
Basic Equations

1 Definitions, conventions and basic relations

Before we can start throwing around equations, we have to define some variables and state some conven-
tions. That is what we will be doing in this part.

1.1 Definitions

Let’s suppose we have an object, that’s subject to forces. There can be two kinds of forces it is subject
to. First there are surface forces acting on the outside of the object. An example of a surface force
is pressure. We can resolve surface forces into three components, along the axes. These components are
denoted as X, Y and Z. There are also body forces, acting on every particle of the object. An example
is the gravitational force. When we resolve body forces into three components, we write it as X, Y and
Z.

The forces acting on the object cause internal stresses. (Stress is force per unit area.) Let’s suppose we
make a cut through the object and examine a point O on the cut. There is a component of the stress
normal to the cut, called the direct (tensile) stress. This is denoted by the sign σ. There are also
two components of the stress parallel to the cut. These components are called shear stresses and are
denoted by τ .

1.2 Notation and sign conventions

Now let’s discuss some notation and sign conventions. Often direct stresses are examined along the three
basic axes. (The x, y and z-axes.) We then say that σx is the direct stress along the x-axis, σy is the
stress along the y-axis and σz is the stress along the z axis. If a certain stress is directed away from its
related surface, then we define it as a positive stress. Otherwise it is negative.

We can have a similar notation for shear stresses. However, shear stresses don’t only have a direction.
They also have a plane in which they act. They therefore have two subscript, like τxy. The x (the
first part of the subscript) denotes the plane in which the shear stress acts. In this case it is the plane
orthogonal to the x-axis. The y (the second part of the subscript) then denotes the direction of the shear
stress.

The sign convention of shear stress is also a bit difficult. We have to examine two arrows for that. First
there is the direction of the shear stress itself. Then there is also the normal vector to the plane on which
the shear stress is acting. (This normal vector always points outward.) If they both point in a positive
direction, or both in a negative direction, then we say that the shear stress is positive. If one points in a
positive direction, and the other in a negative direction, then it is negative.

1.3 Basic equations

We can examining the stresses acting on a small part inside an object. By doing so, we can derive a few
relations. First, by taking moments, we can derive relations for the shear stresses. These relations are

τxy = τyx, τxz = τzx and τyz = τzy. (1.1)
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By examining forces in certain directions, we can derive three equilibrium equations, being

∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+X = 0, (1.2)

∂σy
∂y

+
∂τyz
∂z

+
∂τyx
∂x

+ Y = 0, (1.3)

∂σz
∂z

+
∂τzx
∂x

+
∂τzy
∂y

+ Z = 0. (1.4)

Instead of examining a particle on the inside of an object, we can also examine a particle on the edge.
Now surface forces come into play. We can once more derive three equilibrium equations, being

X = σxl + τyxm+ τzxn, (1.5)

Y = σym+ τzyn+ τxyl, (1.6)

Z = σzn+ τxzl + τyzm. (1.7)

The three parameters l, m and n are direction cosines. They are added to the equation to compensate
for the direction of the surface. To find their values, examine the normal vector of the surface (still
pointing outward). l, m and n are the cosines of the angles which this normal vector makes with respect
to the x, y and z axis, respectively.

2 Stresses in different coordinate systems

We don’t always evaluate stresses along the x, y and z-axes. We can also examine them in different
coordinate systems. What happens when we start shifting coordinate systems?

2.1 Mohr’s circle

Let’s suppose we know all the stresses in the normal (x, y, z)-coordinate system. When we shift the
coordinate system, the normal stresses and the shear stresses change. The way in which this occurs is
described by Mohr’s circle. Mohr stated that if you plot the direct stresses and the shear stresses, you
would get a circle. Such a circle is shown in figure 1.

Figure 1: Mohr’s Circle

How does this work? Suppose we know the stress in x-direction σx, the stress in y-direction σy and the
shear stress τxy. Let’s draw the points (σx, τxy) and (σy,−τxy) in a coordinate system. We then draw a
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line between them. The point where this line crosses the x-axis denotes the average stress σav. It can
be found using

σav =
σx + σy

2
. (2.1)

The radius of the circle is

R =

√(
σx − σy

2

)2

+ τ2xy. (2.2)

Now if we rotate our coordinate system by an angle θ, then the line in our circle rotates by an angle 2θ.
From this, the new stresses can be found.

