Solutions to Chapter 8 Problems

$.7.12

From Eq. (7.36) the deflection of the plate from its initial curved position is

. X, 7y
w1 = Bp1 sin — sin —
a b
in which
AN
B = 5 2x 3
D a
2 \te)
The total deflection, w, of the plate is given by
w = w1 + wo
ie.
A1N.
w= T 3 + A sin—sin—y
7D a* b
2 \Itp) M
ie.
A11 . TTX Ty
w= sin — sin —

Nya? a? 2 a
-2 /(1+=
72D < * b2>

Solutions to Chapter 8 Problems

5.8.1

The forces on the bar AB are shown in Fig. S.8.1 where

dv .
Mp =K (—) (1)

dz B

and P is the buckling load.
From Eq. (8.1)
gl p (ii)
— = —Pv 11
dz?

The solution of Eq. (ii) is
v=Acosuz+ Bsin uz (ii1)
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M,
B VB
—> —_—>» Z _—
P A
I
I
Fig. 5.8.1
where u? = P/EL
When z =0, v=0 so that, from Eq. (iii), A = 0. Hence
v = Bsin uz @iv)
Then
dv
— = uBcosuz
dz
and when z =1, dv/dz = Mg/K from Eq. (i). Thus
M,
B—_ B
WK cos il
and Eq. (iv) becomes
Mg . W)
v=———s5in \%
WK cos ul Hz

Also, when z =, Pvg = Mp from equilibrium. Hence, substituting in Eq. (v) for Mp

Pup

V= ———35
UK cos ul

in el

from which
_ _uK
 tan ul

(vi)

(a) When K — o0, tan ul — oo and ul — /2, i.e.

P T
[ ] =
EI 2

from which

which is the Euler buckling load of a pin-ended column of length 21.
(b) When EI — oo, tan ul — pl and Eq. (vi) becomes P = K /I and the bars remain
straight.
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S.8.2

Suppose that the buckling load of the column is P. Then from Eq. (8.1) and referring

to Fig. S.8.2,in AB

gl _p
= _Py
dz?
and in BC
d%v
4EI— = —Pv
dz2
y B 4 El c
El
P v |
—> >» z
A
| 1/4 | 12
[ [
Fig. 5.8.2

The solutions of Egs (i) and (ii) are, respectively
vAB = A cos uz + Bsin uz

2 .M
=C — D —
UBC cos 2z+ sin 2Z

in which
P

2—_
= F

When z =0, vap = 0 so that, from Eq. (iii), A = 0. Thus

vAB = B sin j2%4

Also, when z =1/2, (dv/dz)gc = 0. Hence, from Eq. (iv)

mo, . opl ul
0=—— — + =D —
2Csm 1 + 2 cos 1
whence
l
D=CtanM—
4
Then

2 ul . u
VBC <cos 2z+ an 1 sin 22)

(i)

(ii)

(iii)
(iv)

)

(vi)
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When z =1/4, vap = vpc so that, from Eqs (v) and (vi)

[ I l [
Bsin% =C (cos% +tan%sin%)
which simplifies to
[ [ [
Bsin % = Csec % cos % (vii)

Further, when z = /4, (dv/dz)ap = (dv/dz)pc. Again from Eqs (v) and (vi)

l l l l
,uBcosM—=C —Esinu——kﬁtanu—cosu—
4 2 8 2 4 8

from which

l .
Bcos — = —sec — sin — (viii)

l
tan — = 2/ tan ki
8
or
I l
tan L tan L =2
4 8
Hence
2tan ul/8 5
1 —tan2 pul/8
from which
. ul 1
an — = —
8 V2
and
l
% — 35.26° = 0.615rad
ie.
P
—-—=0.615
EI'8
so that

24.2EI
P =
12
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5.8.3

With the spring in position the forces acting on the column in its buckled state are
shown in Fig. S.8.3. Thus, from Eq. (8.1)

d%v .

