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S.7.12

From Eq. (7.36) the deflection of the plate from its initial curved position is

w1 = B11 sin
πx

a
sin

πy

b

in which

B11 = A11Nx

π2D

a2

(
1 + a2

b2

)2

− Nx

The total deflection, w, of the plate is given by

w = w1 + w0

i.e.

w =

⎡

⎢⎢⎢
⎣

A11Nx

π2D

a2

(
1 + a2

b2

)2

− Nx

+ A11

⎤

⎥⎥⎥
⎦

sin
πx

a
sin

πy

b

i.e.

w = A11

1 − Nxa2

π2D

/(
1 + a2

b2

)2 sin
πx

a
sin

πy

b

Solutions to Chapter 8 Problems

S.8.1

The forces on the bar AB are shown in Fig. S.8.1 where

MB = K

(
dv

dz

)

B
(i)

and P is the buckling load.
From Eq. (8.1)

EI
d2v

dz2 = −Pv (ii)

The solution of Eq. (ii) is

v = A cos µz + B sin µz (iii)
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P A

B P

y

z

l

MB VB

Fig. S.8.1

where µ2 = P/EI.
When z = 0, v = 0 so that, from Eq. (iii), A = 0. Hence

v = B sin µz (iv)

Then
dv

dz
= µB cos µz

and when z = l, dv/dz = MB/K from Eq. (i). Thus

B = MB

µK cos µl

and Eq. (iv) becomes

v = MB

µK cos µl
sin µz (v)

Also, when z = l, PvB = MB from equilibrium. Hence, substituting in Eq. (v) for MB

vB = PvB

µK cos µl
sin µl

from which

P = µK

tan µl
(vi)

(a) When K → ∞, tan µl → ∞ and µl → π/2, i.e.
√

P

EI
l → π

2

from which

P → π2EI

4l2

which is the Euler buckling load of a pin-ended column of length 2l.
(b) When EI → ∞, tan µl → µl and Eq. (vi) becomes P = K/l and the bars remain

straight.
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S.8.2

Suppose that the buckling load of the column is P. Then from Eq. (8.1) and referring
to Fig. S.8.2, in AB

EI
d2v

dz2 = −Pv (i)

and in BC

4EI
d2v

dz2 = −Pv (ii)

B

DA

P P

EIEI

v
z

y 4 EI C

l /2l /4 l /4

Fig. S.8.2

The solutions of Eqs (i) and (ii) are, respectively

vAB = A cos µz + B sin µz (iii)

vBC = C cos
µ

2
z + D sin

µ

2
z (iv)

in which

µ2 = P

EI

When z = 0, vAB = 0 so that, from Eq. (iii), A = 0. Thus

vAB = B sin µz (v)

Also, when z = l/2, (dv/dz)BC = 0. Hence, from Eq. (iv)

0 = −µ

2
C sin

µl

4
+ µ

2
D cos

µl

4

whence

D = C tan
µl

4

Then

vBC = C

(
cos

µ

2
z + tan

µl

4
sin

µ

2
z

)
(vi)
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When z = l/4, vAB = vBC so that, from Eqs (v) and (vi)

B sin
µl

4
= C

(
cos

µl

8
+ tan

µl

4
sin

µl

8

)

which simplifies to

B sin
µl

4
= C sec

µl

4
cos

µl

8
(vii)

Further, when z = l/4, (dv/dz)AB = (dv/dz)BC. Again from Eqs (v) and (vi)

µB cos
µl

4
= C

(
−µ

2
sin

µl

8
+ µ

2
tan

µl

4
cos

µl

8

)

from which

B cos
µl

4
= C

2
sec

µl

4
sin

µl

8
(viii)

Dividing Eq. (vii) by Eq. (viii) gives

tan
µl

4
= 2
/

tan
µl

8

or

tan
µl

4
tan

µl

8
= 2

Hence

2 tan2 µl/8

1 − tan2 µl/8
= 2

from which

tan
µl

8
= 1√

2

and

µl

8
= 35.26◦ = 0.615 rad

i.e.
√

P

EI

l

8
= 0.615

so that

P = 24.2EI

l2
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S.8.3

With the spring in position the forces acting on the column in its buckled state are
shown in Fig. S.8.3. Thus, from Eq. (8.1)

