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Then

[B]T[D][B] = 1

64

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−(2 − y) 0 −(1 − x)
0 −(1 − x) −(2 − y)

...

...

...

...

...

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎣
−c(2 − y) −d(1 − x) . . . . . . . . .

−d(2 − y) −c(1 − x) . . . . . . . . .

−e(1 − x) −e(2 − y) . . . . . . . . .

⎤

⎦

Therefore

K11 = t

64

∫ 2

−2

∫ 1

−1
[c(2 − y)2 + e(1 − x)2]dx dy

which gives K11 = t

6
(4c + e)

K12 = t

64

∫ 2

−2

∫ 1

−1
[d(2 − y)(1 − x) + e(1 − x)(2 − y)]dx dy

which gives K12 = t
4 (d + e).

Solutions to Chapter 7 Problems

S.7.1

Substituting for ((1/ρx) + (ν/ρy)) and ((1/ρy) + (ν/ρx)) from Eqs (7.5) and (7.6),
respectively in Eqs (7.3)

σx = Ez

1 − ν2

Mx

D
and σy = Ez

1 − ν2

My

D
(i)

Hence, since, from Eq. (7.4), D = Et3/12(1 − ν2), Eqs (i) become

σx = 12zMx

t3 σy = 12zMy

t3 (ii)

The maximum values of σx and σy will occur when z = ±t/2. Hence

σx( max ) = ±6Mx

t2 σy( max ) = ±6My

t2 (iii)
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Then

σx(max) = ±6 × 10 × 103

102 = ±600 N/mm2

σy(max) = ±6 × 5 × 103

102 = ±300 N/mm2

S.7.2

From Eq. (7.11) and since Mxy = 0

Mt = Mx − My

2
sin 2α (i)

Mt will be a maximum when 2α = π/2, i.e. α = π/4 (45◦). Thus, from Eq. (i)

Mt(max) = 10 − 5

2
= 2.5 Nm/mm

S.7.3

The relationship between Mn and Mx, My and Mxy in Eq. (7.10) and between Mt and
Mx, My and Mxy in Eq. (7.11) are identical in form to the stress relationships in Eqs
(1.8) and (1.9). Therefore, by deduction from Eqs (1.11) and (1.12)

MI = Mx + My

2
+ 1

2

√
(Mx − My)2 + 4M2

xy (i)

and

MII = Mx + My

2
− 1

2

√
(Mx − My)2 + 4M2

xy (ii)

Further, Eq. (7.11) gives the inclination of the planes on which the principal moments
occur, i.e. when Mt = 0. Thus

tan 2α = − 2Mxy

Mx − My
(iii)

Substituting the values Mx = 10 Nm/mm, My = 5 Nm/mm and Mxy = 5 Nm/mm in
Eqs (i), (ii) and (iii) gives

MI = 13.1 Nm/mm

MII = 1.9 Nm/mm

and

α = −31.7◦ or 58.3◦
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The corresponding principal stresses are obtained directly from Eqs (iii) of S.7.1. Hence

σI = ±6 × 13.1 × 103

102 = ±786 N/mm2

σII = ±6 × 1.9 × 103

102 = ±114 N/mm2

S.7.4

From the deflection equation

∂2w

∂x2 = −q0a2

Dπ2

(
1 + A cosh

πy

a
+ B

πy

a
sinh

πy

a

)
sin

πx

a

∂2w

∂y2 = q0a2

Dπ2

(
A cosh

πy

a
+ 2B cosh

πy

a
+ B

πy

a
sinh

πy

a

)
sin

πx

a

Now w = 0 and Mx = 0 at x = 0 and a. From Eq. (7.7) this is satisfied implicitly.
Also w = 0 and My = 0 at y = ±a so that, from the deflection equation

O = q0a4

Dπ4 (1 + A cosh π + Bπ sinh π) sin
πx

a

i.e.

1 + A cosh π + Bπ sinh π = 0 (i)

Also, from Eq. (7.8)

O = − q0a2

Dπ2 [(A cosh π + 2B cosh π + Bπ sinh π)

− 0.3(1 + A cosh π + Bπ sinh π)] sin
πx

a

or

O = −0.3 + 0.7A cosh π + 2B cosh π + 0.7Bπ sinh π (ii)

Solving Eqs (i) and (ii)

A = −0.2213 B = 0.0431

S.7.5

The deflection is zero at x = a/2, y = a/2. Then, from the deflection equation

O = a4

4
− 3

2
a4(1 − ν) − 3

4
a4ν + A
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Hence

A = a4

4
(5 − 3ν)

The central deflection, i.e. at x = 0, y = 0 is then

= qa4

96(1 − ν)D
× 1

4
(5 − 3ν)

