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Then substituting in Eq. (4.20)

vB = w

8EI

[∫ L/4

0
3(Lx2 − x3)dx +

∫ L

L/4
(Lx − x2)(L − x)dx

]

which gives

vB = 57wL4

6144EI

For the deflection at the mid-span point the bending moment at any section due to the
actual loading is identical to the expression above. With the unit load applied at C

M1 = x

2
in AC and M1 = (L − x)

2
in CD

Substituting in Eq. (4.20)

vC = w

4EI

[∫ L/2

0
(Lx2 − x3) dx +

∫ L

L/2
(Lx − x2)(L − x)dx

]

from which

vC = 5wL4

384EI
.

Solutions to Chapter 5 Problems

S.5.1

This problem is most readily solved by the application of the unit load method.
Therefore, from Eq. (5.20), the vertical deflection of C is given by

�V,C =
∑ F0F1,VL

AE
(i)

and the horizontal deflection by

�H,C =
∑ F0F1,HL

AE
(ii)

in which F1,V and F1,H are the forces in a member due to a unit load positioned at C and
acting vertically downwards and horizontally to the right, in turn, respectively. Further,
the value of L/AE (= 1/20 mm/N) for each member is given and may be omitted from
the initial calculation. All member forces (see Table S.5.1) are found using the method
of joints which is described in textbooks on structural analysis, for example, Structural
and Stress Analysis by T. H. G. Megson (Elsevier, 2005).
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Table S.5.1

Member F0(N) F1,V F1,H F0F1,V F0F1,H

DC 16.67 1.67 0 27.84 0
BC −13.33 −1.33 1.0 17.73 −13.33
ED 13.33 1.33 0 17.73 0
DB −10.0 −1.0 0 10.0 0
AB −16.67 −1.67 0.8 27.84 −13.34
EB 0 0 0.6 0 0

∑ = 101.14
∑ = −26.67

Note that the loads F1,V are obtained most easily by dividing the loads F by a factor of
10. Then, from Eq. (i)

�V,C = 101.4 × 1

20
= 5.07 mm

which is positive and therefore in the same direction as the unit vertical load. Also from
Eq. (ii)

�H,C = −26.67 × 1

20
= −1.33 mm

which is negative and therefore to the left.
The actual deflection, �, is then given by

� =
√

�2
V,C + �2

H,C = 5.24 mm

which is downwards and at an angle of tan−1(1.33/5.07) = 14.7◦ to the left of vertical.

S.5.2

Figure S.5.2 shows a plan view of the plate. Suppose that the point of application of
the load is at D, a distance x from each side of the plate. The deflection of D may be
found using the unit load method so that, from Eq. (5.20), the vertical deflection of D
is given by

�D =
∑ F0F1L

AE
(i)

Initially, therefore, the forces, F0, must be calculated. Suppose that the forces in the
wires at A, B and C due to the actual load are F0,A, F0,B and F0,C, respectively. Then
resolving vertically

F0,A + F0,B + F0,C = 100 (ii)

Taking moments about the edges BC, AC and AB in turn gives

F0,A × 4 = 100x (iii)

F0,B × 4 × sin A = 100x
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A

BC

D

x

x
x

Fig. S.5.2

i.e.

F0,B × 4 × 0.6 = 100x (iv)

and

F0,C × 3 = 100x (v)

Thus, from Eqs (iii) to (v)

4F0,A = 2.4F0,B = 3F0,C

so that

F0,A = 0.6F0,B F0,C = 0.8F0,B

Substituting in Eq. (ii) gives

F0,B = 41.7 N

Hence

F0,A = 25.0 N and F0,C = 33.4 N

Now apply a unit load at D in the direction of the 100 N load. Then

F1,A = 0.25 F1,B = 0.417 F1,C = 0.334

Substituting for F0,A, F1,A, etc. in Eq. (i)

�D = 1440

(π/4) × 12 × 196 000
(25 × 0.25 + 41.7 × 0.417 + 33.4 × 0.334)

i.e.

�D = 0.33 mm
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S.5.3

Suppose that joints 2 and 7 have horizontal and vertical components of displacement
u2, v2, u7, and v7, respectively as shown in Fig. S.5.3. The displaced position of the
member 27 is then 2′7′. The angle α which the member 27 makes with the vertical is
then given by

α = tan−1 u7 − u2

3a + v7 − v2

2

2'

7

7'

3a

u7

v7

v2 u2

α

Fig. S.5.3

which, since α is small and v7 and v2 are small compared with 3a, may be written as

α = u7 − u2

3a
(i)

The horizontal components u2 and u7 may be found using the unit load method,
Eq. (5.20). Thus

u2 =
∑ F0F1,2L

AE
u7 =

∑ F0F1,7L

AE
(ii)

where F1,2 and F1,7 are the forces in the members of the framework due to unit loads
applied horizontally, in turn, at joints 2 and 7, respectively. The solution is completed
in tabular form (Table S.5.3). Substituting the summation terms in Eqs (ii) gives

u2 = −192Pa

3AE
u7 = 570Pa

9AE

Now substituting for u2 and u7 in Eq. (i)

α = 382P

9AE
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Table S.5.3

Member Length F0 F1,2 F1,7 F0F1,2L F0F1,7L

27 3a 3P 0 0 0 0
87 5a 5P/3 0 5/3 0 125Pa/9
67 4a −4P/3 0 −4/3 0 64Pa/9
21 4a 4P −4/3 0 −64Pa/3 0
23 5a 0 5/3 0 0 0
26 5a −5P 0 0 0 0
38 3a 0 0 0 0 0
58 5a 0 0 0 0 0
98 5a 5P/3 0 5/3 0 125Pa/9
68 3a 0 0 0 0 0
16 3a 3P 0 0 0 0
56 4a −16P/3 0 −4/3 0 256Pa/9
13 3a 0 0 0 0 0
43 5a 0 5/3 0 0 0
93

√
34a 0 0 0 0 0

03 5a 0 0 0 0 0
15 5a −5P 0 0 0 0
10 4a 8P −4/3 0 −128Pa/3 0

∑ = −192Pa/3
∑ = 570Pa/9

S.5.4

(a) The beam is shown in Fig. S.5.4. The principle of the stationary value of the total
complementary energy may be used to determine the deflection at C. From Eq. (5.13)