El— =4P(5 —v) —ké(l —2) (1)
dz?
The solution of Eq. (i) is

. s ..

v=Acosuz+ Bsin uz + E[4P—|—k(z — D] (i1)
4P
! ‘
l ké )
4
> Z

Fig. 5.8.3

where
4p
2 ——
=T
When z =0, v=0, hence, from Eq. (ii)

8
O0=A+ —@4P —ki
+4P( )

from which
S(kl — 4P
g = dKL—4P)
4P
Also when z =0, dv/dz = 0 so that, from Eq. (ii)

0=uB+ ok
TP
and
-8k

:E
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Eq. (ii) then becomes

8 k .

v=—|(kl—4P)cospuz — —sinuz +4P + k(z — 1) (iii)
4p %
When z =1, v=3_. Substituting in Eq. (iii) gives
) k .
§=— |kl —4P)cosul — —sin ul + 4P
4p "

from which
. 4P
Tl —tan pul

S.8.4

The compressive load P will cause the column to be displaced from its initial curved
position to that shown in Fig. S.8.4. Then, from Eq. (8.1) and noting that the bending
moment at any point in the column is proportional to the change in curvature produced
(see Eq. (8.22))

Eldz—v - Eldzﬂ = —Pv (i)
dz2 dz?
Now
vy = a%(l -2)

so that

d%vg 8a

iz~ B

/
|

Fig. 5.8.4

and Eq. (i) becomes

d2v P 8a (ii)
_ _ ) = —— 11
2 TE TR
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The solution of Eq. (ii) is
v = A cos Az + Bsin Az — 8a/ (A1) (iii)

where A% = P/EL
When z =0, v=0 so that A = 8a/(A])?. When z = I/2, dv/dz = 0. Thus, from Eq. (iii)

v Al
0= —AAsin — + ABcos —
2 2

whence

8a Al
B = ——tan —
(A)? 2

Eq. (iii) then becomes
a Azt tan 2L sinaz — 1 (iv)
v=——|cos an — sin Az — iv

(LD)2 ¢ g TR

The maximum bending moment occurs when v is a maximum at z =1[/2. Then, from
Eq. (iv)

8aP Iy Moo Al
M(max) = —PUmax = CcOs — 4+ tan — sin 5~ 1

a2\ 2 2
from which
M . 8aP A 1
(max) = _(Al)z (sec 5~ )
S.8.5

Under the action of the compressive load P the column will be displaced to the position
shown in Fig. S.8.5. As in P.8.4 the bending moment at any point is proportional to the
change in curvature. Then, from Eq. (8.1)

El— —E[— = —Pv (i)

2 2

Fig. S.8.5
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In this case, since each half of the column is straight before the application of P,
d?vo/dz? =0 and Eq. (i) reduces to

a®_ _p (i)
— = —Pv 11
dz2
The solution of Eq. (ii) is

v =Acosuz + Bsin uz (ii1)

in which p? = P/EI. When z =0, v=0 so that A =0 and Eq. (iii) becomes
v = Bsin uz >iv)
The slope of the column at its mid-point in its unloaded position is 2§/1. This must be

the slope of the column at its mid-point in its loaded state since a change of slope over
zero distance would require an infinite bending moment. Thus, from Eq. (iv)

dv 26 B ul
— = —= cos —
&z 1 Py
so that
28
B=———
ulcos (ul/2)
and

26
V= ——M——
ulcos(ul/2)

The maximum bending moment will occur when v is a maximum, i.e. at the mid-point
of the column. Then

sin ;g )

2P§ ol
M(@max) = —Pvmayx = ——————— sin —
wlcos (ul/2) 2
from which
28 |EI Pl
M(max) = —P—,/ —tan,/ — =
IV P EI2
S.8.6

Referring to Fig. S.8.6 the bending moment at any section z is given by

wl 72
M:P(e—i—v)—?z—i—wE



Solutions to Chapter 8 Problems

Fig. 5.8.6

or
M = P(e +v) + g(z2 —1I2) ()

Substituting for M in Eq. (8.1)

2

d“v w5
EI@ + Pv= —Pe — E(Z —[2)
or
d?v 5 5 owpu? .
a?+uv=—ue—33&-4@ (i)

The solution of Eq. (ii) is

w

v:Acosuz—l—BSinuz—e—F%(lz—zz)—l-MZP (iii)
When z=0,v=0, hence A=¢ — w/,uzP. When z =1/2, dv/dz =0 which gives
l l
B=Atan'u—= e—l tanM—
2 u2P 2
Eq. (iii) then becomes
w cosu(z—1/2 w )
v=[e—— W /)—1 +—z—2%) (iv)
u-P cos ul/2 2P

The maximum bending moment will occur at mid-span where z=1/2 and v = vyx.