2.2 Directions of maximum stress

It would be nice to know when maximum stress occurs. Maximum normal (direct) stress occurs when
we rotate our coordinate system over an angle θmσ. θmσ can be found using

tan 2θmσ =
2τxy

σx − σy
. (2.3)

The corresponding stresses are called principal stresses. The planes on which they act are the principal
planes. The maximum stress (also called the major principal stress) σI and the minimum stress
(also called the minor principal stress) σII can now be found using

σI = σav +R and σII = σav −R. (2.4)

Similarly, maximum shear stress occurs when we rotate our coordinate system by an angle θmτ , where
θmτ now satisfies

tan 2θmτ = −σx − σy
2τxy

. (2.5)

This angle will always be 45◦ bigger or smaller than the angle at which maximum direct stresses occur.
(This can also be seen from Mohr’s circle.) The corresponding maximum shear stress now is

τmax = R =
σI − σII

2
. (2.6)

3 Strains

When an object is subject to forces, there will be displacements. These displacements relate to strains.
Let’s take a look at what kind of strains there are, and how we can find them.

3.1 Strain relations

We generally distinguish two types of strains. The longitudinal or direct strains (denoted by ε) relate
to changes in length. Shear strains (denoted by γ) relate to changes in angles.

Let’s examine a point O of an object. Due to the deformation of this object, this point O moves. It
moves a distance u along the x-axis, a distance v along the y-axis and a distance w along the z-axis. It
can now be shown that the direct strains in x, y and z-direction satisfy

εx =
∂u

∂x
, εy =

∂v

∂y
and εz =

∂w

∂z
. (3.1)

The orientations of lines passing through point O have also changed. For example, let’s consider two lines
in the xy-plane that were perpendicular. (There was an angle of π/2 between them.) Now they aren’t
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perpendicular anymore. Their relative angle now is π/2− γxy. This works the same for the xz-plane and
the yz-plane. So we have three shear strains γxy, γxz and γyz. If the displacements are small, then it can
be shown that

γxy =
∂v

∂x
+
∂u

∂y
, γxz =

∂w

∂x
+
∂u

∂z
and γyz =

∂w

∂y
+
∂v

∂z
. (3.2)

Now we have six kinds of displacements. It seems like a lot of unknowns. Luckily there are relations
between them. There are 6 compatibility equations. These equations are

∂2γxy
∂x∂y

=
∂2εx
∂y2

+
∂2εy
∂x2

, 2
∂2εx
∂y∂z

=
∂

∂x

(
−∂γyz

∂x
+
∂γxz
∂y

+
∂γxy
∂z

)
, (3.3)

∂2γyz
∂y∂z

=
∂2εy
∂z2

+
∂2εz
∂y2

, 2
∂2εy
∂z∂x

=
∂

∂y

(
−∂γzx

∂y
+
∂γyx
∂z

+
∂γyz
∂x

)
, (3.4)

∂2γzx
∂z∂x

=
∂2εz
∂x2

+
∂2εx
∂z2

, 2
∂2εz
∂x∂y

=
∂

∂z

(
−∂γxy

∂z
+
∂γzy
∂x

+
∂γzx
∂y

)
. (3.5)

3.2 Relations between stress and strain

Currently, we’ve got quite a couple of equations. But we got even more unknowns. So we need more
equations. Where do we get those equations from?

We can try to describe the relationship between stress and strain. For that, we first have to make a
few assumptions. First, we assume that the object we’re looking at is homogeneous. This means that
the material properties are the same at every point in the object. We also assume that the object is
isotropic, meaning that the properties are the same in every direction. It also means that the stress and
the strain are proportional.

From these assumptions we can derive that

εx =
σx − ν (σy + σz)

E
, εy =

σy − ν (σz + σx)

E
and εz =

σz − ν (σx + σy)

E
. (3.6)

Here ν is the Poisson ratio. There are also a relations between the shear stresses and shear strains.
These relations are

γxy =
τxy
G
, γyz =

τyz
G

and γzx =
τzx
G
. (3.7)

The variable G is called the modulus of rigidity. It is related to E and ν according to

G =
E

2 (1 + ν)
. (3.8)

3.3 Changes of volume

When an object deforms, its volume changes. It would be interesting to know at what rate this happens.
If V is the volume of a particle, then the volumetric strain e of that particle is

e =
∆V

V
= εx + εy + εz =

1 − 2ν

E
(σx + σy + σz) . (3.9)

If an object is compressed at a constant pressure p, then σx = σy = σz = −p. We then have

e = −3 (1 − 2ν)

E
p = − p

K
, with K =

E

3 (1 − 2ν)
. (3.10)

The constant K is known as the bulk modulus or the modulus of volume expansion.
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3.4 Thermal effects

When an object is heated, it expands. It does this according to

ε = α∆T, (3.11)

where α is the coefficient of thermal expansion. If also stresses are involved, then we get new
equations for the strains. We simply add α∆T up to the old equations. We then get

εx =
σx − ν (σy + σz)

E
+ α∆T, (3.12)

εy =
σy − ν (σz + σx)

E
+ α∆T, (3.13)

εz =
σz − ν (σx + σy)

E
+ α∆T. (3.14)
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