�C =
∫

L
dθ

dM

dP
(i)

A C D F
P

P
2

P
2z

L/4 L/4 L/4 L/4

EI
EI/2

B

Fig. S.5.4

in which, since the beam is linearly elastic, dθ = (M/EI)dz. Also the beam is
symmetrical about its mid-span so that Eq. (i) may be written

�C = 2
∫ L/2

0

M

EI

dM

dP
dz (ii)

In AC

M = P

2
z
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so that

dM

dP
= z

2

Eq. (ii) then becomes

�C = 2

⎡

⎢⎢
⎣

∫ L/4

0

Pz2

4

(
EI

2

)dz +
∫ L/2

L/4

Pz2

4EI
dz

⎤

⎥⎥
⎦ (iii)

Integrating Eq. (iii) and substituting the limits gives

�C = 3PL3

128EI

(b) When the beam is encastré at A and F, fixed end moments MA and MF are induced.
From symmetry MA = MF. The total complementary energy of the beam is, from
Eq. (4.18)

C =
∫

L

∫ M

0
dθ dM − P�C

from which

∂C

∂MA
=
∫

L
dθ

∂M

∂MA
= 0 (iv)

from the principle of the stationary value. From symmetry the reactions at A and F are
each P/2. Hence

M = P

2
z − MA (assuming MA is a hogging moment)

Then
∂M

∂MA
= −1

Thus, from Eq. (iv)

∂C

∂MA
= 2

∫ L/2

0

M

EI

∂M

∂MA
dz = 0

or

0 = 2

[∫ L/4

0

1

(EI/2)

(
P

2
z − MA

)
(−1) dz +

∫ L/2

L/4

1

EI

(
P

2
z − MA

)
(−1) dz

]

from which

MA = 5PL

48
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S.5.5

The unit load method, i.e. the first of Eqs (5.21), may be used to obtain a solution.
Thus

δC,H =
∫

M0M1

EI
dz (i)

in which the M1 moments are due to a unit load applied horizontally at C. Then, referring
to Fig. S.5.5, in CB

M0 = W (R − R cos θ) M1 = 1 × z

and in BA

M0 = W2R M1 = 1 × z

4R

z

A

R
C

W

B θ

Fig. S.5.5

Hence, substituting these expressions in Eq. (i) and noting that in CB ds = R dθ and in
BA ds = dz

δC,H = 1

EI

{∫ π

0
−WR3(1 − cos θ) sin θ dθ +

∫ 4R

0
2WRz dz

}

i.e.

δC,H = 1

EI

{

−WR3
[
−cos θ + cos2 θ

2

]π

0
+ WR[z2]4R

0

}

so that

δC,H = 14WR3

EI
(ii)

The second moment of area of the cross-section of the post is given by

I = π

64
(1004 − 944) = 1.076 × 106 mm4
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Substituting the value of I and the given values of W and R in Eq. (ii) gives

δC,H = 53.3 mm

S.5.6

Either of the principles of the stationary values of the total complementary energy or
the total potential energy may be used to solve this problem.

From Eq. (5.12) the total complementary energy of the system is

C =
∫

L

∫ M

0
dθ dM −

∫

L
wv dz (i)

in which w is the load intensity at any point in the beam and v the vertical displacement.
Equation (i) may be written in the form

C =
∫

L

∫ M

0

M

EI
dz dM −

∫

L
wv dz

since, from symmetrical bending theory

δθ = δz

R
= M

EI
δz

Hence

C =
∫

L

M2

2EI
dz −

∫

L
wv dz (ii)

Alternatively, the total potential energy of the system is the sum of the strain energy
due to bending of the beam plus the potential energy V , of the applied load. The strain
energy U, due to bending in a beam may be shown to be given by

U =
∫

L

M2

2EI
dz

Hence

TPE = U + V =
∫

L

M2

2EI
dz −

∫

L
wv dz (iii)

Eqs (ii) and (iii) are clearly identical.
Now, from symmetrical bending theory

M

EI
= −d2v

dz2

Therefore Eq. (ii) (or (iii)) may be rewritten

C =
∫ L

0

EI

2

(
d2v

dz2

)2

dz −
∫ L

0
wv dz (iv)
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Now

v = a1 sin
πz

L
+ a2 sin

2πz

L
w = 2w0z

L

(
1 − z

2L

)

so that

d2v

dz2 = −a1
π2

L2 sin
πz

L
− a2

4π2

L2 sin
2πz

L

Substituting in Eq. (iv)

C = EI

2

π4

L4

∫ L

0

(
a1

π2

L2 sin
πz

L
+ a2

4π2

L2 sin
2πz

L

)2

dz

−2w0

L

∫ L

0

(
a1z sin

πz

L
+ a2z sin

2πz

L
− a1

z2

2L
sin

πz

L
− a2

z2

2L
sin

2πz

L

)
dz

which, on expanding, gives

C = EIπ4

2L4

∫ L

0

(
a2

1 sin2 πz

L
+ 8a1a2 sin

πz

L
sin

2πz

L
+ 16a2

2 sin2 2πz

L

)
dz

−2w0

L

∫ L

0

(
a1z sin

πz

L
+ a2z sin

2πz

L
− a1

z2

2L
sin

πz

L
− a2

z2

2L
sin

2πz

L

)
dz (v)

Eq. (v) may be integrated by a combination of direct integration and integration by
parts and gives

C = EIπ4

2L4

(
a2

1L

2
+ 8a2

2L

)

− a1w0L

(
1

π
+ 4

π3

)
+ a2w0L

2π
(vi)

From the principle of the stationary value of the total complementary energy

∂C

∂a1
= 0 and

∂C

∂a2
= 0

From Eq. (vi)

∂C

∂a1
= 0 = a1

EIπ4

2L3 − w0L

π3 (π2 + 4)

Hence

a1 = 2w0L4

EIπ7 (π2 + 4)

Also

∂C

∂a2
= 0 = a2

8EIπ4

L3 + w0L

2π

whence

a2 = − w0L4

16EIπ5
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The deflected shape of the beam is then

v = w0L4

EI

[
2

π7 (π2 + 4) sin
πz

L
− 1

16π5
sin

2πz

L

]

At mid-span when z = L/2

v = 0.00918
w0L4

EI

S.5.7

This problem is solved in a similar manner to P.5.6. Thus Eq. (iv) of S.5.6 is directly
applicable, i.e.