From Eq. (iv)
Elw wul wi?
VUmax = (6— ?) (SCC? — 1) + ﬁ

M(max) = Pe + Pvmax — il

and from Eq. (i)
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whence
w ulw
M(max) = | Pe — — |sec—+ — V)
w 2

For the maximum bending moment to be as small as possible the bending moment at
the ends of the column must be numerically equal to the bending moment at mid-span.

Thus
)
Pe + (Pe—%)sec%—l—% =0
or
ul w wul
Pell4+sec— )= —|sec— —1
2 u? 2
Then
_w (1—cosul/2
~ Pu? \ 1 +cosul/2
i.e.
e=|—=)tan® — (vi)
Pu? 4

From Eq. (vi) the end moment is

wo ol wi? (tan ,ul/4) (tan Ml/4)
Pe = —tan” — = —
m 416 \ /4 /4

When P — 0, tan /4 — pl/4 and the end moment becomes wi2/16.

S.8.7

From Eq. (8.21) the buckling stress, oy, is given by

7T2Et ()
- -t i
= e
The stress—strain relationship is
10.5 x 10° 21000( g )16 (ii
D X e=o0+ m 11)
Hence
cde 16 x 21000 5
105x1°—=1+——0
do (49 000)16
from which

do 10.5 x 10° x (49 000)'6

~ de  (49000)16 + 16 x 21 000(c)!3

Ey
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Then, from Eq. (i)

IN? #2E 10.36 x 107 (i)
- = = iii
o} op + 336 000(a /49 000)16
From Eq. (iii) the following op—(//r) relationship is found

op 4900 3 x4900 6 x4900 9 x4900 49000
I/r 1454 84.0 59.3 31.2 16.4

For the given strut

I D* —d% /64 1
r2:_:77( d")/6 LIPS
A aD?—d¥)/4 16

ie.
P2 = 11_6(1.52 + 1.34%) = 0.253 units?
Hence
r = 0.503 units
Thus
2
é = % =39.8

Then, from the o,—(I/r) relationship
op = 40 500 force units/units”

Hence the buckling load is
40500 x %(1.52 —1.342)

1.e.

Buckling load = 14 454 force units

5.8.8

The deflected shape of each of the members AB and BC is shown in Fig. S.8.8. For the
member AB and from Eq. (8.1)

L
dz% N B
so that
dv;
El— = —Mgz1 + A
dz;
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Z4

Fig. 5.8.8

When z; = b, dvi/dz; =0. Thus A = Mgb and

dv .
EI— = —Mg(z; — b) (i)
dz;
At B, when z; =0, Eq. (i) gives
d Mgb
dur _ Msb (ii)
dz; EI
In BC Eq. (8.1) gives
P L
— = —Fv
dz? b
or
¥ py—u (iif)
i v = iii
dz? b
The solution of Eq. (iii) is
v = Bcosiz+ Csiniz + Mp/P >iv)

When z =0, v=0 so that B= —Mg/P.
When z =a/2, dv/dz =0 so that

Eq. (iv) then becomes

My et ra . N 1
v=——cos an — sin Az —
P ¢ p M
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so that
W M () Gnrz+atan 9 cosa
— = —— | —A\sin an — cos
dz P . 2 ‘
At B, when z=0,
d M, A
v B tan 22 v)
dz P 2

Since dv/dz; = dv/dz at B then, from Egs (ii) and (v)

b A Aa
— = ——tan —
EI P 2
whence
Ara 1 /a ra
M (-) tan -2
2 2 \b 2
S.8.9

In an identical manner to S.8.4

d>v’ d?v ,
El— — EI— = —Pv
dz? dz?