EI
d2v

dz2 = 4P(δ − v) − kδ(l − z) (i)

The solution of Eq. (i) is

v = A cos µz + B sin µz + δ

4P
[4P + k(z − l)] (ii)

4P
y

l

v
z

δkδ

Fig. S.8.3

where

µ2 = 4P

EI

When z = 0, v = 0, hence, from Eq. (ii)

0 = A + δ

4P
(4P − kl)

from which

A = δ(kl − 4P)

4P

Also when z = 0, dv/dz = 0 so that, from Eq. (ii)

0 = µB + δk

4P

and

B = −δk

4Pµ
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Eq. (ii) then becomes

v = δ

4P

[
(kl − 4P) cos µz − k

µ
sin µz + 4P + k(z − l)

]
(iii)

When z = l, v = δ. Substituting in Eq. (iii) gives

δ = δ

4P

[
(kl − 4P) cos µl − k

µ
sin µl + 4P

]

from which

k = 4Pµ

µl − tan µl

S.8.4

The compressive load P will cause the column to be displaced from its initial curved
position to that shown in Fig. S.8.4. Then, from Eq. (8.1) and noting that the bending
moment at any point in the column is proportional to the change in curvature produced
(see Eq. (8.22))

EI
d2v

dz2 − EI
d2v0

dz2 = −Pv (i)

Now

v0 = a
4z

l2 (l − z)

so that

d2v0

dz2 = −8a

l2

P P

y

z

l

v

v0

Fig. S.8.4

and Eq. (i) becomes

d2v

dz2 + P

EI
v = −8a

l2 (ii)
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The solution of Eq. (ii) is

v = A cos λz + B sin λz − 8a/(λl)2 (iii)

where λ2 = P/EI.
When z = 0, v = 0 so that A = 8a/(λl)2. When z = l/2, dv/dz = 0. Thus, from Eq. (iii)

0 = −λA sin
λl

2
+ λB cos

λl

2

whence

B = 8a

(λl)2 tan
λl

2

Eq. (iii) then becomes

v = 8a

(λl)2

(
cos λz + tan

λl

2
sin λz − 1

)
(iv)

The maximum bending moment occurs when v is a maximum at z = l/2. Then, from
Eq. (iv)

M(max) = −Pvmax = − 8aP

(λl)2

(
cos

λl

2
+ tan

λl

2
sin

λl

2
− 1

)

from which

M(max) = − 8aP

(λl)2

(
sec

λl

2
− 1

)

S.8.5

Under the action of the compressive load P the column will be displaced to the position
shown in Fig. S.8.5. As in P.8.4 the bending moment at any point is proportional to the
change in curvature. Then, from Eq. (8.1)

EI
d2v

dz2 − EI
d2v0

dz2 = −Pv (i)

y

z

v

v0

δ

l/2 l/2

PP

Fig. S.8.5
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In this case, since each half of the column is straight before the application of P,
d2v0/dz2 = 0 and Eq. (i) reduces to

EI
d2v

dz2 = −Pv (ii)

The solution of Eq. (ii) is

v = A cos µz + B sin µz (iii)

in which µ2 = P/EI. When z = 0, v = 0 so that A = 0 and Eq. (iii) becomes

v = B sin µz (iv)

The slope of the column at its mid-point in its unloaded position is 2δ/l. This must be
the slope of the column at its mid-point in its loaded state since a change of slope over
zero distance would require an infinite bending moment. Thus, from Eq. (iv)

dv

dz
= 2δ

l
= µB cos

µl

2

so that

B = 2δ

µl cos (µl/2)

and

v = 2δ

µl cos (µl/2)
sin µz (v)

The maximum bending moment will occur when v is a maximum, i.e. at the mid-point
of the column. Then