C =
∫

L

EI

2

(
d2v

dz2

)2

dz −
∫

L
wv dz (i)

in which

v =
∞∑

i=1

ai sin
iπz

L
(ii)

and w may be expressed as a function of z in the form w = 4w0z(L − z)/L2 which
satisfies the boundary conditions of w = 0 at z = 0 and z = L and w = w0 at z = L/2.

From Eq. (ii)

d2v

dz2 = −
∞∑

i=1

ai
i2π2

L2 sin
iπz

L

Substituting in Eq. (i)

C = EI

2

∫ L

0

∞∑

i=1

a2
i

i4π4

L4 sin2 iπz

L
dz − 4w0

L2

∫ L

0
z(L − z)

∞∑

i=1

ai sin
iπz

L
dz (iii)

Now
∫ L

0
sin2 iπz

L
dz =

∫ L

0

1

2

(
1 − cos

i2πz

L

)
dz =

[
z

2
− L

i2π
sin

i2πz

L

]L

0
= L

2
∫ L

0
Lz sin

iπz

L
dz = L

[
−zL

iπ
cos

iπz

L
+
∫

L

iπ
cos

iπz

L
dz

]L

0
= −L3

iπ
cos iπ

∫ L

0
z2 sin

iπz

L
dz =

[
−z2L

iπ
cos

iπz

L
+
∫

L

iπ
cos

iπz

L
2z dz

]L

0

= −L3

iπ
cos iπ + 2L3

i3π3 (cos iπ − 1)
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Thus Eq. (iii) becomes

C =
∞∑

i=1

EIa2
i i4π4

4L3 − 4w0

L2

∞∑

i=1

ai

[
−L3

iπ
cos iπ + L3

iπ
cos iπ − 2L3

i3π3 (cos iπ − 1)

]

or

C =
∞∑

i=1

EIa2
i i4π4

4L3 − 4w0

L2

∞∑

i=1

2aiL3

i3π3 (1 − cos iπ) (iv)

The value of (1 − cos iπ) is zero when i is even and 2 when i is odd. Therefore Eq. (iv)
may be written

C = EIa2
i i4π4

4L3 − 16w0aiL

i3π3 i is odd

From the principle of the stationary value of the total complementary energy

∂C

∂ai
= EIaii4π4

2L3 − 16w0L

i3π3 = 0

Hence

ai = 32w0L4

EIi7π7

Then

v =
∞∑

i=1

32w0L4

EIi7π7 sin
iπz

L
i is odd

At the mid-span point where z = L/2 and using the first term only in the expression for v

vm.s. = w0L4

94.4EI

S.5.8

The lengths of the members which are not given are:

L12 = 9
√

2a L13 = 15a L14 = 13a L24 = 5a

The force in the member 14 due to the temperature change is compressive and equal to
0.7A. Also the change in length, �14, of the member 14 due to a temperature change T is
L14αT = 13a × 2.4 × 10−6T . This must also be equal to the change in length produced
by the force in the member corresponding to the temperature rise. Let this force be R.

From the unit load method, Eq. (5.20)

�14 =
∑ F0F1L

AE
(i)
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In this case, since R and the unit load are applied at the same points, in the same
direction and no other loads are applied when only the temperature change is being
considered, F0 = RF1. Equation (i) may then be written

�14 = R
∑ F2

1 L

AE
(ii)

The method of joints may be used to determine the F1 forces in the members. Thus

F14 = 1 F13 = −35

13
F12 = 16

√
2

13
F24 = −20

13
F23 = 28

13

Eq. (ii) then becomes

�14 = R

[
12 × 13a

AE
+ 352 × 15a

132AE
+ (16

√
2)2 × 9

√
2a

132
√

2AE
+ 202 × 5a

132AE
+ 282 × 3a

132AE

]

or

�14 = Ra

132AE
(133 + 352 × 15 + 162 × 18 + 202 × 5 + 282 × 3)

i.e.

�14 = 29 532aR

132AE

Then

13a × 24 × 10−6T = 29 532a(0.7A)

132AE

so that

T = 5.6◦

S.5.9

Referring to Figs P.5.9(a), (b) and S.5.9 it can be seen that the members 12, 24 and 23
remain unloaded until P has moved through a horizontal distance 0.25 cos α, i.e. a
distance of 0.25 × 600/750 = 0.2 mm. Therefore, until P has moved through a hori-
zontal distance of 0.2 mm P is equilibrated solely by the forces in the members 13,
34 and 41 which therefore form a triangular framework. The method of solution is to
find the value of P which causes a horizontal displacement of 0.2 mm of joint 1 in this
framework.

Using the unit load method, i.e. Eq. (5.20) and solving in tabular form (see
Table S.5.9(a)).

Then

0.2 = 1425.0P

300 × 70 000
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1

34

450 mm

600 mm

P
α

2

Fig. S.5.9

Table S.5.9(a)

Member Length (mm) F0 F1 F0F1L

13 750 1.25P 1.25 1171.9P
14 450 −0.75P −0.75 253.1P
43 600 0 0 0

∑ = 1425.0P

from which

P = 2947 N

The corresponding forces in the members 13, 14 and 43 are then

F13 = 3683.8 N F14 = −2210.3 N F43 = 0

When P = 10 000 N additional forces will be generated in these members corre-
sponding to a load of P′ = 10 000 − 2947 = 7053 N. Also P′ will now produce forces in
the remaining members 12, 24 and 23 of the frame. The solution is now completed in a
similar manner to that for the frame shown in Fig. 5.8 using Eq. (5.16). Suppose that R is
the force in the member 24; the solution is continued in Table S.5.9(b). From Eq. (5.16)

2592R + 1140P′ = 0

Table S.5.9(b)

Member Length (mm) F ∂F/∂R FL(∂F/∂R)

12 600 −0.8R −0.8 384R
23 450 −0.6R −0.6 162R
34 600 −0.8R −0.8 384R
41 450 −(0.6R + 0.75P′) −0.6 162R + 202.5P′
13 750 R + 1.25P′ 1.0 750R + 937.5P′
24 750 R 1.0 750R

∑ = 2592R + 1140P′
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so that

R = −1140 × 7053

2592

i.e.

