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Solutions to Chapter 27 Problems
S.27.1

The position of the shear centre, S, is given and is also obvious by inspection (see
Fig. S.27.1(a)). Initially, then, the swept area, 2Ar (see Section 27.2) is deter-
mined as a function of s. In 12, 2Agr o =2sd/2=sd. Hence, at 2, 2Ar =d?. In
23, 24R 0 = 2(s/2)(d/2) + d* = sd/2 + d*. Therefore at 3, 2AR o = 3d*/2. In 34, 2AR o
remains constant since p =0. The remaining distribution follows from antisymmetry
and the complete distribution is shown in Fig. S.27.1(b). The centre of gravity of the
‘wire’ 1'2'3'4’5'6’ (i.e. 2A%) is found by taking moments about the s axis. Thus
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Fig. S.27.1(a)

which gives 24, = d?. Therefore, instead of using Eq. (27.9), the moment of inertia of
the wire (i.e. 'r) may be found directly, i.e.

2\*
'R = 2dt(dz)2 + 2d¢ (?) + dr d i
R= 3 3 2

which gives

_ 13dt
T
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5.27.2

By inspection the shear centre, S, lies at the mid-point of the wall 34 (Fig. S.27.2(a)).
The swept area, 2AR o, is then determined as follows. In 12, 2AR ¢ = (2sa sin 2)/2,
i.e. 2Ag 0 =a” sin 2a. In 23, 2Ag ¢ =2 x Ssasin 2o+ a” sin 2 = (sa + a°) sin 2o and
at 3, 2Ag o = 2a’ sin 2a.

Fig. S.27.2(a)

In 34 there is no contribution to 2Ag ( since p = 0. The remaining distribution follows
from anti-symmetry and the complete distribution is shown in Fig. S.27.2(b).

The centre of gravity of the ‘wire’ 1'2'3'4'5'6’ (i.e. 2AR) is found by taking moments
about the s axis. Thus

2AR6at = at(2 x 2a* sin 2a + 2 x 2a* sin 2a)
i.e.

24 = 3’ sin2a
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Fig. 5.27.2(b)
Then, from Eq. (27.9)
2a? sin 2a)? 4 2
Tg =2 x 2atw + 2at(2a? sin 2a)® — <§a2 sin Z(x) 6at

which gives

'k = %ast sin’ 2«
S.27.3

The shear centre, S, of the section is at a distance wr/3 above the horizontal through
the centers of the semicircular arcs (see P.17.3). Consider the left-hand portion of the
section in Fig. S.27.3(a).

2ARr,0 = —2(Area BCS — Area BSO)
= —2(Area CSF + Area CFOD + Area BCD — Area BSO)

ie.
1 Ty . 1 .
2ARp = —2 E(r cosOy +r) <? — rs1n91> + 5(2r + rcosf1)r sin 0y
+1 29 12 Tr
2" T 273
i.e.

2 T . T .
2ARo =71 <§ —60) —sinf; — 3 cos 91) i)

When 6 =7, 24g o = —1r?/3.

Note that in Eq. (i) Ar o is negative for the tangent in the position shown.

Consider now the right-hand portion of the section shown in Fig. S.27.3(b). The
swept area 2AR  is given by

2AR0 = 2 Area OSJ — nr2/3
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Fig. S.27.3(a)

Fig. 5.27.3(b)

i.e.

which gives

In Eq. (ii)

i.e.

2AR o = 2(Area OSJ — Area OJI — Area SJI) — 772 /3

KS = MScosb, = (g — rtan 02) cos bh

r .
KS = ?00592 — rsinf;

Substituting in Eq. (ii) gives

V14
2AR0 = r? <sin 6 — 6 — 3 cos 02)

(i)

(iii)
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In Eq. (27.3)
2AR ot ds 1 T
Je2Arords 1 [/ r (T — ) —sinf) — zcosel) d6;
Jotds 27r | Jo 3 3
T b4
+ f 7 (sin6 — 6 — = cos ) d92]
0 3
i.e.

fC 2AR,()t ds r?