where v’ is the total displacement from the horizontal. Thus

v P, d%

2 TE' T a2

or, since
d%v m? b4 P
— =——68sin—z and pu’=—
FEE A K= E
d?v 5 n? mz
= ——4§sin — i
dz? Tuy 2 l @

The solution of Eq. (i) is

I —A + Bsi + b . Tz (ii)
v = CcoS Uz Sin uz ——— S1In — 11
H Her e ™

When z=0and [, v =0, hence A = B=0 and Eq. (ii) becomes

, %8 i
= —  _sin —
w2 — p2i? l
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The maximum bending moment occurs at the mid-point of the tube so that

78 Ps
222 1 —PI2/72El

M(max) =PV =P
s

ie.
Ps Ps
1-P/P. 1—«a
The total maximum direct stress due to bending and axial load is then

P Pé d/2
o(max) = — + 3
mdt 1 —a) nd’t/8

M(max) =

Hence

P (1 1 43)

The forces acting on the members AB and BC are shown in Fig. S.8.10

¢y 7777774

A C P
— H

v

N JLVB B Yz
i B P P
f
a | b
I

Considering first the moment equilibrium of BC about C

Fig. 5.8.10

Pvg = Vb
from which
Vb 0
Vg = — i
B=p
For the member AB and from Eq. (8.1)
P LR
— = —Pv —
dz? ¢
or
dv P Vz

@2 TET Tm (i
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The solution of Eq. (ii) is
. Vz
v=AcosAz+ Bsiniz — 7 (i11)
When z=0, v=0 so that A =0. Also when z =a, dv/dz =0, hence

\%
0= ABcosia — —
P

from which

_ \%
"~ APcosAa

V [ sinAz
V= — -z
P \ AcosAia

When z =a, v=uvp = Vb/P from Eq. (i). Thus

Vb_V sin Aa
P~ P \icosia ¢

and Eq. (iii) becomes

from which

Ma + b) =tan Aa

S.8.11

The bending moment, M, at any section of the column is given by

M = Pcrv = Pcrk(lz — Z2) (1)
Also
dv ..
— =k(l —22) (i)
dz

Substituting from Eqs (i) and (ii) in Eq. (8.47)

P> |1 @ 22 1 [l 242 1! 2,2
U+V=—/+ —/(lz—z)dz+—/ (lz —z7)°dz + — (lz —z%)"dz
2F 1Jo L J, I Ji—a

Pcrk? (!
_ IR / (I — 27)%dz
2 Jo

131
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i.e.
I—
YUl B S R Rl
2 || 3 2 5|, L] 3 2 5
a
I )
1|23 4P PcrK? [ 5 , 47
— = =4 — Pz —2077+ =
+I1|:3 2+5 [z z+3}0
l—a
i.e.
U+V_Png2 L Pa’ 1a4+a5 lz(l—a)3+l(l—a)4 (I —a)
 2EL |\ 3 2 5 3 2 5

LI } Pcrk2

From the principle of the stationary value of the total potential energy

3 2 5 3

U+V) _ Pk | (B \|2d b & Pl-a
ok  EL |\L

Ll ot (-al| bP| Pk _
2 5 11 30 3
Hence
» ELP (i
CR = iii
b Pa® It @ PPl-a)
3IM\--1 ==+ —
I 3 2 5 3
I(l—a* (—a | LD
M-at d-a’)| bP
2 5 I 30
When I, = 1.6/] and a = 0.2/, Eq. (iii) becomes
14.96EI, .
Pcr = — (iv)
Without the reinforcement
2ElL
Pcr = B (v)

Therefore, from Eqs (iv) and (v) the increase in strength is

EL
5 (14.96 — %)
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Thus the percentage increase in strength is

2

El L7
(1496 — 7 )/ﬁ % 100 = 52%

Since the radius of gyration of the cross-section of the column remains unchanged
L=Air? and L =Ax?
Hence
A I
2-2_16 (vi)
A I
The original weight of the column is /A| p where p is the density of the material of the

column. Then, the increase in weight =0.4/A1p + 0.6IA2p —[A1p=0.6lp(A2 — Ay).
Substituting for A, from Eq. (vi)

Increase in weight = 0.6/p(1.6A1 — A1) = 0.36/A1p

i.e. an increase of 36%.