M(max) = −Pvmax = − 2Pδ

µl cos (µl/2)
sin

µl

2

from which

M(max) = −P
2δ

l

√
EI

P
tan

√
P

EI

l

2

S.8.6

Referring to Fig. S.8.6 the bending moment at any section z is given by

M = P(e + v) − wl

2
z + w

z2

2
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z

y

P P

l

ee

w

wl
2

wl
2

v

Fig. S.8.6

or

M = P(e + v) + w

2
(z2 − lz) (i)

Substituting for M in Eq. (8.1)

EI
d2v

dz2 + Pv = −Pe − w

2
(z2 − lz)

or

d2v

dz2 + µ2v = −µ2e − wµ2

2P
(z2 − lz) (ii)

The solution of Eq. (ii) is

v = A cos µz + B sin µz − e + w

2P
(lz − z2) + w

µ2P
(iii)

When z = 0, v = 0, hence A = e − w/µ2P. When z = l/2, dv/dz = 0 which gives

B = A tan
µl

2
=
(

e − w

µ2P

)
tan

µl

2

Eq. (iii) then becomes

v =
(

e − w

µ2P

)[
cos µ(z − l/2)

cos µl/2
− 1

]
+ w

2P
(lz − z2) (iv)

The maximum bending moment will occur at mid-span where z = l/2 and v = vmax.
From Eq. (iv)

vmax =
(

e − EIw

P2

)(
sec

µl

2
− 1

)
+ wl2

8P

and from Eq. (i)

M(max) = Pe + Pvmax − wl2

8
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whence

M(max) =
(

Pe − w

µ2

)
sec

µl

2
+ w

µ2 (v)

For the maximum bending moment to be as small as possible the bending moment at
the ends of the column must be numerically equal to the bending moment at mid-span.
Thus

Pe +
(

Pe − w

µ2

)
sec

µl

2
+ w

µ2 = 0

or

Pe

(
1 + sec

µl

2

)
= w

µ2

(
sec

µl

2
− 1

)

Then

e = w

Pµ2

(
1 − cos µl/2

1 + cos µl/2

)

i.e.

e =
(

w

Pµ2

)
tan2 µl

4
(vi)

From Eq. (vi) the end moment is

Pe = w

µ2 tan2 µl

4
= wl2

16

(
tan µl/4

µl/4

)(
tan µl/4

µl/4

)

When P → 0, tan µl/4 → µl/4 and the end moment becomes wl2/16.

S.8.7

From Eq. (8.21) the buckling stress, σb, is given by

σb = π2Et

(l/r)2 (i)

The stress–strain relationship is

10.5 × 106ε = σ + 21 000
( σ

49 000

)16
(ii)

Hence

10.5 × 106 dε

dσ
= 1 + 16 × 21 000

(49 000)16 σ15

from which

Et = dσ

dε
= 10.5 × 106 × (49 000)16

(49 000)16 + 16 × 21 000(σ)15
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Then, from Eq. (i)

(
l

r

)2

= π2Et

σb
= 10.36 × 107

σb + 336 000(σb/49 000)16 (iii)

From Eq. (iii) the following σb–(l/r) relationship is found

σb 4900 3 × 4900 6 × 4900 9 × 4900 49 000
l/r 145.4 84.0 59.3 31.2 16.4

For the given strut

r2 = I

A
= π(D4 − d4)/64

π(D2 − d2)/4
= 1

16
(D2 + d2)

i.e.

r2 = 1

16
(1.52 + 1.342) = 0.253 units2

Hence

r = 0.503 units

Thus
l

r
= 20

0.503
= 39.8

Then, from the σb–(l/r) relationship

σb = 40 500 force units/units2

Hence the buckling load is

40 500 × π

4
(1.52 − 1.342)

i.e.

