
Application of Theory to Aircraft

1 Structural Idealization

It’s time to apply some of our theory into practice. Let’s look at airplanes. In an airplane are many parts
that have a rather complicated shape. Let’s find a way to examine them.

1.1 Simplifying a shape

Let’s examine an aircraft fuselage. It often consists of a shell with a couple of stringers. Altogether, we
have got a complicated shape. We need to make some assumptions and simplifications, such that we can
evaluate it.

First we do something about the stringers. We replace them by concentrations of area (so-called booms).
These booms have the same cross-sectional area as the original stringer.

Now let’s look at a piece of fuselage skin with width b and (effective) thickness tD. The normal stress σ
varies along this piece. On the left side is a stress σ1 and on the right a stress σ2. We want to replace
this piece of skin by two booms at the edges. This should be done, such that the effects are the same.
So the two booms should take the same force and the same moment as the piece of skin. From this, we
can derive that these two booms have area B1 (left) and B2 (right), where

B1 =
tDb

6

(
2 +

σ2

σ1

)
and B2 =

tDb

6

(
2 +

σ1

σ2

)
. (1.1)

Since we have replaced the skin by two booms, the remaining effective thickness tD of the skin is 0.

Let’s take a closer look at the ratio σ2/σ1 in the above equation. This ratio depends on the loads which
our fuselage is subject to. And thus so do B1 and B2. This means that if we load our fuselage differently,
our booms will have different areas.

We now make an important assumption. We assume that the booms take all the normal stresses, while
the skin takes all the shear stresses. This makes our analysis a lot simpler. To examine normal stresses,
we only have to evaluate a set of points with known areas. Also examining shear stress is a bit easier
now.

1.2 Normal stress

In our new fuselage, how do we calculate the normal stress? For that, we can still use the general equation
we derived for bending. Let’s just repeat it. It was
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Finding the moments of inertia is now quite easy. For the booms B1, . . . , Bn, just use
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i=1

y2
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i Bi and Ixy =
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1.3 Shear flow

Let’s examine a beam subject to shear stresses Sx and Sy. We have assumed that the skin takes all the
shear stresses. We stick to this assumption. However, it turns out that the booms do effect the shear
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stress. Let’s suppose we have two pieces of skin with shear flow q1 and q2. In between these pieces is a
boom with area Br, coordinates xr, yr and direct stress σz. It can now be shown that
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From this, we can derive that the shear stress q(s) = qb + q0 is given by
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(1.5)
The two sums in the above equation sum over all the booms between point 0 and s. Also note that if we
have replaced our skin by booms as well, then the remaining effective thickness tD is zero. This would
mean that the integrals in the above equation vanish.

For open section beams, we should take point 0 as some point where q0 = 0, just like we’re used to. For
closed section beams, we have to find the value for q0. This can still be done using known methods. Just
take moments about some point. The moment caused by the shear stresses should then be equal to the
moment caused by the shear force S.

2 Tapered Sections

We have previously always assumed that the cross-section of a beam stays constant for varying z. What
happens if it doesn’t? Let’s find that out.

2.1 Tapered wing spars

Let’s consider an I-shaped wing spar, whose height h changes. We assume that the web takes all the
shear stress. Similarly, the flanges take all the direct stresses. We thus replace these flanges by two booms
with areas B1 (top) and B2 (bottom).

When the beam is subject to a shear force Sy (and thus also a bending moment Mx), the flanges will
be subject to forces P1 and P2. However, only the components in z-direction (Pz,1 and Pz,2) counteract
the bending moment Mx. This goes according to Pz,1 = σ1B1. (σ1 can be found by using the bending
equation.)

But now comes the surprising part, the part of P1 acting in y-direction (being Py,1) effects the shear flow
in the web. In fact, the effective shear force Sy,w acting on the web can be found using

Sy,w = Sy − Py,1 − Py,2 = Sy − Pz,1
δy1

δz
− Pz,2

δy2

δz
. (2.1)

Here the parameters y1 and y2 denote the y-coordinate of the flanges. When using the above equation,
special care should be payed to the direction of the forces Py,1 and Py,2. Using the effective shear force,
the shear flow in the web can be calculated, exactly in the way you are normally used to.

It is sometimes sligthly difficult to see whether the effective shear stress increases, or whether it decreases.
There is a rule of thumb for that. If the cross-section is widening, then the effective shear stress is usually
lower than the actual shear stress. And similarly, if the cross-section is getting smaller, then the effective
shear stress is higher than the actual shear stress.