5.8.12

The equation for the deflected centre line of the column is

48 .
V= l—2Z2 (1)

in which § is the deflection at the ends of the column relative to its centre and the origin
for z is at the centre of the column. Also, the second moment of area of its cross-section
varies, from the centre to its ends, in accordance with the relationship

r=n(1- 1.6%) (ii)
At any section of the column the bending moment, M, is given by
2
M = Pcr(8 — v) = Pcré <1 — 41_2> (iii)
Also, from Eq. (i)
dv 8§ .
d_z = Z—ZZ (IV)

Substituting in Eq. (8.47) for M, I and dv/dz

2
22024
2EL( — L6z/l) © 2 )y #

/2 P2 82 1—4 2 12 2 P 12 6482
U+V:2/ crd” (1 =427/ Per
0
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or

U+V =

P%R8? /’/2 (I — 422y Z_64PCR82 /1/222dz
ELP (I - 1.62) o)y

Dividing the numerator by the denominator in the first integral in Eq. (v) gives

P2 52 12
U+V=-R / (—102> — 6.251z> + 1.09/°z + 0.683/%)dz
0

EL P
+0.3171° / e dz 64Pc1z82 2
' o (1—1.6z/]) 14 3,

Hence
P2 52 4 3 2
U+V= 523 [ 10——6251§+109z2 +0.683°;
031740 (12 12 "2 8Pcrs
1.6 AR 31
ie.

0.3803P2g8%1  8PcRrd?
El 31

From the principle of the stationary value of the total potential energy

U+V =

AU +V)  0.7606P%gdl  16Pcrd

= =0
) EqL 3

Hence
7.01EL
12
For a column of constant thickness and second moment of area /5,

Pcr =

T2El

Per =~ (sceEq. (8.5)

For the columns to have the same buckling load

m?ElL,  7.01EI

12 12

so that
L =0.71

Thus, since the radii of gyration are the same

Ay =0.7A;
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Therefore, the weight of the constant thickness column is equal to pA>l =0.7pA1l.
The weight of the tapered column = p x average thickness x [ = p x0.6A11.
Hence the saving in weight=0.7pA 1/ — 0.6pA 1/ =0.1pA1 1.

Expressed as a percentage

0.1pA1!
0.7pA,1

x 100 = 14.3%

saving in weight =

$.8.13

There are four boundary conditions to be satisfied, namely, v=0 at z=0 and z=1,
dv/dz=0 at z=0 and d%v/dz? (i.e. bending moment) =0 at z =1[. Thus, since only
one arbitrary constant may be allowed for, there cannot be more than five terms in the
polynomial. Suppose

Z Z\2 Z\3 2\4 .
v=ap+aj (—) +az (—) + a3 (—) + as (—) @)
[ I [ [
Then, since v=0 at z=0, agp=0. Also, since dv/dz=0 at z=0, a; =0. Hence,
Eq. (i) becomes
Z2\2 7\3 2\ .
v=ap (—) + a3 (—) + aq (—) (i1)
l I I
When z =1, v=0, thus
O=ar+as+ay (ii1)
When z =/, d?v/dz% =0, thus
0 =ay +3a3 + 6as @iv)
Subtracting Eq. (iv) from Eq. (ii)
0= —2a3 — S5a4

from which a3 = —5a4/2.
Substituting for a3 in Eq. (iii) gives a4 =2a3/3 so that a3 = —5a»/3. Eq. (ii) then

becomes
_ zZ\2 Sap <z>3 2a» (z>4
”_a2<1) 3 ) T30 )

Then

dv z 2 8ay 2 .

d_Z =2azi—5a21—3+71—4 (Vl)
and

d?v ) 2 ..

d_Z2 = 27 10(12 13 + 8&2 l4 (Vll)
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The total strain energy of the column will be the sum of the strain energy due to
bending and the strain energy due to the resistance of the elastic foundation. For the
latter, consider an element, §z, of the column. The force on the element when subjected
to a small displacement, v, is k6zv. Thus, the strain energy of the element is %kvzéz and
the strain energy of the column due to the resistance of the elastic foundation is

