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Solutions to Chapter 27 Problems

S.27.1

The position of the shear centre, S, is given and is also obvious by inspection (see
Fig. S.27.1(a)). Initially, then, the swept area, 2AR,0 (see Section 27.2) is deter-
mined as a function of s. In 12, 2AR,0 = 2sd/2 = sd. Hence, at 2, 2AR,0 = d2. In
23, 2AR,0 = 2(s/2)(d/2) + d2 = sd/2 + d2. Therefore at 3, 2AR,0 = 3d2/2. In 34, 2AR,0
remains constant since p = 0. The remaining distribution follows from antisymmetry
and the complete distribution is shown in Fig. S.27.1(b). The centre of gravity of the
‘wire’ 1′2′3′4′5′6′ (i.e. 2A′

R) is found by taking moments about the s axis. Thus

2A′
R5dt = dt

(
d2

2
+ 5d2

4
+ 3d2

2
+ 5d2

4
+ d2

2

)

12

3
4

56

s
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S

d

d

d

x

y

Fig. S.27.1(a)

which gives 2A′
R = d2. Therefore, instead of using Eq. (27.9), the moment of inertia of

the wire (i.e. �R) may be found directly, i.e.

�R = 2dt
(d2)2

3
+ 2dt

(
d2

2

)2

3
+ dt

(
d2

2

)2

which gives

�R = 13d5t

12
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Fig. S.27.1(b)

S.27.2

By inspection the shear centre, S, lies at the mid-point of the wall 34 (Fig. S.27.2(a)).
The swept area, 2AR,0, is then determined as follows. In 12, 2AR,0 = (2sa sin 2α)/2,
i.e. 2AR,0 = a2 sin 2α. In 23, 2AR,0 = 2 × 1

2 sa sin 2α + a2 sin 2α = (sa + a2) sin 2α and
at 3, 2AR,0 = 2a2 sin 2α.

1

2

3
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S

s
s

α α

Fig. S.27.2(a)

In 34 there is no contribution to 2AR,0 since p = 0. The remaining distribution follows
from anti-symmetry and the complete distribution is shown in Fig. S.27.2(b).

The centre of gravity of the ‘wire’ 1′2′3′4′5′6′ (i.e. 2A′
R) is found by taking moments

about the s axis. Thus

2A′
R6at = at(2 × 2a2 sin 2a + 2 × 2a2 sin 2α)

i.e.

2A′
R = 4

3 a2 sin 2α

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Solution-3-H6739.tex 24/1/2007 9: 30 Page 337

Solutions to Chapter 27 Problems 337

Fig. S.27.2(b)

Then, from Eq. (27.9)

�R = 2 × 2at
(2a2 sin 2α)2

3
+ 2at(2a2 sin 2α)2 −

(
4

3
a2 sin 2α

)2

6at

which gives

�R = 8
3 a5t sin2 2α

S.27.3

The shear centre, S, of the section is at a distance πr/3 above the horizontal through
the centers of the semicircular arcs (see P.17.3). Consider the left-hand portion of the
section in Fig. S.27.3(a).

2AR,0 = −2(Area BCS − Area BSO)

= −2(Area CSF + Area CFOD + Area BCD − Area BSO)

i.e.

2AR,0 = −2

[
1

2
(r cos θ1 + r)

(πr

3
− r sin θ1

)
+ 1

2
(2r + r cos θ1)r sin θ1

+1

2
r2θ1 − 1

2
2r

πr

3

]

i.e.

2AR,0 = r2
(π

3
− θ1 − sin θ1 − π

3
cos θ1

)
(i)

When θ1 = π, 2AR,0 = −πr2/3.
Note that in Eq. (i) AR,0 is negative for the tangent in the position shown.
Consider now the right-hand portion of the section shown in Fig. S.27.3(b). The

swept area 2AR,0 is given by

2AR,0 = 2 Area OSJ − πr2/3
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i.e.

2AR,0 = 2(Area OSJ − Area OJI − Area SJI) − πr2/3

which gives

2AR,0 = 2

[
1

2
r
πr

3
− 1

2
r2θ2 − 1

2
rKS

]
− πr2

3
(ii)

In Eq. (ii)

KS = MS cos θ2 =
(πr

3
− r tan θ2

)
cos θ2

i.e.