Buckling load = 14 454 force units

S.8.8

The deflected shape of each of the members AB and BC is shown in Fig. S.8.8. For the
member AB and from Eq. (8.1)

EI
d2v1

dz2
1

= −MB

so that

EI
dv1

dz1
= −MBz1 + A
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y

z
PP

a

v

b

A

B

B

z1

v1

y1
MB

MB

C

Fig. S.8.8

When z1 = b, dv1/dz1 = 0. Thus A = MBb and

EI
dv1

dz1
= −MB(z1 − b) (i)

At B, when z1 = 0, Eq. (i) gives

dv1

dz1
= MBb

EI
(ii)

In BC Eq. (8.1) gives

EI
d2v

dz2 = −Pv + MB

or

EI
d2v

dz2 + Pv = MB (iii)

The solution of Eq. (iii) is

v = B cos λz + C sin λz + MB/P (iv)

When z = 0, v = 0 so that B = −MB/P.
When z = a/2, dv/dz = 0 so that

C = B tan
λa

2
= −MB

P
tan

λa

2

Eq. (iv) then becomes

v = −MB

P

(
cos λz + tan

λa

2
sin λz − 1

)
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so that

dv

dz
= −MB

P

(
−λ sin λz + λ tan

λa

2
cos λz

)

At B, when z = 0,

dv

dz
= −MB

P
λ tan

λa

2
(v)

Since dv1/dz1 = dv/dz at B then, from Eqs (ii) and (v)

b

EI
= −λ

P
tan

λa

2

whence

λa

2
= −1

2

(a

b

)
tan

λa

2

S.8.9

In an identical manner to S.8.4

EI
d2v′

dz2 − EI
d2v

dz2 = −Pv′

where v′ is the total displacement from the horizontal. Thus

d2v′

dz2 + P

EI
v′ = d2v

dz2

or, since

d2v

dz2 = −π2

l2 δ sin
π

l
z and µ2 = P

EI

d2v′

dz2 + µ2v′ = −π2

l2 δ sin
πz

l
(i)

The solution of Eq. (i) is

v′ = A cos µz + B sin µz + π2δ

π2 − µ2l2 sin
πz

l
(ii)

When z = 0 and l, v′ = 0, hence A = B = 0 and Eq. (ii) becomes

v′ = π2δ

π2 − µ2l2 sin
πz

l
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The maximum bending moment occurs at the mid-point of the tube so that

M(max) = Pv′ = P
π2δ

π2 − µ2l2 = Pδ

1 − Pl2/π2EI

i.e.

M(max) = Pδ

1 − P/Pe
= Pδ

1 − α

The total maximum direct stress due to bending and axial load is then

σ(max) = P

πdt
+
(

Pδ

1 − α

)
d/2

πd3t/8

Hence

σ(max) = P

πdt

(
1 + 1

1 − α

4δ

d

)

S.8.10

The forces acting on the members AB and BC are shown in Fig. S.8.10

A

B

P P

v

y

a b

V

P

z
vB

V
B

C

Fig. S.8.10

Considering first the moment equilibrium of BC about C

PvB = Vb

from which

vB = Vb

P
(i)

For the member AB and from Eq. (8.1)

EI
d2v

dz2 = −Pv − Vz

or

d2v

dz2 + P

EI
v = −Vz

EI
(ii)
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The solution of Eq. (ii) is

v = A cos λz + B sin λz − Vz

P
(iii)

When z = 0, v = 0 so that A = 0. Also when z = a, dv/dz = 0, hence

0 = λB cos λa − V

P

from which

B = V

λP cos λa

and Eq. (iii) becomes

v = V

P

(
sin λz

λ cos λa
− z

)

When z = a, v = vB =Vb/P from Eq. (i). Thus

Vb

P
= V

P

(
sin λa

λ cos λa
− a

)

from which

λ(a + b) = tan λa

S.8.11

The bending moment, M, at any section of the column is given by

M = PCRv = PCRk(lz − z2) (i)

Also

dv

dz
= k(l − 2z) (ii)

Substituting from Eqs (i) and (ii) in Eq. (8.47)

U + V = P2
CRk2

2E

{
1

I1

∫ a

0
(lz − z2)2dz + 1

I2

∫ l−a

a
(lz − z2)2dz + 1

I1

∫ l

l−a
(lz − z2)2dz

}

− PCRk2

2

∫ l

0
(l − 2z)2dz
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i.e.