R = −3102 N

Then

F12 = −0.8 × (−3102) = 2481.6 N (tension)

F23 = −0.6 × (−3102) = 1861.2 N (tension)

F34 = −0.8 × (−3102) = 2481.6 N (tension)

F41 = −0.6 × (−3102) − 0.75 × 7053 − 2210.3 = −5638.9 N (compression)

F13 = −3102 + 1.25 × 7053 + 3683.8 = 9398.1 N (tension)

F24 = −3102.0 N (compression)

S.5.10

Referring to Fig. S.5.10(a) the vertical reactions at A and D are found from statical
equilibrium. Then, taking moments about D

RA
2
3 l + 1

2 lw 2
3 l = 0

i.e.

RA = −wl

2
(downwards)

Hence

RD = wl

2
(upwards)

Also for horizontal equilibrium

HA + wl

2
= HD (i)

The total complementary energy of the frame is, from Eq. (5.12)

C =
∫

L

∫ M

0
dθ dM − HA�A,H − RA�A,V − HD�D,H − RD�D,V +

∫ l

0
w′� dz (ii)

in which �A,H, �A,V, �D,H and �D,V are the horizontal and vertical components of
the displacements at A and D, respectively and � is the horizontal displacement of
the member AB at any distance z from A. From the principle of the stationary value
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z

w z

l

EI

2EI2EI

A

B
C

D

2l /3

w'

z

HD

RDRA

HA

Fig. S.5.10(a)

of the total complementary energy of the frame and selecting �A,H as the required
displacement

∂C

∂HA
=
∫

L
dθ

∂M

∂HA
− �A,H = 0 (iii)

In this case �A,H = 0 so that Eq. (iii) becomes

∫

L
dθ

∂M

∂HA
= 0

or, since dθ = (M/EI)dz

∫

L

M

EI

∂M

∂HA
dz = 0 (iv)

In AB

M = −HAz − wz3

6l

∂M

∂HA
= −z

In BC

M = RAz − HAl − wl2

6

∂M

∂HA
= −l

In DC

M = −HDz = −
(

HA + wl

2

)
z from Eq. (i),

∂M

∂HA
= −z
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Substituting these expressions in Eq. (iv) gives

∫ l

0

1

2EI

(
−HAz − wz3

6l

)
(−z)dz +

∫ 2l/3

0

1

EI

(

−wl

2
z − HAl − wl2

6

)

(−l)dz

+
∫ l

0

1

2EI

(
−HA − wl

2

)
z(−z)dz = 0

or

1

2

∫ l

0

(
HAz2 + wz4

6l

)
dz +

∫ 2l/3

0

(
wl2

2
z + HAl2 + wl3

6

)

dz

+ 1

2

∫ l

0

(

HAz2 + wlz2

2

)

dz = 0

from which

2HAl3 + 29

45
wl4 = 0

or

HA = −29wl/90

Hence, from Eq. (i)

HD = 8wl/45

Thus

MAB = −HAz − wz3

6l
= 29wl

90
z − w

6l
z3

8wl2/45

8wl2/45
7wl2/45

7wl2/45

0.173wl2

A

B

D

29

45
l

Bending moment is 
drawn on the tension 
side of each member

C

Fig. S.5.10(b)
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When z = 0, MAB = 0 and when z = l, MAB = 7wl2/45. Also, dMAB/dz = 0 for a turning
value, i.e.

dMAB

dz
= 29wl

90
− 3wz2

6l
= 0

from which z = √
29/45l. Hence MAB(max) = 0.173wl2.

The bending moment distributions in BC and CD are linear and MB = 7wl2/45,
MD = 0 and MC = HDl = 8wl2/45.

The complete bending moment diagram for the frame is shown in Fig. S.5.10(b).

S.5.11

The bracket is shown in Fig. S.5.11 in which RC is the vertical reaction at C and MC is
the moment reaction at C in the vertical plane containing AC.

A

B

C

3a
5a

4a

z2

P

α

z1

Rc

Mc

Fig. S.5.11

From Eq. (5.12) the total complementary energy of the bracket is given by

C =
∫

L

∫ M

0
dθ dM +

∫

L

∫ T

0
dφ dT − MCθC − RC�C − P�A

in which T is the torque in AB producing an angle of twist, φ, at any section and the
remaining symbols have their usual meaning. Then, from the principle of the stationary
value of the total complementary energy and since θC = �C = 0

∂C

∂RC
=
∫

L

M

EI

∂M

∂RC
dz +

∫

L

T

GJ

∂T

∂RC
dz = 0 (i)

and
∂C

∂MC
=
∫

L

M

EI

∂M

∂MC
dz +

∫

L

T

GJ

∂T

∂MC
dz = 0 (ii)

From Fig. S.5.11

MAC = RCz1 − MC TAC = 0
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so that

∂MAC

∂RC
= z1

∂MAC

∂MC
= −1

∂TAC

∂RC
= ∂TAC

∂MC
= 0

Also

MAB = −Pz2 + RC(z2 − 4a cos α) + MC cos α

i.e.

MAB = −Pz2 + RC

(
z2 − 16a

5

)
+ 4

5
MC

Hence

∂MAB

∂RC
= z2 − 16a

5

∂MAB

∂MC
= 4

5

Finally

TAB = RC4a sin α − MC sin α

i.e.

TAB = 12a

5
RC − 3

5
MC

so that

∂TAB

∂RC
= 12a

5

∂TAB

∂MC
= −3

5

Substituting these expressions in Eq. (i)

∫ 4a

0

1

EI
(RCz1 − MC)z1 dz1 +

∫ 5a

0

1

1.5EI

[
−Pz2 + RC

(
z2 − 16a

5

)
+ 4

5
MC

]

×
(

z2 − 16a

5

)
dz2 +

∫ 5a

0

1

3GI

(
12a

5
RC − 3

5
MC

)
12a

5
dz2 = 0 (iii)

Note that for the circular section tube AC the torsion constant J (i.e. the polar second
moment of area) = 2 × 1.5I from the theorem of perpendicular axes.