= qa4

384D

(
5 − 3ν

1 − ν

)

S.7.6

From the equation for deflection

∂4w

∂x4 = w0

(π

a

)4
cos

πx

a
cos

3πy

a

∂4w

∂y4 = w0

(
3π

a

)4

cos
πx

a
sin

3πy

a

∂4w

∂x2 ∂y2 = w0

(π

a

)2
(

3π

a

)2

cos
πx

a
cos

3πy

a

Substituting in Eq. (7.20)

q(x, y)

D
= w0 cos

πx

a
cos

3πy

a
(1 + 2 × 9 + 81)

(π

a

)4

i.e.

q(x, y) = w0D100
π4

a4 cos
πx

a
cos

3πy

a

From the deflection equation

w = 0 at x = ±a/2, y = ±a/2

The plate is therefore supported on all four edges.
Also

∂w

∂x
= −w0

π

a
sin

πx

a
cos

3πy

a
∂w

∂y
= −w0

3π

a
cos

πx

a
sin

3πy

a
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When

x = ±a

2

∂w

∂x
�= 0

y = ±a

2

∂w

∂y
�= 0

The plate is therefore not clamped on its edges.
Further

∂2w

∂x2 = −w0

(π

a

)2
cos

πx

a
cos

3πy

a

∂2w

∂y2 = −w0

(
3π

a

)2

cos
πx

a
cos

3πy

a

Substituting in Eq. (7.7)

Mx = −Dw0

(π

a

)2
cos

πx

a
cos

3πy

a
(−1 − 9ν) (i)

Similarly, from Eq. (7.8)

My = w0D
(π

a

)2
cos

πx

a
cos

3πy

a
(9 + ν) (ii)

Then, at x = ±a/2, Mx = 0 (from Eq. (i)) and at y = ±a/2, My = 0 (from Eq. (ii)).
The plate is therefore simply supported on all edges.
The corner reactions are given by

2D(1 − ν)
∂2w

∂x ∂y
(see Eq. (7.14))

Then, since

∂2w

∂x ∂y
= w0

π

a

3π

a
sin

πx

a
sin

3πy

a
at x = a/2, y = a/2

Corner reactions = −6w0D
(π

a

)2
(1 − ν)

From Eqs (7.7) and (7.8) and the above, at the centre of the plate

Mx = w0D
(π

a

)2
(1 + 9ν), My = w0D

(π

a

)2
(9 + ν).
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S.7.7

Substituting q(x, y) = q0x/a in Eq. (7.29) and noting that the plate is square and of side a

amn = 4

a2

∫ a

0

∫ a

0
q0

x

a
sin

mπx

a
sin

nπy

a
dx dy

i.e.

amn = 4q0

a3

∫ a

0
x sin

mπx

a

[
− a

nπ
cos

nπy

a

]a

0
dx

Hence

amn = − 4q0

a2nπ

∫ a

0
x sin

mπx

a
(cos nπ − 1)dx

The term in brackets is zero when n is even and equal to −2 when n is odd. Thus

amn = 8q0

a2nπ

∫ a

0
x sin

mπx

a
dx (n odd) (i)

Integrating Eq. (i) by parts

amn = 8q0

a2nπ

[
−x

a

mπ
cos

mπx

a
+
∫

a

mπ
cos

mπx

a
dx

]a

0

i.e.

amn = 8q0

amnπ2

[
−x cos

mπx

a
+ a

mπ
sin

mπx

a

]a

0

The second term in square brackets is zero for all integer values of m. Thus

amn = 8q0

amnπ2 (−a cos mπ)

The term in brackets is positive when m is odd and negative when m is even. Thus

amn = 8q0

mnπ2 (−1)m+1

Substituting for amn in Eq. (7.30) gives the displaced shape of the plate, i.e.

w = 1

π4D

∞∑

m=1,2,3

∞∑

n=1,3,5

8q0(−1)m+1

mnπ2

[(
m2

a2

)
+
(

n2

a2

)]2 sin
mπx

a
sin

nπy

a

or

w = 8q0a4

π6D

∞∑

m=1,2,3

∞∑

n=1,3,5

(−1)m+1

mn(m2 + n2)2 sin
mπx

a
sin

nπy

a
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S.7.8

The boundary conditions which must be satisfied by the equation for the displaced
shape of the plate are w = 0 and ∂w/∂n = 0 at all points on the boundary; n is a direction
normal to the boundary at any point.