U + V = P2
CRk2

2E

⎧
⎨

⎩
1

I1

[
l2z3

3
− lz4

2
+ z5

5

]a

0

+ 1

I2

[
l2z3

3
− lz4

2
+ z5

5

]l−a

a

+ 1

I1

[
l2z3

3
− lz4

2
+ l5

5

]l

l−a

⎫
⎬

⎭
− PCRk2

2

[
l2z − 2lz2 + 4z3

3

]l

0

i.e.

U + V = P2
CRk2

2EI2

{(
I2

I1
− 1

)[
l2a3

3
− la4

2
+ a5

5
− l2(l − a)3

3
+ l(l − a)4

2
− (l − a)5

5

]

+ I2

I1

l5

30

}

− PCRk2l3

6

From the principle of the stationary value of the total potential energy

∂(U + V )

∂k
= P2

CRk

EI2

{(
I2

I1
− 1

)[
l2a3

3
− la4

2
+ a5

5
− l2(l − a)3

3

+ l(l − a)4

2
− (l − a)5

5

]

+ I2

I1

l5

30

}

− PCRkl3

3
= 0

Hence

PCR = EI2l3

3

{(
I2

I1
− 1

)[
l2a3

3
− la4

2
+ a5

5
− l2(l − a)3

3

+ l(l − a)4

2
− (l − a)5

5

]

+ I2

I1

l5

30

}

(iii)

When I2 = 1.6I1 and a = 0.2l, Eq. (iii) becomes

PCR = 14.96EI1

l2 (iv)

Without the reinforcement

PCR = π2EI1

l2 (v)

Therefore, from Eqs (iv) and (v) the increase in strength is

EI1

l2 (14.96 − π2)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Solution-1-H6739.tex 24/1/2007 9: 28 Page 133

Solutions to Chapter 8 Problems 133

Thus the percentage increase in strength is

[
EI

l2 (14.96 − π2)
/ l2

π2EI

]
× 100 = 52%

Since the radius of gyration of the cross-section of the column remains unchanged

I1 = A1r2 and I2 = A2r2

Hence

A2

A1
= I2

I1
= 1.6 (vi)

The original weight of the column is lA1ρ where ρ is the density of the material of the
column. Then, the increase in weight = 0.4lA1ρ + 0.6lA2ρ − lA1ρ = 0.6lρ(A2 − A1).

Substituting for A2 from Eq. (vi)

Increase in weight = 0.6lρ(1.6A1 − A1) = 0.36lA1ρ

i.e. an increase of 36%.

S.8.12

The equation for the deflected centre line of the column is

v = 4δ

l2 z2 (i)

in which δ is the deflection at the ends of the column relative to its centre and the origin
for z is at the centre of the column. Also, the second moment of area of its cross-section
varies, from the centre to its ends, in accordance with the relationship

I = I1

(
1 − 1.6

z

l

)
(ii)

At any section of the column the bending moment, M, is given by

M = PCR(δ − v) = PCRδ

(
1 − 4

z2

l2

)
(iii)

Also, from Eq. (i)

dv

dz
= 8δ

l2 z (iv)

Substituting in Eq. (8.47) for M, I and dv/dz

U + V = 2
∫ l/2

0

P2
CRδ2(1 − 4z2/l2)2

2EI1(1 − 1.6z/l)
dz − PCR

2
2
∫ l/2

0

64δ2

l4 z2dz
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or

U + V = P2
CRδ2

EI1l3

∫ l/2

0

(l2 − 4z2)2

(l − 1.6z)
dz − 64PCRδ2

l4

∫ l/2

0
z2dz (v)

Dividing the numerator by the denominator in the first integral in Eq. (v) gives

U + V = P2
CRδ2

EI1l3

[∫ l/2

0
(−10z3 − 6.25lz2 + 1.09l2z + 0.683l3)dz

+0.317l3
∫ l/2

0

dz

(1 − 1.6z/l)

]

− 64PCRδ2

l4

[
z3

3

]l/2

0

Hence

U + V = P2
CRδ2

EIl3

[
−10

z4

4
− 6.25l

z3

3
+ 1.09l2 z2

2
+ 0.683l3z

−0.317

1.6
l4 loge

(
1 − 1.6z

l

)]l/2

0
− 8PCRδ2

3l

i.e.