fords 3

Hence, Eq. (27.3) becomes
r?
2AR = 2AR0 + 3

Then

I 2
'R = / (2AR)%t ds =/ P (z — 6 —sinf; — i cosf + 7—[> do;
- o - \3 3 3

Tl T T\2
—{—[ r <s1n92—92——c0592+—> do,
0 3 3

I'r = 72t <z - z)
3 m

which gives

S.27.4

The applied loading is equivalent to a shear load, P, through the shear centre (the centre
of symmetry) of the beam section together with a torque 7 = —Ph/2. The direct stress
distribution at the built-in end of the beam is then, from Eqs (16.21) and (27.1)

M, d%6 .
o= Ey — 2AREd—Z2 i)
In Eq. (1)
M, =PI (ii)
and
Ly = 2td?/12 = 1td* /6 (iii)

Also d26/dz? is obtained from Eq. (27.6), i.e.

de d3e
T=GJ]— —ETR—
dz dz3
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or, rearranging
e ,do , T :
@ MET e )
in which u? = GJ/ETR. The solution of Eq. (iv) is

d9 C cosh uz + D sinh uz + d (v)
—_— = COS Sin —_— \%
dz He ey

At the built-in end the warping is zero so that, from Eq. (18.19) d6/dz =0 at the built-in
end. Thus, from Eq. (v), C = —T/GJ. At the free end the direct stress, or, is zero so
that, from Eq. (27.1), d%6/dz*> =0 at the free end. Then, from Eq. (v)

D= (L) tanhw
= — ) tan
GJ H

and Eq. (iii) becomes

do T cosh u(l — z) .
—=—|1-—)F (vi)
dz GJ cosh !l
Differentiating Eq. (vi) with respect to z gives
d?0 T sinhp(l—2) y
5 = gt (vii)

dz2 ~ GJ cosh ul
Hence, from Eq. (27.1)

T sinhu(l —
op = _ZARE_MM
GJ cosh ul

which, at the built-in end becomes

| E
or = — TT‘RTZAR tanh ! (viii)

J=(h+2d)/3 (see Eq. (18.11)) (ix)

In Eq. (viii)

The torsion bending constant, I'g, is found using the method described in Section 27.2.
Thus, referring to Fig. S.27.4(a), in 12, 2Ar o =sh/2 and at 2, 2Ar o = hd/4. Also,
at 3, 2Ar,0 =hd/2. Between 2 and 4, 2ARr remains constant and equal to hd/4.
At 5, 2Ar 0 =hd/4 + hd/4 = hd/2 and at 6, 2ARr 0 = hd/4 — hd/4=0. The complete
distribution is shown in Fig. S.27.4(b). By inspection 2Ay = hd/4. Then
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i.e.
td3n? ®
= X
R= s

Substituting the given values in Egs (ii), (iii), (ix) and (x) gives

M, =200 x 375 = 75000 N mm
Ly = 2.5 x 37.5%/6 = 21973.0 mm*
J = (7542 x 37.5)2.5°/3 = 781.3 mm*
I'r = 2.5 x 37.5° x 75%/24 = 3.09 x 10’ mm®
Then
pn? =781.3/(2.6 x 3.09 x 107) =9.72 x 107°

and
nw=312x10"3

341



342

Solutions Manual
Thus from Eqgs (i) and (viii)

o = 3.41y + 0.064(2AR) (xi)
Then, at 1 where y = —d/2 = —18.75 mm and 2ARr = —hd/4 = —703.1 mm?2,

o1 = —108.9N/mm? = —o3

Similarly
o5 = —18.9N/mm? = —og
and
op) =04 =024 =0
S.27.5

The rate of twist in each half of the beam is obtained from the solution of Eq. (27.6).
Thus, referring to Fig. S.27.5, for BC

do T
— = —— +Acosh?2 Bsinh?2 i
& = 8GJ + wzy + 1%} 1)

where u? = GJ/ET and for BA

99 _ T | Ccoshpuz + Dsinh (i
_— = — COS Sin 11
d  GJ Hz 1z

Fig. $.27.5
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The boundary conditions are as follows:

When
21=2=0, db/dz; =db/dz, (iii)

When
n=zm=1 d%0/d:> =d%/dz3 =0 (see Eq.(27.1)) (iv)

When
21=2=0, 2d°0/dz? = —d*0/dz3 v)

(since the loads at B in each half of the section are equal and opposite). From Egs (i),
(i1) and (iv)
B = —Atanh2pul (vi)
D = —Ctanh ul (vii)