KS = πr

3
cos θ2 − r sin θ2

Substituting in Eq. (ii) gives

2AR,0 = r2
(

sin θ2 − θ2 − π

3
cos θ2

)
(iii)
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In Eq. (27.3)
∫

C 2AR,0t ds
∫

C t ds
= 1

2πr

[∫ π

0
r3

(π

3
− θ1 − sin θ1 − π

3
cos θ1

)
dθ1

+
∫ π

0
r3

(
sin θ2 − θ2 − π

3
cos θ2

)
dθ2

]

i.e.
∫

C 2AR,0t ds
∫

C t ds
= −πr2

3

Hence, Eq. (27.3) becomes

2AR = 2AR,0 + πr2

3

Then

�R =
∫

C
(2AR)2t ds =

∫ π

0
r4

(π

3
− θ1 − sin θ1 − π

3
cos θ1 + π

3

)2
dθ1

+
∫ π

0
r4

(
sin θ2 − θ2 − π

3
cos θ2 + π

3

)2
dθ2

which gives

�R = π2r5t

(
π

3
− 3

π

)

S.27.4

The applied loading is equivalent to a shear load, P, through the shear centre (the centre
of symmetry) of the beam section together with a torque T = −Ph/2. The direct stress
distribution at the built-in end of the beam is then, from Eqs (16.21) and (27.1)

σ = Mx

Ixx
y − 2ARE

d2θ

dz2 (i)

In Eq. (i)

Mx = Pl (ii)

and

Ixx = 2td3/12 = td3/6 (iii)

Also d2θ/dz2 is obtained from Eq. (27.6), i.e.

T = GJ
dθ

dz
− E�R

d3θ

dz3
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or, rearranging

d3θ

dz3 − µ2 dθ

dz
= −µ2 T

GJ
(iv)

in which µ2 = GJ/E�R. The solution of Eq. (iv) is

dθ

dz
= C cosh µz + D sinh µz + T

GJ
(v)

At the built-in end the warping is zero so that, from Eq. (18.19) dθ/dz = 0 at the built-in
end. Thus, from Eq. (v), C = −T /GJ. At the free end the direct stress, σ�, is zero so
that, from Eq. (27.1), d2θ/dz2 = 0 at the free end. Then, from Eq. (v)

D =
(

T

GJ

)
tanh µl

and Eq. (iii) becomes

dθ

dz
= T

GJ

[
1 − cosh µ(l − z)

cosh µl

]
(vi)

Differentiating Eq. (vi) with respect to z gives

d2θ

dz2 = T

GJ
µ

sinh µ(l − z)

cosh µl
(vii)

Hence, from Eq. (27.1)

σ� = −2ARE
T

GJ
µ

sinh µ(l − z)

cosh µl

which, at the built-in end becomes

σ� = −
√

E

GJ�R
T2AR tanh µl (viii)

In Eq. (viii)

J = (h + 2d)t3/3 (see Eq. (18.11)) (ix)

The torsion bending constant, �R, is found using the method described in Section 27.2.
Thus, referring to Fig. S.27.4(a), in 12, 2AR,0 = sh/2 and at 2, 2AR,0 = hd/4. Also,
at 3, 2AR,0 = hd/2. Between 2 and 4, 2AR,0 remains constant and equal to hd/4.
At 5, 2AR,0 = hd/4 + hd/4 = hd/2 and at 6, 2AR,0 = hd/4 − hd/4 = 0. The complete
distribution is shown in Fig. S.27.4(b). By inspection 2A′

R = hd/4. Then

�R = 4t
d

2

1

3

(
hd

4

)2
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Fig. S.27.4(a)
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Fig. S.27.4(b)

i.e.

�R = td3h2

24
(x)

Substituting the given values in Eqs (ii), (iii), (ix) and (x) gives

Mx = 200 × 375 = 75 000 N mm

Ixx = 2.5 × 37.53/6 = 21 973.0 mm4

J = (75 + 2 × 37.5)2.53/3 = 781.3 mm4

�R = 2.5 × 37.53 × 752/24 = 3.09 × 107 mm6

Then

µ2 = 781.3/(2.6 × 3.09 × 107) = 9.72 × 10−6

and

µ = 3.12 × 10−3
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Thus from Eqs (i) and (viii)

σ = 3.41y + 0.064(2AR) (xi)

Then, at 1 where y = −d/2 = −18.75 mm and 2AR = −hd/4 = −703.1 mm2,

σ1 = −108.9 N/mm2 = −σ3

Similarly

σ5 = −18.9 N/mm2 = −σ6

and

σ2 = σ4 = σ24 = 0

S.27.5

The rate of twist in each half of the beam is obtained from the solution of Eq. (27.6).
Thus, referring to Fig. S.27.5, for BC

dθ

dz1
= T

8GJ
+ A cosh 2µz1 + B sinh 2µz1 (i)

where µ2 = GJ/E� and for BA

dθ

dz2
= T

GJ
+ C cosh µz2 + D sinh µz2 (ii)

A

B

C

l

l

T

Tt

2t

z2

z1

Fig. S.27.5
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The boundary conditions are as follows:
When

z1 = z2 = 0, dθ/dz1 = dθ/dz2 (iii)

When

z1 = z2 = l, d2θ/dz2
1 = d2θ/dz2

2 = 0 (see Eq. (27.1)) (iv)

When

z1 = z2 = 0, 2d2θ/dz2
1 = −d2θ/dz2

2 (v)

(since the loads at B in each half of the section are equal and opposite). From Eqs (i),
(ii) and (iv)

B = −A tanh 2µl (vi)

D = −C tanh µl (vii)

From Eqs (i)–(iii)

T

8GJ
+ A = T

GJ
+ C

i.e.