U + V = 0.3803P2
CRδ2l

EI1
− 8PCRδ2

3l

From the principle of the stationary value of the total potential energy

∂(U + V )

∂δ
= 0.7606P2

CRδl

EI1
− 16PCRδ

3l
= 0

Hence

PCR = 7.01EI1

l2

For a column of constant thickness and second moment of area I2,

PCR = π2EI2

l2 (see Eq. (8.5))

For the columns to have the same buckling load

π2EI2

l2 = 7.01EI1

l2

so that

I2 = 0.7I1

Thus, since the radii of gyration are the same

A2 = 0.7A1
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Therefore, the weight of the constant thickness column is equal to ρA2l = 0.7ρA1l.
The weight of the tapered column = ρ × average thickness × l = ρ ×0.6A1l.
Hence the saving in weight = 0.7ρA1l − 0.6ρA1l = 0.1ρA1l.
Expressed as a percentage

saving in weight = 0.1ρA1l

0.7ρA1l
× 100 = 14.3%

S.8.13

There are four boundary conditions to be satisfied, namely, v = 0 at z = 0 and z = l,
dv/dz = 0 at z = 0 and d2v/dz2 (i.e. bending moment) = 0 at z = l. Thus, since only
one arbitrary constant may be allowed for, there cannot be more than five terms in the
polynomial. Suppose

v = a0 + a1

(z

l

)
+ a2

(z

l

)2 + a3

(z

l

)3 + a4

(z

l

)4
(i)

Then, since v = 0 at z = 0, a0 = 0. Also, since dv/dz = 0 at z = 0, a1 = 0. Hence,
Eq. (i) becomes

v = a2

(z

l

)2 + a3

(z

l

)3 + a4

(z

l

)4
(ii)

When z = l, v = 0, thus

0 = a2 + a3 + a4 (iii)

When z = l, d2v/dz2 = 0, thus

0 = a2 + 3a3 + 6a4 (iv)

Subtracting Eq. (iv) from Eq. (ii)

0 = −2a3 − 5a4

from which a3 = −5a4/2.
Substituting for a3 in Eq. (iii) gives a4 = 2a2/3 so that a3 = −5a2/3. Eq. (ii) then

becomes

v = a2

(z

l

)2 − 5a2

3

(z

l

)3 + 2a2

3

(z

l

)4
(v)

Then

dv

dz
= 2a2

z

l
− 5a2

z2

l3 + 8a2

3

z3

l4 (vi)

and

d2v

dz2 = 2
a2

l
− 10a2

z

l3 + 8a2
z2

l4 (vii)
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The total strain energy of the column will be the sum of the strain energy due to
bending and the strain energy due to the resistance of the elastic foundation. For the
latter, consider an element, δz, of the column. The force on the element when subjected
to a small displacement, v, is kδzv. Thus, the strain energy of the element is 1

2 kv2δz and
the strain energy of the column due to the resistance of the elastic foundation is

∫ l

0

1

2
kv2dz

Substituting for v from Eq. (v)

U (elastic foundation) = 1

2
k

a2
2

l4

∫ l

0

(

z4 − 10z5

3l
+ 37z6

9l2 − 20z7

9l3 + 4z8

9l4

)

dz

i.e. U (elastic foundation) = 0.0017ka2
2l.