The equation of the ellipse representing the boundary is

x2

a2 + y2

b2 = 1 (i)

Substituting for x2/a2 + y2/b2 in the equation for the displaced shape clearly gives w = 0
for all values of x and y on the boundary of the plate. Also

∂w

∂n
= ∂w

∂x

∂x

∂n
+ ∂w

∂y

∂y

∂n
(ii)

Now

w = w0

(
1 − x2

a2 − y2

b2

)2

so that

∂w

∂x
= −4w0x

a2

(
1 − x2

a2 − y2

b2

)
(iii)

and

∂w

∂y
= −4w0y

b2

(
1 − x2

a2 − y2

b2

)
(iv)

From Eqs (i), (ii) and (iv) it can be seen that ∂w/∂x and ∂w/∂y are zero for all values
of x and y on the boundary of the plate. It follows from Eq. (ii) that ∂w/∂n = 0 at all
points on the boundary of the plate. Thus the equation for the displaced shape satisfies
the boundary conditions.

From Eqs (iii) and (iv)

∂4w

∂x4 = 24w0

a4

∂4w

∂y4 = 24w0

b4

∂4w

∂x2 ∂y2 = 8w0

a2b2

Substituting these values in Eq. (7.20)

w0

(
24

a4 + 16

a2b2 + 24

b4

)
= p

D

whence

w0 = p

8D

(
3

a4 + 2

a2b2 + 3

b4

)
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Now substituting for D from Eq. (7.4)

w0 = 3p(1 − ν2)

2Et3

(
3

a4 + 2

a2b2 + 3

b4

) (v)

From Eqs (7.3), (7.5) and (7.7)

σx = − Ez

1 − ν2

(
∂2w

∂x2 + ν
∂2w

∂y2

)
(vi)

and from Eqs (7.3), (7.6) and (7.8)

σy = − Ez

1 − ν2

(
∂2w

∂y2 + ν
∂2w

∂x2

)
(vii)

From Eqs (iii) and (iv)

∂2w

∂x2 = −4w0

a2

(
1 − 3x2

a2 − y2

b2

)
∂2w

∂y2 = −4w0

b2

(
1 − x2

a2 − 3y2

b2

)

Substituting these expressions in Eq. (vi) and noting that the maximum values of direct
stress occur at z = ±t/2

σx(max) = ± Et

2(1 − ν2)

[
−4w0

a2

(
1 − 3x2

a2 − y2

b2

)
− 4w0ν

b2

(
1 − x2

a2 − 3y2

b2

)]

(viii)
At the centre of the plate, x = y = 0. Then

σx(max) = ± 2Etw0

(1 − ν2)

(
1

a2 + ν

b2

)
(ix)

Substituting for w0 in Eq. (ix) from Eq. (v) gives

σx(max) = ± 3pa2b2(b2 + νa2)

t2(3b4 + 2a2b2 + 3a4)
(x)

Similarly

σy(max) = ± 3pa2b2(a2 + νb2)

t2(3b4 + 2a2b2 + 3a4)
(xi)

At the ends of the minor axis, x = 0, y = b. Thus, from Eq. (viii)

σx(max) = ± 2Etw0

(1 − ν2)

(
1

a2 − 1

a2 + ν

b2 − 3ν

b2

)

i.e.

σx(max) = ± 4Etw0ν

b2(1 − ν2)
(xii)
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Again substituting for w0 from Eq. (v) in Eq. (xii)

σx(max) = ± 6pa4b2

t2(3b4 + 2a2b2 + 3a4)

Similarly

σy(max) = ± 6pb4a2

t2(3b4 + 2a2b2 + 3a4)

S.7.9

The potential energy, V , of the load W is given by

V = −Ww

i.e.

V = −W
∞∑

m=1

∞∑

n=1

Amn sin
mπξ

a
sin

nπη

b

Therefore, it may be deduced from Eq. (7.47) that the total potential energy, U + V , of
the plate is

U + V = D

2

∞∑

m=1

∞∑

n=1

A2
mn

π4ab

4

(
m2

a2 + n2

b2

)2

− W
∞∑

m=1

∞∑

n=1

Amn sin
mπξ

a
sin

nπη

b

From the principle of the stationary value of the total potential energy

∂(U + V )

∂Amn
= DAmn

π4ab

4

(
m2

a2 + n2

b2

)2

− W sin
mπξ

a
sin

nπη

b
= 0

Hence

Amn =
4W sin

mπξ

a
sin

nπη

b

π4Dab

[(
m2

a2

)
+
(

n2

b2

)]2

so that the deflected shape is obtained.