A − C = 7T

8GJ
(viii)

From Eqs (i), (ii) and (v)

D = −4B (ix)

Solving Eqs (vi)–(ix) gives

B = − 7T tanh µl tanh 2µl

8GJ(4 tanh 2µl + tanh µl)

D = 7T (4 tanh µl tanh 2µl)

8GJ(4 tanh 2µl + tanh µl)

A = 7T tanh µl

8GJ(4 tanh 2µl + tanh µl)

C = − 7T (4 tanh 2µl)

8GJ(4 tanh 2µl + tanh µl)

Integrating Eq. (i)

θ1 = T

8GJ
z1 + A

2µ
sinh 2µz1 + B

2µ
cosh 2µz1 + F
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When z1 = 0, θ1 = 0 so that F = −B/2µ. Integrating Eq. (ii)

θ2 = T

GJ
z2 + C

µ
sinh µz2 + D

µ
cosh µz2 + H

When z2 = 0, θ2 = 0 so that H = −D/µ. Hence, when z1 = l and z2 = l the angle of twist
of one end of the beam relative to the other is

θ1 + θ2 = T

8GJ
(l + 8l) + 7T

8GJµ(4 tanh 2µl + tanh µl)

× [ 1
2 ( tanh µl sinh 2µl − tanh µl tanh 2µl cosh 2µl − 4 tanh 2µl sinh µl

+ 4 tanh µl tanh 2µl cosh µl − 7
2 ( tanh µl tanh 2µl)

]

which simplifies to

θ1 + θ2 = Tl

8GJ

[
9 − 49 sinh 2µl

2µl(10 cosh2 µl − 1)

]

S.27.6

Initially the swept area 2AR,0 is plotted round the section and is shown in Fig. S.27.6(b).

3
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1
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a
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a

2

Fig. S.27.6(a)

Then, using the ‘wire’ analogy and taking moments about the s axis

2A′
R5at = 2

3a

2
t

(
3a2

4

)
+ 2at

(
3a2

2

)
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Fig. S.27.6(b)

which gives

2A′
R = 21a2

20

Then

�R = 2
3a

2
t
1

3

(
3a2

2

)2

+ 2at

(
3a2

2

)2

− 5at

(
21a2

20

)2

i.e.

�R = 1.25a5t

From Eq. (27.6), i.e.

d3θ

dz3 − µ2 dθ

dz
= −µ2 T

GJ

where

µ2 = GJ

E�R

dθ

dz
= C cosh µz + D sinh µz + T

GJ

When z = 0, the warping, w, is zero so that dθ/dz = 0 (see Eq. (18.19)), then

A = − T

GJ

When z = L, the direct stress is zero. Therefore, from Eq. (27.1) d2θ/dz2 = 0. Therefore

B = T

GJ
tanh µL
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so that the rate of twist is

dθ

dz
= T

GJ

[
1 − cosh µ(L − z)

cosh µL

]

and

θ = T

GJ

[
z + sinh µ(L − z)

µ cosh µL
+ C

]

When z = 0, θ = 0 which gives

C = − 1

µ
tanh µL

and

θ = T

GJ

[
z + sinh µ(L − z)

µ cosh µL
− tanh µL

µ

]

At the free end when z = L

θT = TL

GJ

(
1 − tanh µL

µL

)
(i)

Inserting the given values in Eq. (i)

T = 100 × 30 = 3000 N mm J = 5 × 30 × 2.03

3
= 400 mm4

µ2 = 2.35 × 10−6 µL = 1.53 θT = 6.93◦

S.27.7

The torsion bending constant is identical to that in S.27.4, i.e.

�R = th2d3

24

The expression for rate of twist is (see S.27.6)

dθ

dz
= A cosh µz + B sinh µz + T

GJ

In AB, T = 0 and dθ/dz = 0 at z = 0 which gives A = 0
Therefore, in AB

dθ

dz
= B sinh µz

In BC
dθ

dz
= [1 − α cosh µ(z − L) − β sinh µ(z − L)] + β sinh µz
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where [ ] is a Macauley bracket
i.e.

[ ] = 0 for z < L

= ( ) ordinary bracket for z > L

For continuity of dθ/dz and d2θ/dz2 at z = L the Macauley bracket and its first derivative
must be zero at z = L. Then

1 − α = 0 and β = 0

For the complete beam

dθ

dz
= T

GJ
[1 − cosh µ(z − L)] + B sinh µz

At

z = 2L d2θ/dz2 = 0 (σ� = 0 at z = 2L).