Now substituting for d2v/dz2 and dv/dz in Eq. (8.48) and adding U (elastic founda-
tion) gives

U + V =EI

2

∫ l

0

4a2
2

l4

(
1 − 10z

l
+ 33z2

l2 − 40z3

l3 + 16z4

l4

)
dz + 0.0017ka2

2l

− PCR

2

∫ l

0

a2
2

l4

(

4z2 − 20z3

l
+ 107z4

3l2 − 80z5

3l3 + 64z6

9l4

)

dz (viii)

Eq. (viii) simplifies to

U + V = 0.4EI

l3 a2
2 + 0.0017ka2

2l − 0.019a2
2PCR

l

From the principle of the stationary value of the total potential energy

∂(U + V )

∂a2
= 0.8EI

l3 a2 + 0.0034ka2l − 0.038a2PCR

l

whence

PCR = 21.05EI

l2 + 0.09kl2

S.8.14

The purely flexural instability load is given by Eq. (8.7) in which, from Table 8.1
le = 0.5l where l is the actual column length. Also it is clear that the least second moment
of area of the column cross-section occurs about an axis coincident with the web. Thus

I = 2 × 2tb3

12
= tb3

3
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Then

PCR = π2EI

(0.5l)2

i.e.

PCR = 4π2Etb3

3l2 (i)

The purely torsional buckling load is given by the last of Eqs (8.77), i.e.

PCR(θ) = A

I0

(
GJ + π2E�

l2

)
(ii)

In Eq. (ii) A = 5bt and

I0 = Ix + Iy = 2 × 2tb
b2

4
+ tb3

12
+ tb3

3

i.e.

I0 = 17tb3

12

Also, from Eq. (18.11)

J =
∑ st3

3
= 1

3
(2b8t3 + bt3) = 17bt3

3

and, referring to S.27.4

� = tb5

12

Then, from Eq. (ii)

PCR(θ) = 20

17b

(
17Gt3 + π2Etb4

l2

)
(iii)

Now equating Eqs (i) and (iii)

4π2Etb3

3l2 = 20

17b

(
17Gt3 + π2Etb4

l2

)

from which

l2 = 2π2Eb4

255Gt2

From Eq. (1.50), E/G = 2(1 + ν). Hence

l = 2πb2

t

√
1 + ν

255
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Eqs (i) and (iii) may be written, respectively, as

PCR = 1.33C1

l2

and

PCR(θ) = C2 + 1.175C1

l2

where C1 and C2 are constants. Thus, if l were less than the value found, the increase
in the last term in the expression for PCR(θ) would be less than the increase in the value
of PCR, i.e. PCR(θ) < PCR for a decrease in l and the column would fail in torsion.

S.8.15

In this case Eqs (8.77) do not apply since the ends of the column are not free to warp.
From Eq. (8.70) and since, for the cross-section of the column, xs = ys = 0,

E�
d4θ

dz4 +
(

I0
P

A
− GJ

)
d2θ

dz2 = 0 (i)

For buckling, P = PCR, the critical load and PCR/A = σCR, the critical stress. Eq. (i)
may then be written

d4θ

dz4 + λ2 d2θ

dz2 = 0 (ii)

in which

λ2 = (I0σCR − GJ)

E�
(iii)

The solution of Eq. (ii) is

θ = A cos λz + B sin λz + Dz + F (iv)

The boundary conditions are:

θ = 0 at z = 0 and z = 2l

dθ

dz
= 0 at z = 0 and z = 2l (see Eq. (18.19))

Then B = D = 0, F = −A and Eq. (iv) becomes

θ = A( cos λz − 1) (v)

Since θ = 0 when z = 2l

cos λ2l = 1

or

λ2l = 2nπ
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Hence, for n = 1

λ2 = π2

l2

i.e. from Eq. (iii)

I0σCR − GJ

E�
= π2

l2

so that

σCR = 1

I0

(
GJ + π2E�

l2

)
(vi)

For the cross-section of Fig. P.8.15

J =
∑ st3

3
(see Eq. (18.11))

i.e.

J = 8bt3

3
= 8 × 25.0 × 2.53

3
= 1041.7 mm4

and

Ixx = 4bt(b cos 30◦)2 + 2
(2b)3t sin2 60◦

12
(see Section 16.4.5)

i.e.

