross-section.

2.4 Shear flow

Let’s suppose we have an open section beam. We can now find q(s) quite easily. Since the cross-section
is not a closed curve, it must have two edges. At those two edges the shear flow q is zero. We can now
apply equation (2.4). If we take one of the edges as point 0, we have q0 = 0. Since we also know the
shape of our cross-section, we can solve for q(s). And from this we can find the shear stress τ . Sounds
simple, doesn’t it?

There is one small addition we have to make though. When you apply a shear stress S to a beam, it
can also twist. (Like it does when it is subject to torsion.) Open section beams can’t support twist. So
to prevent them from twisting, you must apply the shear force S in the shear center. Then the above
method works. And luckily, we already know how find this shear center.

2.5 Shear of closed section beams

Now let’s look at closed section beams. This time we run into a problem. There isn’t any point 0 for
which we know the shear flow q0. To solve this problem, we first rewrite the shear flow q(s) as

q(s) = qb + q0, where qb = −
(

SxIxx − SyIxy

IxxIyy − I2
xy

) ∫ s

0

tx ds−
(

SyIyy − SxIxy

IxxIyy − I2
xy

) ∫ s

0

ty ds. (2.7)

We now examine the rate of twist dθ/dz. It can be shown that

2A
dθ

dz
=

∮
q(s)
Gt

ds =
∮

qb + q0

Gt
ds, (2.8)

where A is the area enclosed by the cross-section. The integral
∮

means we integrate over the entire
curved cross-section. Solving the above equation for q0 gives

q0 =
2Adθ

dz −
∮

qb

Gtds∮
1

Gtds
. (2.9)

Often the above integral can be simplified. If the shear force S acts in the shear center, then the rate
of twist dθ/dz is zero. It also often occurs that G or t (or both) are constant. In both cases the above
equation simplifies greatly.
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3 Torsion and Thin-Walled Beams

Previously we saw that a shear force can cause twist in beams. Torsion causes twist as well. How do
thin-walled beams react to pure torsion? Let’s find that out.

3.1 The center of twist

Let’s suppose we have a thin-walled beam (open section or closed section). We can apply a torsion T to
both its sides. The beam will then twist by an angle θ. Every point of the beam will have a displacement
u in x-direction and v in y-direction.

Now comes the interesting part. The beam will always twist in such a way, that it appears to be rotating
about some point R. This point R is called the center of twist. If u, v and θ are known, then its
position xR, yR can be found using

xR = −dv/dz

dθ/dz
and yR =

du/dz

dθ/dz
. (3.1)

There is one surprising thing though. If the beam is only subject to torsion, then the center of twist is
equal to the shear center! So if we know the shear center, we also know the center of twist when the
beam is subject to torsion.

3.2 Torsion of closed section beams

Now let’s look at a closed section beam. Since we only apply torsion, no direct stresses are present.
This reduces the equilibrium equations to ∂q/∂z = 0 and ∂q/∂s = 0. This means that q is constant
everywhere. It now follows that the torsion T is

T = 2Aq, (3.2)

with A still the area enclosed by the cross-section. The above equation is known as the Bredt-Bahto
formula.

What about displacements? Well, it can be shown that both θ, u and v vary linearly with z. So the rate
of twist dθ/dz is constant. And the nice part is, we even got an equation for dθ/dz. This equation is

dθ

dz
=

q

2A

∮
1
Gt

ds =
T

4A2

∮
1
Gt

ds. (3.3)

3.3 Warping in closed section beams

When a beam twists, there is usually also warping (meaning w 6= 0). It can be shown that the warping
w stays constant for different z. However, within a cross-section the warping w is generally not constant.
But, calculating it requires a couple of difficult integrations, so we won’t elaborate on it further in this
summary.

However, there is one important rule you do need to know. Let’s define pR as the shortest distance
between the center of twist R, and the line tangential to some part ds of the beam. If we have

pRGt = constant, (3.4)

then the beam does not warp under pure torsion. Such kind of beams are known as Neuber beams.
Examples are circular beams of constant thickness and triangular beams of constant thickness. But there
are plenty more Neuber beams.
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3.4 Torsion of open section beams

We have previously said that open section beams can’t take torsion. This wasn’t entirely true. They can
take a bit of torsion. However, the stresses and deformations are, in this case, usually quite big.

When a closed-section beam is subject to torsion, the shear flow can flow all around the cross-section.
We saw that in this case the shear flow q was constant. Along the thickness, also the shear stress τzs was
constant. However, this doesn’t work for open section beams. Instead, for open section beams, q = 0
everywhere. But now the shear stress τzs varies (linearly) along the thickness of the cross-section.

Let’s examine a small piece ds of the cross-section. Let’s look at the line in the middle of this piece. We
call n the distance from this line. It can now be shown that the shear stress τzs varies according to

τzs =
2n

J
T = 2Gn

dθ

dz
. (3.5)

The maximum shear stress occurs at maximum n. So this occurs at the edge of the cross-section, where
n = t/2. By the way, the torsion constant J can be found using

J =
1
3

∫
t3 ds, where also T = GJ

dθ

dz
. (3.6)

4 Combined open and closed section beams

Previously we have only considered beams that were either open or closed. But what do we do if a beam
has both an open and a closed part?

4.1 Shear

Let’s suppose we have a thin-walled beam which is both open and closed. On it is acting a shear force
S, acting in the shear center. To find the shear flow q in the beam, we can still use the known equation

q(s)− q0 = −
(

SxIxx − SyIxy

IxxIyy − I2
xy

) ∫ s

0

tx ds−
(

SyIyy − SxIxy

IxxIyy − I2
xy

) ∫ s

0

ty ds. (4.1)

However, we will often have to evaluate this equation multiple times, for different parts. And every time,
a new value q0 shows up. But, if we are clever, we choose point 0 such that every time q0 = 0. We can
then use the above equation to find the shear force q(s) at every point in the beam.

You might be wondering, how do you know where q = 0? Well, we always have q = 0 at the end of a
cross-section. We can often also deduce points of q = 0 from symmetry. Let’s look at the line L through
which the force S is acting. It often occurs that L is an axis of symmetry of the cross-section. In this
case, then every point on L generally also has q = 0.

4.2 Torsion

Now suppose we have a thin-walled beam that is subject to torsion. In this case it is often wise to first
find the total torsional rigidity GJtot. To find this, we first need to find the torsional rigidity GJi of every
sub-part i. We can find this using

GJi =
4A2G∮

1
t ds

for closed sections, and GJi =
G

3

∫
t3 ds for open sections. (4.2)

To find the total torsional rigidity GJtot, just add up all the separate torsional rigidities GJi. The
torsional rigidity of closed sections is generally much bigger than that of open sections. So often the
value GJ of open sections can be neglected.
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The rate of twist now follows from
dθ

dz
=

T

GJtot
. (4.3)

To find the shear flow (and thus also the shear stress) for a closed section i, we can use

q =
GJi

2A

dθ

dz
, (4.4)

where GJi is the torsional rigidity of that closed section i. To find the shear stress in an open section,
we still have

τ =
2n

J
T = 2Gn

dθ

dz
. (4.5)
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