'
f —kv?dz
0 2
Substituting for v from Eq. (v)

1 a3 (! 105 3755 2077 478
U (elastic foundation) = —ka—2 / <z4 _ = + L ox 4 el dz
0

271 3l 972 93

i.e. U (elastic foundation) = 0.0017ka%l.
Now substituting for d?v/dz? and dv/dz in Eq. (8.48) and adding U (elastic founda-
tion) gives

EI (! 44> 10z 33z2 4072 167*
vey=E ﬁ(l——z z J4 T4

) dz 4 0.0017ka3!

2 Jo I T tTE T TR
PR ['a3 [ , 202 1074 80Z2° 6478
== 2475 — - d
2 Sy B\ T T e T ) (i)

Eq. (viii) simplifies to

0.4E1

0.01943P
U+V = =5=a +0.001Tka] — TR

l

From the principle of the stationary value of the total potential energy

AU +V) 08EI 0.038a, P,
w+V) _ ay + 0.0034kay] — —— 2027 CR
day &)
whence
21.05E1
Per = =5 + 0.09k
S$.8.14

The purely flexural instability load is given by Eq. (8.7) in which, from Table 8.1
le =0.5] where [ is the actual column length. Also it is clear that the least second moment
of area of the column cross-section occurs about an axis coincident with the web. Thus
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Then
b _ TE
R= 0502
ie.
b 4’ Eth? i
- i
CR 3
The purely torsional buckling load is given by the last of Eqs (8.77), i.e.
» Al N m?ET i)
= — ii
CR(9) I 2
In Eq. (ii)) A = 5bt and
Ih=L+1,=2 2tbb2 + b + d
= = X e —_— —_
0= Ty 4771273
ie.
P 171
T2
Also, from Eq. (18.11)
3 3
st 1 17bt
J=Y T =288 +br’) =
3 3( + bt”) 3
and, referring to S.27.4
1’
= —
12
Then, from Eq. (ii)
b 20 (1265 N n2Etb* (i)
= iii
RO = 77D
Now equating Egs (i) and (iii)
47Eth® 20 5 TPEh?
— = —[17Gr’ +
312 17b
from which
2 2nEb*
255Gt?

From Eq. (1.50), E/G =2(1 + v). Hence

l_2nb2 1+v

t 255
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Egs (i) and (iii) may be written, respectively, as

1.33C
Pcr = 2

and

1.175C,
Pcrp) = C2 + 2

where C| and C; are constants. Thus, if / were less than the value found, the increase
in the last term in the expression for Pcgr(g) would be less than the increase in the value
of Pcr, i.e. Pcr(s) < Pcr for a decrease in / and the column would fail in torsion.

5.8.15

In this case Eqs (8.77) do not apply since the ends of the column are not free to warp.
From Eq. (8.70) and since, for the cross-section of the column, x; =y; =0,

EFd49 + | [ P GJ d%6 0 @)
eV - - _ i
dz# O dz2

For buckling, P = PcR, the critical load and Pcr/A = ocr, the critical stress. Eq. (i)
may then be written

d*o _,d* 0 (i)
il - = ii
dz* dz?
in which
I - GJ
22 (loocr ) (i)
ET
The solution of Eq. (ii) is
0 =Acosiz+ Bsiniz+ Dz + F (iv)

The boundary conditions are:

6=0atz=0and z =2I

do
= Oatz=0and z =2[ (see Eq.(18.19))
z

Then B=D =0, F = —A and Eq. (iv) becomes
0 =A(cosiz—1) v)
Since 8 =0 when z =2/
cosA2l =1

or

A2l =2nm
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Hence, forn=1

i.e. from Eq. (iii)

Ipocr — GJ _ 2

ET 2
so that
1 GJ 4+ n2ET i)
OCR = — —_— Vi
CR Io B

For the cross-section of Fig. P.8.15

3

J= Z% (see Eq. (18.11))