Integrating Eq. (iii), substituting the limits and noting that G/E = 0.38 gives

55.17 RCa − 16.18 MC − 1.11 Pa = 0 (iv)

Now substituting in Eq. (ii) for MAC, ∂MAC/∂MC, etc.

∫ 4a

0

1

EI
(RCz1 − MC)(−1)dz1 +

∫ 5a

0

1

1.5EI

[
−Pz2 + RC

(
z2 − 16a

5

)
+ 4

5
MC

]
4

5
dz2

+
∫ 5a

0

1

3GI

(
12a

5
RC − 3

5
MC

)(
−3

5

)
dz2 = 0 (v)
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from which

16.58 RCa − 7.71 MC + 6.67 Pa = 0 (vi)

Solving the simultaneous Eqs (iv) and (vi) gives

RC = 0.72 P

S.5.12

Suppose that R is the tensile force in the member 23, i.e. R = xP0. Then, from Eq. (5.15)

∑
λi

∂Fi

∂R
= 0 (i)

in which, for members 12, 23 and 34

λi = εLi = τiLi

E

[
1 +

(
τi

τ0

)n]
(ii)

But τi = Fi/Ai so that Eq. (ii) may be written

λi = FiLi

AiEi

[
1 +

(
Fi

Aiτ0

)n]
(iii)

For members 15, 25, 35 and 45 which are linearly elastic

λi = FiLi

AiE
(iv)

The solution is continued in Table S.5.12. Summing the final column in Table S.5.12
gives

4RL√
3AE

[1 + (αx)n] + 2
√

3RL

AE
[1 + (αx)n] + 8L√

3AE

(
P0 + 2R√

3

)
+ 16RL√

3AE
= 0 (v)

from Eq. (i)
Noting that R = xP0, Eq. (v) simplifies to

4x[1 + (αx)n] + 6x[1 + (αx)n] + 8 + 16x√
3

+ 16x = 0

or

10x(αx)n + x

(
10 + 16√

3
+ 16

)
+ 8 = 0

from which

αnxn+1 + 3.5x + 0.80 = 0
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Table S.5.12

Member Li Ai Fi ∂Fi/∂R λi λi ∂Fi/∂R

12 2L A/
√

3 R/
√

3 1/
√

3
2RL

AE

[
1 +

(
R

Aτ0

)n] 2RL√
3AE

[1 + (αx)n]

23 2L/
√

3 A R 1
2
√

3RL

AE

[
1 +

(
R

Aτ0

)n] 2
√

3RL

AE
[1 + (αx)n]

34 2L A/
√

3 R/
√

3 1/
√

3
2RL

AE

[
1 +

(
R

Aτ0

)n] 2RL√
3AE

[1 + (αx)n]

15 2L A −P0 − 2R/
√

3 −2/
√

3 − (P0 + 2R/
√

3)2L

AE

4L√
3AE

(P0 + 2R/
√

3)

25 2L A/
√

3 −2R/
√

3 −2/
√

3 −4RL

AE

8RL√
3AE

35 2L A/
√

3 −2R/
√

3 −2/
√

3 −4RL

AE

8RL√
3AE

45 2L A −P0 − 2R/
√

3 −2/
√

3 − 2L

AE
(P0 + 2R/

√
3)

4L√
3AE

(P0 + 2R/
√

3)

S.5.13

Suppose that the vertical reaction between the two beams at C is P. Then the force
system acting on the beam AB is as shown in Fig. S.5.13. Taking moments about B

RA × 9.15 + P × 6.1 − 100 × 3.05 = 0

P

A
C

3.05 m 3.05 m 3.05 m

100 kN

z
F

B

RA RB

Fig. S.5.13

so that

RA = 33.3 − 0.67P

The total complementary energy of the beam is, from Eq. (5.12)

C =
∫

L

∫ M

0
dθ dM − P�C − 100�F = 0
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where �C and �F are the vertical displacements at C and F, respectively. Then, from
the principle of the stationary value of the total complementary energy of the beam

∂C

∂P
=
∫

L
dθ

∂M

∂P
− �C = 0

whence, as in previous cases

�C =
∫

L

M

EI

∂M

∂P
dz (i)

In AC

MAC = RAz = (33.3 − 0.67P)z

so that

∂MAC

∂P
= −0.67z

In CF

MCF = RAz + P(z − 3.05) = 33.3z + P(0.33z − 3.05)

from which

∂MCF

∂P
= 0.33z − 3.05

In FB

MFB = RAz + P(z − 3.05) − 100(z − 6.1) = −66.7z + 610 + P(0.33z − 3.04)

which gives

∂MFB

∂P
= 0.33z − 3.04

Substituting these expressions in Eq. (i)

EI�C =
∫ 3.05

0
(33.3 − 0.67P)z(−0.67z)dz

+
∫ 6.1

3.05
[33.3z + P(0.33z − 3.05)](0.33z − 3.05)dz

+
∫ 9.15

6.1
[−66.7z + 610 + P(0.33z − 3.05)](0.33z − 3.05)dz
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which simplifies to

EI�C =
∫ 3.05

0
(−22.2z2 + 0.44Pz2)dz

+
∫ 6.1

3.05
(10.99z2 + 0.11Pz2 − 2.02Pz + 9.3P − 101.6z)dz

+
∫ 9.15

6.1
(−22.01z2 + 404.7z + 0.11Pz2 − 2.02Pz + 9.3P − 1860.5)dz

Integrating this equation and substituting the limits gives

EI�C = 12.78P − 1117.8 (ii)

From compatibility of displacement, the displacement at C in the beam AB is equal
to the displacement at C in the beam ED. The displacement at the mid-span point in a
fixed beam of span L which carries a central load P is PL3/192EI. Hence, equating this
value to �C in Eq. (ii) and noting that �C in Eq. (ii) is positive in the direction of P

−(12.78P − 1117.8) = P × 6.13

192

which gives

P = 80.1 kN

Thus

�C = 80.1 × 103 × 6.13 × 109

192 × 200 000 × 83.5 × 106

i.e.

�C = 5.6 mm

Note: The use of complementary energy in this problem produces a rather lengthy
solution. A quicker approach to finding the displacement �C in terms of P for the beam
AB would be to use Macauley’s method (see, e.g. Structural and Stress Analysis by
T. H. G. Megson (Elsevier, 2005)).