From Eqgs (i)—(iii)
T

T
—+A=—+C
8GJ+ GJ+

i.e.
(viii)
From Eqgs (i), (ii) and (v)

D= —-4B (ix)
Solving Egs (vi)—(ix) gives

7T tanh pltanh 2l
~ " 8GJ(4tanh 24l + tanh pl)
_ TT(4tanh pultanh 2u1)
~ 8GJ(4tanh 2l + tanh )
A 7T tanh !
8GJ (4 tanh 2pul + tanh pl)
7T (4 tanh 2l)
~ " 8GJ(4tanh 2l + tanh ul)

Integrating Eq. (i)

343



344  Solutions Manual
When z1 =0, 8; =0 so that F = —B/2u. Integrating Eq. (ii)

T C . D
0p = —2z220+ —sinhuzo + —coshuz + H
GJ Iz I

When z, =0, 8, =0 so that H = —D/u. Hence, when z; = and z; = [ the angle of twist
of one end of the beam relative to the other is

T
8GJ (4 tanh 2l + tanh pl)

X [%( tanh ! sinh 2l — tanh pltanh 2l cosh 2l — 4 tanh 2l sinh !l

T
01—1—92:@(1—#81)4-

+ 4 tanh pl tanh 2l cosh pul — %( tanh wl tanh 2,ul)]

which simplifies to

T! 49 sinh 2l
01+ 6 =

8GJ |”  2ul(10cosh? ul — 1)

S.27.6

Initially the swept area 2AR  is plotted round the section and is shown in Fig. S.27.6(b).

3 2

N[ o

Fig. S.27.6(a)

Then, using the ‘wire’ analogy and taking moments about the s axis

oAl sar = 239, (32 +2at 3a”
RME= 25 g N\
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which gives
21a?
24, = ——
R™ 20
Then
Lo y3a 1 (3 2+2t 32\’ 21a2\*
=2—t-|— at| — ) —Sa
R=273\ 2 2 20
ie.
I'r = 1.25a
From Eq. (27.6), i.e.
$o_ a0 T
dz3 dz GJ
where
/ﬂ: GJ
ETR

99 _ ¢ cosh iz + Dsinh iz +
—_— = COS Sin —_—
dz He Y

When z =0, the warping, w, is zero so that d8/dz =0 (see Eq. (18.19)), then
T

GJ

When z = L, the direct stress is zero. Therefore, from Eq. (27.1) d?60/dz? = 0. Therefore

B= L tanhuL
= — tan
Gy A
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so that the rate of twist is

o T |:1 B coshu(L—z)]

dz  GJ cosh uL
and
T sinh (L — z
0=—|z+ L +C
GJ ucosh ulL

When z =0, 6 =0 which gives
1
C = ——tanhulL
w

and

T sinh w(L — z)  tanh uL
z _
ucosh ulL "
At the free end when z =L

TL tanh L
or=—|(1-—
GJ uL

Inserting the given values in Eq. (i)

2.0°
T =100 x 30 =3000Nmm J =5 x 30 x 5 = 400 mm*

w?>=235%x10"% uL=153 67 =6.93°

S.27.7

The torsion bending constant is identical to that in S.27.4, i.e.

_ih*d’
R= ™
The expression for rate of twist is (see S.27.6)
dg Acosh uz 4 Bsinh uz + d
— = Acos sin —
dz He T

In AB, T =0 and d6/dz =0 at z =0 which gives A=0
Therefore, in AB

do )
— = Bsinh uz
dz

In BC

do
% = [l — acosh u(z — L) — Bsinh u(z — L)] + B sinh uz
Z
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where [ ] is a Macauley bracket
i.e.

[]=0forz <L
= (/) ordinary bracket for z > L

For continuity of d9/dz and d?6/dz? at z = L the Macauley bracket and its first derivative
must be zero at z=L. Then

l—a=0and 8=0

For the complete beam

% = 1[1 — cosh u(z — L)] + Bsinh uz
dz GJ
At
z=2L d%0/dz>=0 (or =0atz=2L).
Then

T
6 = ———pusinh ulL Bcosh2ulL
GJM uL + 192

which gives

T sinhulL
"~ GJcosh2ulL
Then
dé T sinh L
— = — 1[1 — cosh —L —————sinh
A~ GJ {[ cosh (e = DI+ oL 5 “Z}