2.2 General shapes

In the previous paragraph we considered a vertical web, with two booms at the ends. Now let’s consider
a general (thin-walled) shape, consisting of a skin with booms. Every boom r with coordinates xr, yr has
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an internal force Pr, with components Px,r, Py,r and Pz,r. These relate to each other according to

Px,r = Pz,r
δxr

δz
, Py,r = Pz,r

δyr

δz
and also Pr = Pz,r

√
δx2

r + δy2
r + δz2

r

δz
. (2.2)

The effective shear forces in x and y-direction can now be found using

Sx,w = Sx −
n∑

r=1
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δxr

δz
and Sy,w = Sy −

n∑
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Pz,r
δyr

δz
. (2.3)

Again, the rest of the analysis goes exactly as you’re used to. There’s one slight exception though.
Suppose you have a closed cross-section. Then at some time you need find a function q(s) = qb + q0.
To find q0, you can take moments about a certain point. These moments should then be equal to the
moment caused by Sx and Sy. However, this time the moments caused by Px,r and Py,r should also be
taken into account. Do not forget that.

3 Aircraft Wings

Aircaft wings often have a rather characteristic shape. Examining wings is therefore an art itself — An
art we will delve into now.

3.1 The wing shape

Let’s consider the cross-section of a wing. It consists of the top and bottom skin of the wing, plus several
vertical spars. The wing thus consists of a number N ”boxes.” Due to the (sometimes large) amount of
spars, we have a high amount of redundancy. That is why wings are difficult to analyze.

Soon we will be putting torsion and shear forces on the wing. This causes a certain amount of counter-
clockwise (assumed) shear flow qR in box R. In this case the top of box R has a shear flow qR, pointed
to the left. The bottom has qR pointed to the right.

But what about the shear stress in the spar to the right of box R? (We call it spar R.) Box R causes
a shear flow qR upward. However, box R + 1 causes a shear flow qR+1 downward. So the shear flow in
spar R is qR − qR+1 (upward). In this way the shear flow in every spar can be determined.

3.2 Torsion

Let’s subject a wing to a torsion T . The torsion T will be divided over the several boxes. Every box R
now supports an amount of torsion TR, where

TR = 2ARqR, with also
N∑

R=1

TR = T. (3.1)

The area AR is the area enclosed by box R. There is just one slight problem. In the above equation, we
don’t know qR, nor TR. So we have N + 1 equations, but 2N unknowns. We need more equations.

We now assume that the rate of twist dθ/dz of the boxes are all equal. We can find the rate of twist of
box R using

dθ

dz
=

1
2ARG

∮
R

q

t
ds, (3.2)

where we integrate around the entire box. (Note that in this case q is not always qR. Previously we saw
that the shear flow in spar R isn’t qR.) Although we have one extra unknown (being dθ/dz), we have N
extra equations. So we can solve our system of 2N + 1 equations.

3



Sometimes the spars have different shear moduli G. In this case we set a reference modulus Gref and
define the modulus-weighted thickness t∗, such that

t∗ =
G

Gref
t, after which we use

dθ

dz
=

1
2ARGref

∮
q

t∗
ds. (3.3)

3.3 Shear

Now let’s apply a shear stress S to our wing. This makes things a bit more complicated. The shear
stress qR(s) in every box is now given by qR(s) = qb,R + q0,R. The value of qb,R around the box can be
determined from

qb,R = −
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(3.4)
So qb,R is known. However, q0,R is not. To find it, we once more look at the rate of twist dθ/dz, which
is (assumed) equal for all boxes. It is now given by

dθ

dz
=

1
2ARG

∮
R

q

t
ds =

1
2ARG

∮
R

qb,R + q0,R

t
ds (3.5)

This gives us N extra equations, but also one extra unknown. We thus need one more equation. We now
look at moments. All the shear flows together cause a moment (about a certain point). This moment
must be equal to the moment caused by the shear force S (about that same point).

3.4 Cut-outs in wings

The last subject in this summary is a rather difficult problem. Let’s look at a simple wing box, consisting
of two spars with two pieces of skin in between. (If we look at the idealized cross-section, we simply see a
rectangle, with booms at the corners.) If we look at the 3D wing box, we can split it up in three identical
parts. Now we make a cut-out in the middle part (part 2). We remove the entire bottom skin of this
part. This severely weakens the structure. We can now ask ourselves, what will happen if the wing box
is subjected to loads?

This is, in fact, quite a difficult problem. Many things happen at the same time. In part 1, the shear
forces are gradually being transferred (as normal forces) into the spar flanges (the booms). This causes
normal forces P in the flanges.

Let’s now look at the cross-section between parts 1 and 2. At this cross-section, the torsion has ”trans-
lated” itself into two shear forces S. These forces are positioned at (and also supported by) the spars.
They result in the same moment as the torsion T . Using this fact, you can find the magnitude of S.

The shear forces S cause certain shear flows q in the spars of part 2. These shear flows change the
magnitude of the normal forces P in the flanges. By evaluating moments about certain points, the
magnitude of these forces P can be determined at certain positions. Once the normal forces P are
known, also the shear flows in part 1 can be found.

The above plan of approach might sound a bit short. However, this is a problem of which the solution
can’t be explained briefly in a summary. For a clear explanation of the problem, you would have to
consult a book on this subject.
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