1.e.
8ht3  8x25.0x253
J=220 2 XWX 10417 mm?
3 3
and
wr .~ (2b)3tsin? 60° .
Ly = 4bt(bcos 30°)” + ZT (see Section 16.4.5)
i.e.
L = 463t = 4 x 25.0° x 2.5 = 156 250.0 mm*
Similarly
Lo (P ot + ,(2b)tcos® 60° _ 14b°t
P12 12 T3
so that
Ly = 14 x 25.0* x 2.5/3 = 182291.7 mm*
Then

Io = Ly + Iy = 338 541.7 mm*

The torsion-bending constant, I, is found by the method described in Section 27.2 and
is given by

= bt =25.0° x 2.5 = 24.4 x 10° mm*

Substituting these values in Eq. (vi) gives

ocr = 282.0N/mm?
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$.8.16

The three possible buckling modes of the column are given by Eqs (8.77) i.e.

2

n°El .

Pery = =7 = @
2

Periun = neElyy (i)

oY) 12
A w?ET
PCR(Q) = E GJ + 2 (111)

From Fig. P.8.16 and taking the x axis parallel to the flanges

A = (2 x20+40) x 1.5 = 120 mm?
L =2 x 20 x 1.5 x 20> + 1.5 x 40°/12 = 3.2 x 10* mm*
Ly = 1.5 x 403/12 = 0.8 x 10* mm*

I = Ly + Ly = 4.0 x 10* mm*

J = (20 + 40 +20) x 1.5°/3 = 90.0mm* (see Eq. (18.11))

o L5 X207 x 407 (2 x 40 +20
B 12 40 +2 x 20

=2.0 x 10° mm® (see Eq. (ii) of Example 27.1)

Substituting the appropriate values in Eqs (i), (ii) and (iii) gives

Pcrox) =22107.9N
Pcryy) = 5527.0N
Pcrp) = 10895.2N

Thus the column will buckle in bending about the y axis at a load of 5527.0N.

$.8.17

The separate modes of buckling are obtained from Eqs (8.77), i.e.

2
wcEl .
PcRrxx) = Pcriy) = T(lx = Iy =1, say) )

and

A 72ET ..
Pcrep)y = — | GJ + (i1)



Solutions to Chapter 8 Problems

In this case
Ly = Ly = 7t = 7w x 40° x 2.0 = 4.02 x 10° mm*
A = 27rt = 27 % 40 x 2.0 = 502.7 mm?
J =2nr’ /3 =27 x 40 x 2.0°/3 = 670.2 mm*
From Eq. (8.68)
Io =1y + 1y + Axf (note that yg = 0)

in which x; is the distance of the shear centre of the section from its vertical diameter;
it may be shown that x; = 80 mm (see S.17.3). Then

Ip =2 x 4.02 x 10° +502.7 x 80> = 4.02 x 10° mm*

The torsion-bending constant I" is found in a similar manner to that for the section
shown in Fig. P.27.3 and is given by

2
I'= 7Tr5l <§T[2 —4)

i.e.
2
=7 x40 x2.0 (gnz — 4) = 1.66 x 10° mm°®
72 x 70000 x 4.02 x 10°

P = Perivy) = =3.09 x 10°N

(a) CR(xx) CR(yy) (3.0 x 105 X
502.7 72 x 70000 x 1.66 x 10°
b P ———" (22000 x 670.2
®) RO = 2702 % 106 ( x + (3.0 x 103)2 >
=178 x 10N

The flexural—torsional buckling load is obtained by expanding Eq. (8.79). Thus
(P — Pcreen)(P — Pcrio)lo/A — P*x; = 0
from which
P>(1 — Ax2/Iy) — P(Pcrew) + Pcr@)) + PcrooPcre@) = 0 (iii)

Substituting the appropriate values in Eq. (iii) gives

P? —24.39 x 10*P +27.54 x 108 =0 (iv)
The solutions of Eq. (iv) are

P=119x10*N or 2321 x 10°N

Therefore, the least flexural—torsional buckling load is 1.19 x 10*N.

141



	Solutions Manual
	Solutions to Chapter 8 Problems