Also since 6 =0 at z =0 and the Macauley bracket is zero for z < L

0 T L 1 inh j1( L)_i_sinh,uL( h 1
= — — L — —sin  — ——(cos —
GJ < w i cosh2uL He

Atz=2L

T sinh L

or = — -

GJ uLcosh2ulL

S.27.8

The variation of swept area is shown in Fig. S.27.8(b)
Using the ‘wire’ analogy

2
5 3
2A§4at = at% + 2al‘§a2 + al‘é—la2

347



348  Solutions Manual

A
Aro a
/ Y
A
S.C
a
3a
8 \ 4
3 4
a
Fig. 5.27.8(a)
2AR,0
4
A 2’
2Aq ‘
A - | - -
. \:,/ 5a%/4
2AR 1 2
a’l4 |
Y ] |
1 a 2 2a 3 a 4
Fig. 5.27.8(b)
1.€.
5a%
24, = —
R™ g
Then

1 1/3 2\2 (5 )2 1/a2\> (3 ,)\2
FRzatg(a2)2+2at [3 <§a2> +(§a2) :|—|—at [5 (%) +(Za2>
2\ 2
—4at (51)
8
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which gives
Tadt
24
The rate of twist is identical to that given by Eq. (vi) in S.27.4, i.e.

o T ! cosh (L — z)
dz  GJ cosh uL

R =

®

The direct stress distribution at the built-in end is, from Eq. (ix) of Example 27.1

E sinh L
or = — T 2Ar
GJT'r cosh uL

Evaluating the different constants

MR =9.33 x 10°mm® J =26.67mm* T =1125Nmm
w?=856x10"% and uL =146

Then
or = —0.369 2ARr
At 2,
54> 3a®> 3 x20?
2AR:a2—i:i: x — 150 mm?2
8 8 8
so that

orp = —553 N/mm2
The direct stress due to elementary bending theory is, from Eqs (16.21)

M,y
O; =
Ixx
where
M, = —150 x 500 = —75000 N mm
and
, 1.0 x 40° s
Ly =2 x 1.0 x20 x 20 +T=21.3x10 mm
Then
75000 x 20 704N/ 2
0,0 =————— =-—70. mm
2 213 x 103

The total direct stress at 2 is therefore

07 = —55.3 — 70.4 = —125.7N/mm?
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S$.27.9

The torsion bending constant is identical to that in S.27.4,
1.e.

r
R= g

The rate of twist is, from Eq. (27.6)

when z=0, d8/dz=0 (w=0 at z=0) which gives

whiL
2GJ

When z =L, d%6/dz*> =0 (or =0 at z = L) which gives

h
B= 2 Ltanh uL + —
2GJ wcosh uL
Hence
dé wh puLsinhpuLl + 1Y |
— = —— | —Lcosh ———— ) sinh L—
dz  2GJ |: Hz+ ( pcosh uL > Hz+ Z:|
Then
2ARE &0
or = — —
r Raz2

is

wh . uLsinh uL + 1
= —2ARE—— | —uL sinh ———— Jcoshuz—1
or RE267 |: pE S Lz < cosh uL He

At the built-in end when z=0

or = —2ARE

wh [ uLsinh uL + 1 — cosh L
2GJ

cosh uL
Evaluating the constants
I'r = 1040 x 10°mm®, J=12500mm*, px?>=4.0x107"% uL=3.0.
Then
or = —0.025(2AR)

The distribution of 2AR is linear round the section so that or is also linear.
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At 1,
2AR = -7 (see S.27.4)
Then
50 2
or,1 = +0.025 x 200 x 7= +62.5 N/mm~.
From symmetry of the 2AR distribution

or3 = —0r,| = —0r4 =0re6 = —62.5 N/mmz,

orp=or5=0

From Eqgs (16.21)
M
o, = b
Iyy
where
15007
M, =0.5 x = 562 500 N mm
and
50° 4
Ly =2 x5 x D = 104200 mm
Then
o, = 5.4y,
1.€.

0,1 =+135 N/mm2
From symmetry

0,1 = —0,3 = —0,4 = 0,6 = +135N/mm?>

0z2 = 0z5 = 0
The complete direct stresses are

o1 = 62.5+ 135 = +197.5N/mm’ = —o3
04 = 62.5— 135 = —72.5N/mm? = —o5

o) =05=0
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