S.5.14

The internal force system in the framework and beam is statically determinate so that
the unit load method may be used directly to determine the vertical displacement of D.
Hence, from the first of Eqs (5.21) and Eq. (5.20)

�D,V =
∫

L

M0M1

EI
dz +

k∑

i=1

Fi,0Fi,1Li

AiEi
(i)
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A

B

C
D

E G

3a

4a 4a 4a

3wa

B

C
D

G

1.5w/unit length

RG,H

RA,H

RA,V

F

z2 z1

RG,V

Fig. S.5.14

Referring to Fig. S.5.14 and taking moments about A

RG,H3a − 1.5w
(8a)2

2
− 3wa12a = 0

from which

RG,H = 28wa

Hence

RA,H = −28wa

From the vertical equilibrium of the support G, RG,V = 0, so that, resolving vertically

RA,V − 1.5w8a − 3wa = 0

i.e.

RA,V = 15wa

With a unit vertical load at D

RG,H = 4 RA,H = −4 RA,V = 1 RG,V = 0

For the beam ABC, in AB

M0 = RA,Vz1 − 1.5wz2
1

2
= 15waz1 − 0.75wz2

1 M1 = 1 × z1

and in BC

M0 = 15waz2 − 0.75wz2
2 M1 = 1 × z2

Hence
∫

L

M0M1

EI
dz = 16

Aa2E

[∫ 4a

0
(15waz2

1 − 0.75wz3
1)dz1 +

∫ 4a

0
(15waz2

2 − 0.75wz3
2)dz2

]

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Solution-1-H6739.tex 24/1/2007 9: 28 Page 60

60 Solutions Manual

Suppose z1 = z2 = z say, then

∫

L

M0M1

EI
dz = 16

Aa2E
2
∫ 4a

0
(15waz2 − 0.75wz3)dz = 32w

Aa2E

[
5az3 − 0.75

4
z4
]4a

0

i.e.
∫

L

M0M1

EI
dz = 8704wa2

AE

The solution is continued in Table S.5.14.

Table S.5.14

Member L A F0 F1 F0F1L/A

AB 4a 4A 28wa 4 112wa2/A
BC 4a 4A 28wa 4 112wa2/A
CD 4a A 4wa 4/3 64wa2/3A
DE 5a A −5wa −5/3 125wa2/3A
EF 4a A −4wa −4/3 64wa2/3A
FG 4a A −28wa −4 448wa2/A
CE 3a A 3wa 1 9wa2/A
CF 5a A −30wa −10/3 500wa2/A
BF 3a A 18wa 2 108wa2/A

∑ = 4120wa2/3A

Thus

�D = 8704wa2

AE
+ 4120wa2

3AE
i.e.

�D = 30 232wa2

3AE

S.5.15

The internal force systems at C and D in the ring frame are shown in Fig. S.5.15. The
total complementary energy of the half-frame is, from Eq. (5.12)

C =
∫

L

∫ M

0
dθ dM − F�B

in which �B is the horizontal displacement of the joint B. Note that, from symmetry,
the translational and rotational displacements at C and D are zero. Hence, from the
principle of the stationary value of the total complementary energy and choosing the
horizontal displacement at C (=0) as the unknown

∂C

∂NC
=
∫

L

M

EI

∂M

∂NC
dz = 0 (i)
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In CB

MCB = MC − NC(r − r cos θ1) (ii)

At B, MCB = 0. Thus

MC = NC(r + r sin 30◦) = 1.5NCr (iii)

Eq. (ii) then becomes

MCB = NCr(0.5 + cos θ1) (iv)

Then
∂MCB

∂NC
= r(0.5 + cos θ1) (v)

In DB

MDB = MD − ND(r − r cos θ2) (vi)

Fig. S.5.15

Again the internal moment at B is zero so that

MD = ND(r − r sin 30◦) = 0.5NDr (vii)

Hence

MDB = NDr(cos θ2 − 0.5) (viii)

Also, from horizontal equilibrium

ND + NC = F

so that

ND = F − NC
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and Eq. (viii) may be written

MDB = (F − NC)r(cos θ2 − 0.5) (ix)

whence

∂MDB

∂NC
= −r(cos θ2 − 0.5) (x)

Substituting from Eqs (iv), (v), (ix) and (x) in Eq. (i)

∫ 120◦

0

1

EI
NCr3(0.5 + cos θ1)2dθ1 −

∫ 60◦

0

(F − NC)

xEI
r3(cos θ2 − 0.5)2dθ2 = 0

i.e.

NC

∫ 120◦

0
(0.25 + cos θ1 + cos2 θ1)dθ1 − (F − NC)

x

∫ 60◦

0
(cos2 θ2 − cos θ2 + 0.25)dθ2 = 0

which, when expanded becomes

NC

∫ 120◦

0

(
0.75 + cos θ1 + cos 2θ1

2

)
dθ1 − (F − NC)

x

×
∫ 60◦

0

(
cos 2θ2

2
− cos θ2 + 0.75

)
dθ2 = 0

Hence

NC

[
0.75θ1 + sin θ1 + sin 2θ1

4

]120◦

0
− (F − NC)

x

[
sin 2θ2

4
− sin θ2 + 0.75θ2

]60◦

0
= 0

from which

2.22NC − 0.136
(F − NC)

x
= 0 (xi)

The maximum bending moment in ADB is equal to half the maximum bending
moment in ACB. Thus

MD = 1
2 MC

Then, from Eqs (vii) and (iii)

0.5NDr = 0.75NCr

so that

0.5(F − NC) = 0.75NC

i.e.

F − NC = 1.5NC
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Substituting for F − NC in Eq. (xi)

2.22NC − 0.136 × 1.5NC

x
= 0

whence

x = 0.092

S.5.16

From symmetry the shear force in the tank wall at the lowest point is zero. Let the
normal force and bending moment at this point be NO and MO, respectively as shown
in Fig. S.5.16.