Then

θ = − T

GJ
µ sinh µL + µB cosh 2µL

which gives

B = T

GJ

sinh µL

cosh 2µL

Then

dθ

dz
= T

GJ

{
[1 − cosh µ(z − L)] + sinh µL

cosh 2µL
sinh µz

}

Also since θ = 0 at z = 0 and the Macauley bracket is zero for z < L

θ = T

GJ

{[
z − L − 1

µ
sinh µ(z − L)

]
+ sinh µL

cosh 2µL
( cosh µz − 1)

}

At z = 2L

θT = T

GJ

(
L − sinh µL

µL cosh 2µL

)

S.27.8

The variation of swept area is shown in Fig. S.27.8(b)
Using the ‘wire’ analogy

2A′
R4at = at

a2

2
+ 2at

5

8
a2 + at

3

4
a2
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i.e.

2A′
R = 5a2

8

Then

�R = at
1

3
(a2)2 + 2at

[
1

3

(
3

8
a2

)2

+
(

5

8
a2

)2
]

+ at

[
1

3

(
a2

2

)2

+
(

3

4
a2

)2
]

− 4at

(
5a2

8

)2
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which gives

�R = 7a5t

24
The rate of twist is identical to that given by Eq. (vi) in S.27.4, i.e.

dθ

dz
= T

GJ

[
1 − cosh µ(L − z)

cosh µL

]
(i)

The direct stress distribution at the built-in end is, from Eq. (ix) of Example 27.1

σ� = −
√

E

GJ�R
T 2AR

sinh µL

cosh µL

Evaluating the different constants

�R = 9.33 × 105 mm6 J = 26.67 mm4 T = 1125 N mm

µ2 = 8.56 × 10−6 and µL = 1.46

Then

σ� = −0.369 2AR

At 2,

2AR = a2 − 5a2

8
= 3a2

8
= 3 × 202

8
= 150 mm2

so that

σ�,2 = −55.3 N/mm2

The direct stress due to elementary bending theory is, from Eqs (16.21)

σz = Mxy

Ixx

where

Mx = −150 × 500 = −75 000 N mm

and

Ixx = 2 × 1.0 × 20 × 202 + 1.0 × 403

12
= 21.3 × 103 mm4

Then

σz,2 = −75 000 × 20

21.3 × 103 = −70.4 N/mm2

The total direct stress at 2 is therefore

σ2 = −55.3 − 70.4 = −125.7 N/mm2
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S.27.9

The torsion bending constant is identical to that in S.27.4,
i.e.

�R = th2d3

24

The rate of twist is, from Eq. (27.6)

dθ

dz
= A cosh µz + B sinh µz + wh

2GJ
(L − z)

when z = 0, dθ/dz = 0 (w = 0 at z = 0) which gives

A = −whL

2GJ

When z = L, d2θ/dz2 = 0 (σ� = 0 at z = L) which gives

B = wh

2GJ

[
L tanh µL + 1

µ cosh µL

]

Hence

dθ

dz
= wh

2GJ

[
−L cosh µz +

(
µL sinh µL + 1

µ cosh µL

)
sinh µz + L − z

]

Then

σ� = −2ARE
d2θ

dz2

is

σ� = −2ARE
wh

2GJ

[
−µL sinh µz +

(
µL sinh µL + 1

cosh µL

)
cosh µz − 1

]

At the built-in end when z = 0

σ� = −2ARE
wh

2GJ

[
µL sinh µL + 1 − cosh µL

cosh µL

]

Evaluating the constants

�R = 1040 × 106 mm6, J = 12 500 mm4, µ2 = 4.0 × 10−6, µL = 3.0.

Then

σ� = −0.025(2AR)

The distribution of 2AR is linear round the section so that σ� is also linear.
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At 1,

2AR = −hd

4
(see S.27.4)

Then

σ�,1 = +0.025 × 200 × 50

4
= +62.5 N/mm2.

From symmetry of the 2AR distribution

σ�,3 = −σ�,1 = −σ�,4 = σ�,6 = −62.5 N/mm2,

σ�,2 = σ�,5 = 0

From Eqs (16.21)

σz = Myx

Iyy

where

My = 0.5 × 15002

2
= 562 500 N mm

and

Iyy = 2 × 5 × 503

12
= 104 200 mm4

Then

σz = 5.4y,

i.e.

σz,1 = +135 N/mm2

From symmetry

σz,1 = −σz,3 = −σz,4 = σz,6 = +135 N/mm2

σz,2 = σz,5 = 0

The complete direct stresses are

σ1 = 62.5 + 135 = +197.5 N/mm2 = −σ3

σ4 = 62.5 − 135 = −72.5 N/mm2 = −σ6

σ2 = σ5 = 0
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