Ixx = 4b3t = 4 × 25.03 × 2.5 = 156 250.0 mm4

Similarly

Iyy = 4

(
bt3

12
+ btb2

)
+ 2

(2b)3t cos2 60◦

12
= 14b3t

3

so that

Iyy = 14 × 25.03 × 2.5/3 = 182 291.7 mm4

Then

I0 = Ixx + Iyy = 338 541.7 mm4

The torsion-bending constant, �, is found by the method described in Section 27.2 and
is given by

� = b5t = 25.05 × 2.5 = 24.4 × 106 mm4

Substituting these values in Eq. (vi) gives

σCR = 282.0 N/mm2
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S.8.16

The three possible buckling modes of the column are given by Eqs (8.77) i.e.

PCR(xx) = π2EIxx

L2 (i)

PCR(yy) = π2EIyy

L2 (ii)

PCR(θ) = A

I0

(
GJ + π2E�

L2

)
(iii)

From Fig. P.8.16 and taking the x axis parallel to the flanges

A = (2 × 20 + 40) × 1.5 = 120 mm2

Ixx = 2 × 20 × 1.5 × 202 + 1.5 × 403/12 = 3.2 × 104 mm4

Iyy = 1.5 × 403/12 = 0.8 × 104 mm4

I0 = Ixx + Iyy = 4.0 × 104 mm4

J = (20 + 40 + 20) × 1.53/3 = 90.0 mm4 (see Eq. (18.11))

� = 1.5 × 203 × 402

12

(
2 × 40 + 20

40 + 2 × 20

)

= 2.0 × 106 mm6 (see Eq. (ii) of Example 27.1)

Substituting the appropriate values in Eqs (i), (ii) and (iii) gives

PCR(xx) = 22 107.9 N

PCR(yy) = 5527.0 N

PCR(θ) = 10 895.2 N

Thus the column will buckle in bending about the y axis at a load of 5527.0 N.

S.8.17

The separate modes of buckling are obtained from Eqs (8.77), i.e.

PCR(xx) = PCR(yy) = π2EI

L2 (Ixx = Iyy = I , say) (i)

and

PCR(θ) = A

I0

(
GJ + π2E�

L2

)
(ii)
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In this case

Ixx = Iyy = πr3t = π × 403 × 2.0 = 4.02 × 105 mm4

A = 2πrt = 2π × 40 × 2.0 = 502.7 mm2

J = 2πrt3/3 = 2π × 40 × 2.03/3 = 670.2 mm4

From Eq. (8.68)

I0 = Ixx + Iyy + Ax2
s (note that ys = 0)

in which xs is the distance of the shear centre of the section from its vertical diameter;
it may be shown that xs = 80 mm (see S.17.3). Then

I0 = 2 × 4.02 × 105 + 502.7 × 802 = 4.02 × 106 mm4

The torsion-bending constant � is found in a similar manner to that for the section
shown in Fig. P.27.3 and is given by

� = πr5t

(
2

3
π2 − 4

)

i.e.

� = π × 405 × 2.0

(
2

3
π2 − 4

)
= 1.66 × 109 mm6

(a) PCR(xx) = PCR(yy) = π2 × 70 000 × 4.02 × 105

(3.0 × 103)2 = 3.09 × 104 N

(b) PCR(θ) = 502.7

4.02 × 106

(
22 000 × 670.2 + π2 × 70 000 × 1.66 × 109

(3.0 × 103)2

)

= 1.78 × 104 N

The flexural–torsional buckling load is obtained by expanding Eq. (8.79). Thus

(P − PCR(xx))(P − PCR(θ))I0/A − P2x2
s = 0

from which

P2(1 − Ax2
s /I0) − P(PCR(xx) + PCR(θ)) + PCR(xx)PCR(θ) = 0 (iii)

Substituting the appropriate values in Eq. (iii) gives

P2 − 24.39 × 104P + 27.54 × 108 = 0 (iv)

The solutions of Eq. (iv) are

P = 1.19 × 104 N or 23.21 × 104 N

Therefore, the least flexural–torsional buckling load is 1.19 × 104 N.
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