O

θ
h

N

Mp
S

φ

P
2

MO

NO

Fig. S.5.16

The total complementary energy of the half-tank is, from Eq. (5.12)

C =
∫

L

∫ M

0
dθ dM − P

2
�P

where �P is the vertical displacement at the point of application of P. Since the rotation
and translation at O are zero from symmetry then, from the principle of the stationary
value of the total complementary energy

∂C

∂MO
=
∫

L

M

EI

∂M

∂MO
dz = 0 (i)

and
∂C

∂NO
=
∫

L

M

EI

∂M

∂NO
dz = 0 (ii)
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At any point in the tank wall

M = MO + NO(r − r cos θ) −
∫ θ

0
pr2 sin (θ − φ)dφ (iii)

For unit length of tank

p = πr2ρ

where ρ is the density of the fuel.
At the position θ,

p = ρh = ρ(r + r cos φ)

Hence

p = P

πr
(1 + cos φ)

and the last term in Eq. (iii) becomes
∫ θ

0

Pr

π
(1 + cos φ) sin(θ − φ)dφ = Pr

π

∫ θ

0
(1 + cos φ)(sin θ cos φ − cos θ sin φ)dφ

Expanding the expression on the right-hand side gives

Pr

π

∫ θ

0
(sin θ cos φ − cos θ sin φ + sin θ cos2 φ − cos θ sin φ cos φ)dφ

= Pr

π

(
1 + θ

2
sin θ − cos θ

)

Hence Eq. (iii) becomes

M = MO + NOr(1 − cos θ) − Pr

π

(
1 + θ

2
sin θ − cos θ

)
(iv)

so that
∂M

∂MO
= 1 and

∂M

∂NO
= r(1 − cos θ)

Substituting for M and ∂M/∂MO in Eq. (i) and noting that EI = constant,
∫ π

0

[
MO + NOr(1 − cos θ) − Pr

π

(
1 + θ

2
sin θ − cos θ

)]
dθ = 0 (v)

from which

MO + NOr − 3Pr

2π
= 0 (vi)

Now substituting for M and ∂M/∂NO in Eq. (ii)
∫ π

0

[
MO + NOr(1 − cos θ) − Pr

π

(
1 + θ

2
sin θ − cos θ

)]
r(1 − cos θ)dθ = 0
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The first part of this integral is identical to that in Eq. (v) and is therefore zero. The
remaining integral is then

∫ π

0

[
MO + NOr(1 − cos θ) − Pr

π

(
1 + θ

2
sin θ − cos θ

)]
cos θ dθ = 0

which gives

NO

2
− 5

8

Pr

π
= 0

Hence

NO = 0.398P

and from Eq. (vi)

MO = 0.080Pr

Substituting these values in Eq. (iv)

M = Pr(0.160 − 0.080 cos θ − 0.159θ sin θ)

S.5.17

The internal force systems at A and B are shown in Fig. S.5.17; from symmetry the
shear forces at these points are zero as are the translations and rotations. It follows that
the total complementary energy of the half-frame is, from Eq. (5.12)

C =
∫

L

∫ M

0
dθ dM

A

B
C

a

z

θ

NA

NB

MB

MA

p0

Fig. S.5.17

From the principle of the stationary value of the total complementary energy

∂C

∂MB
=
∫

L

M

EI

∂M

∂MB
dz = 0 (i)
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and
∂C

∂NB
=
∫

L

M

EI

∂M

∂NB
dz = 0 (ii)

In BC

M = MB + p0z2

2
(iii)

so that
∂M

∂MB
= 1

∂M

∂NB
= 0

In CA

M = MB − NBa sin θ + p0a
(

a cos θ − a

2

)
+ p0

(a sin θ)2

2
+ p0

2
(a − a cos θ)2

which simplifies to

M = MB − NBa sin θ + p0a2

2
(iv)

Hence
∂M

∂MB
= 1

∂M

∂NB
= −a sin θ

Substituting for M and ∂M/∂MB in Eq. (i)

∫ a

0

1

2EI

(
MB + p0z2

2

)
dz +

∫ π/2

0

1

EI

(
MB − NBa sin θ + p0a2

2

)
a dθ = 0

i.e.

1

2

[
MBz + p0z3

6

]a

0
+ a

[
MBθ + NBa cos θ + p0a2

2

]π/2

0
= 0

which simplifies to

2.071MB − NBa + 0.869p0a2 = 0

Thus

MB − 0.483NBa + 0.420p0a2 = 0 (v)

Now substituting for M and ∂M/∂NB in Eq. (ii)

∫ π/2

0

1

EI

(
MB − NBa sin θ + p0a2

2

)
(−a sin θ)a dθ = 0

or
∫ π/2

0

(
MB sin θ − NBa sin2 θ + p0a2

2
sin θ

)
dθ = 0
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which gives

MB − 0.785NBa + 0.5p0a2 = 0 (vi)

Subtracting Eq. (vi) from Eq. (v)

0.302NBa − 0.08p0a2 = 0

so that

NB = 0.265p0a

Substituting for NB in Eq. (v) gives

MB = −0.292p0a2

Therefore, from Eq. (iii)

MC = MB + p0a2

2
= −0.292p0a2 + p0a2

2

i.e.

MC = 0.208p0a2

and from Eq. (iv)

MA = −0.292p0a2 − 0.265p0a2 + p0a2

2
i.e.

MA = −0.057p0a2

Also, from Eq. (iii)

MBC = −0.292p0a2 + p0

2
z2 (vii)

At a point of contraflexure MBC = 0. Thus, from Eq. (vii), a point of contraflexure
occurs in BC when z2 = 0.584a2, i.e. when z = 0.764a. Also, from Eq. (iv), MCA = 0
when sin θ = 0.208/0.265 = 0.785, i.e. when θ = 51.7◦.