S.7.10

From Eq. (7.45) the potential energy of the in-plane load, Nx, is

−1

2

∫ a

0

∫ b

0
Nx

(
∂w

∂x

)2

dx dy
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The combined potential energy of the in-plane load, Nx, and the load, W , is then, from
S.7.9

V = −1

2

∫ a

0

∫ b

0
Nx

(
∂w

∂x

)2

dx dy − W
∞∑

m=1

∞∑

n=1

Amn sin
mπξ

a
sin

nπη

b

or, since,

∂w

∂x
=

∞∑

m=1

∞∑

n=1

Amn
mπ

a
cos

mπx

a
sin

nπy

b

V = − 1

2

∫ a

0

∫ b

0
Nx

∞∑

m=1

∞∑

n=1

A2
mn

m2π2

a2 cos2 mπx

a
sin2 nπy

b
dx dy

− W
∞∑

m=1

∞∑

n=1

Amn sin
mπξ

a
sin

nπη

b

i.e.

V = −ab

8
Nx

∞∑

m=1

∞∑

n=1

A2
mn

m2π2

a2 − W
∞∑

m=1

∞∑

n=1

Amn sin
mπξ

a
sin

nπη

b

Then, from Eq. (7.47), the total potential energy of the plate is

U + V = D

2

∞∑

m=1

∞∑

n=1

A2
mn

π4ab

4

(
m2

a2 + n2

b2

)2

− ab

8
Nx

∞∑

m=1

∞∑

n=1

A2
mn

m2π2

a2

− W
∞∑

m=1

∞∑

n=1

Amn sin
mπξ

a
sin

nπη

b

Then, from the principle of the stationary value of the total potential energy

∂(U + V )

∂Amn
= DAmn

π4ab

4

(
m2

a2 + n2

b2

)2

− ab

4
NxAmn

m2π2

a2 − W sin
mπξ

a
sin

nπη

b
= 0

from which

Amn =
4W sin

mπξ

a
sin

nπη

b

abDπ4

[(
m2

a2 + n2

b2

)2

− m2Nx

π2a2D

]
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S.7.11

The guessed form of deflection is

w = A11

(
1 − 4x2

a2

)(
1 − 4y2

a2

)
(i)

Clearly when x = ±a/2, w = 0 and when y = ±a/2, w = 0. Therefore, the equation for
the displaced shape satisfies the displacement boundary conditions.

From Eq. (i)

∂2w

∂x2 = −8
A11

a2

(
1 − 4y2

a2

)
∂2w

∂y2 = −8
A11

a2

(
1 − 4x2

a2

)

Substituting in Eq. (7.7)

Mx = −8A11D

a2

[
1 − 4y2

a2 + ν

(
1 − 4x2

a2

)]

Clearly, when x = ±a/2, Mx �= 0 and when y = ±a/2, Mx �= 0. Similarly for My. Thus
the assumed displaced shape does not satisfy the condition of zero moment at the simply
supported edges.

From Eq. (i)

∂2w

∂x ∂y
= 64A11xy

a4

Substituting for ∂2w/∂x2, ∂2w/∂y2, ∂2w/∂x ∂y and w in Eq. (7.46) and simplifying gives

U + V =
∫ a/2

−a/2

∫ a

−a/2

{
32A2

11D

a4

[
4 − 16

a2 (x2 + y2) + 16

a4 (x4 + 2x2y2 + y4) − 1.4

+ 5.6

a2 (x2 + y2) + 67.2x2y2

a4

]

− q0A11

(
1 − 4x2

a2 − 4y2

a2 + 16x2y2

a4

)}
dx dy

from which

U + V = 62.4A2
11D

a2 − 4q0A11a2

9
From the principle of the stationary value of the total potential energy

∂(U + V )

∂A11
= 124.8A11D

a2 − 4q0a2

9
= 0

Hence, since D = Et3/12(1 − ν2)

A11 = 0.0389q0a4/Et3
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S.7.12

From Eq. (7.36) the deflection of the plate from its initial curved position is

w1 = B11 sin
πx

a
sin

πy

b

in which

B11 = A11Nx

π2D

a2

(
1 + a2

b2

)2

− Nx

The total deflection, w, of the plate is given by

w = w1 + w0

i.e.

w =

⎡

⎢⎢⎢
⎣

A11Nx

π2D

a2

(
1 + a2

b2

)2

− Nx

+ A11

⎤

⎥⎥⎥
⎦

sin
πx

a
sin

πy

b

i.e.

w = A11

1 − Nxa2

π2D

/(
1 + a2

b2

)2 sin
πx

a
sin

πy

b

Solutions to Chapter 8 Problems

S.8.1

The forces on the bar AB are shown in Fig. S.8.1 where

MB = K

(
dv

dz

)

B
(i)

and P is the buckling load.
From Eq. (8.1)

EI
d2v

dz2 = −Pv (ii)

The solution of Eq. (ii) is

v = A cos µz + B sin µz (iii)
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