S.5.18

Consider the half-frame shown in Fig. S.5.18(a). On the plane of antisymmetry through
the points 7, 8 and 9 only shear forces S7, S8 and S9 are present. Thus from the horizontal
equilibrium of the frame

S7 + S8 + S9 − 6aq = 0 (i)
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Fig. S.5.18(a)

Also, from the overall equilibrium of the complete frame and taking moments about
the corner 6

2aq6a + 6aq2a − 2P3a = 0

which gives

q = P/4a

The total complementary energy of the half-frame is, from Eq. (5.12)

C =
∫

L

∫ M

0
dθ dM − P�5 − P�6 = 0

Noting that the horizontal displacements at 7, 8 and 9 are zero from antisymmetry, then

∂C

∂S7
=
∫

L

M

EI

∂M

∂S7
dz = 0 (ii)

and

∂C

∂S8
=
∫

L

M

EI

∂M

∂S8
dz = 0 (iii)

In 74

M = S7z1 and ∂M/∂S7 = z1 ∂M/∂S8 = 0

In 45

M = S7a + qaz2 and ∂M/∂S7 = a ∂M/∂S8 = 0

In 85

M = S8z3 and ∂M/∂S7 = 0 ∂M/∂S8 = z3

In 56

M = S7a + S8a + qa(3a + z4) − Pz4 and ∂M/∂S7 = a ∂M/∂S8 = a
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In 69

M = S7(a − z5) + S8(a − z5) + 6a2q − 3Pa + 6aqz5

and

∂M/∂S7 = (a − z5) ∂M/∂S8 = (a − z5)

Substituting the relevant expressions in Eq. (ii) gives

∫ a

0
S7z2

1 dz1 +
∫ 3a

0
(S7a2 + qa2z2)dz2 +

∫ 3a

0
[S7a + S8a + qa(3a + z4) − Pz4]a dz4

+
∫ a

0
[S7(a − z5) + S8(a − z5) + 6a2q − 3Pa + 6aqz5](a − z5)dz5 = 0 (iv)

from which

20S7 + 10S8 + 66aq − 18P = 0 (v)

Now substituting for M and ∂M/∂S8 in Eq. (iii)

∫ a

0
S8z2

3 dz3 +
∫ 3a

0
[S7a + S8a + qa(3a + z4) − Pz4]a dz4

+
∫ a

0
[S7(a − z5) + S8(a − z5) + 6a2q − 3Pa + 6aqz5](a − z5)dz5 = 0 (vi)

The last two integrals in Eq. (vi) are identical to the last two integrals in Eq. (iv). Thus,
Eq. (vi) becomes

10S7 + 11S8 + 52.5aq − 18P = 0 (vii)

The simultaneous solution of Eqs (v) and (vii) gives

S8 = −39

12
aq + 3

2
P

whence, since q = P/4a

S8 = 0.69P

Substituting for S8 in either of Eqs (v) or (vii) gives

S7 = −0.27P

Then, from Eq. (i)

S9 = 1.08P

The bending moment diagram is shown in Fig. S.5.18(b) in which the bending
moments are drawn on the tension side of each member.
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Fig. S.5.18(b)

S.5.19

From the overall equilibrium of the complete frame

∫ 2πr

0
qr ds = T

which gives

2πr2q = T

i.e.

q = T

2πr2 (i)

3

4 2

45°

x

q 1

α

θ

S1

S2

S3

Fig. S.5.19
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Considering the half frame shown in Fig. S.5.19 there are only internal shear forces
on the vertical plane of antisymmetry. From the vertical equilibrium of the half-frame

S1 + S2 + S3 +
∫ π

0
q sin αr dα = 0

Substituting for q from Eq. (i) and integrating

S1 + S2 + S3 + T

2πr
[−cos α]π0 = 0

which gives

S1 + S2 + S3 = − T

πr
(ii)

The vertical displacements at the points 1, 2 and 3 are zero from antisymmetry so
that, from Eq. (5.12), the total complementary energy of the half-frame is given by

C =
∫

L

∫ M

0
dθ dM

Then, from the principle of the stationary value of the total complementary energy

∂C

∂S1
=
∫

L

M

EI

∂M

∂S1
dz (iii)

and

∂C

∂S2
=
∫

L

M

EI

∂M

∂S2
dz (iv)

In the wall 14

M = S1r sin θ −
∫ θ

0
q[r − r cos (θ − α)]r dα

i.e.

M = S1r sin θ − T

2π
[α − sin (α − θ)]θ0

which gives

M = S1r sin θ − T

2π
(θ − sin θ) (v)

whence

∂M

∂S1
= r sin θ

∂M

∂S2
= 0

In the wall 24

M = S2x (vi)
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and
∂M

∂S1
= 0

∂M

∂S2
= x

In the wall 43

M = S1r sin θ − T

2π
(θ − sin θ) + S2r sin θ (vii)

and
∂M

∂S1
= r sin θ

∂M

∂S2
= r sin θ

Substituting for M and ∂M/∂S1 in Eq. (iii)

∫ 3π/4

0

[
S1r sin θ − T

2π
(θ − sin θ)

]
r sin θr dθ

+
∫ π

3π/4

[
S1r sin θ − T

2π
(θ − sin θ) + S2r sin θ

]
r sin θ r dθ = 0

which simplifies to

∫ π

0

[
S1r sin θ − T

2π
(θ − sin θ)

]
r2 sin θ dθ +

∫ π

3π/4
S2r3 sin θ dθ = 0

Integrating and simplifying gives

S1r − 0.16T + 0.09S2r = 0 (viii)

Now substituting for M and ∂M/∂S2 in Eq. (iv)

∫ π

3π/4

[
S1r sin θ − T

2π
(θ − sin θ) + S2r sin θ

]
r sin θ r dθ +

∫ r/
√

2

0
S2x2 dx = 0

Integrating and simplifying gives

S1r − 0.69T + 1.83S2r = 0 (ix)

Subtracting Eq. (ix) from Eq. (viii)

0.53T − 1.74S2r = 0

whence

S2 = 0.30T

r

From Eq. (viii)

S1 = 0.13T

r
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and from Eq. (ii)

S3 = −0.75T

r

Hence, from Eqs (v) to (vii)

M14 = T (0.29 sin θ − 0.16θ)

M24 = 0.30Tx

r
M43 = T (0.59 sin θ − 0.16θ)

S.5.20

Initially the vertical reaction at C, RC, must be found. From Eq. (5.12) the total
complementary energy of the member is given by

C =
∫

L

∫ M

0
dθ dM − RC�C − F�B

From the principle of the stationary value of the total complementary energy and since
�C = 0

∂C

∂RC
=
∫

L

M

EI

∂M

∂RC
ds = 0 (i)

Referring to Fig. S.5.20

D C

B F

r

r

z

θ

RC

Fig. S.5.20

In BC

M = Fr sin θ and
∂M

∂RC
= 0

In CD

M = Fr − RCz and
∂M

∂RC
= −z
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Substituting these expressions in Eq. (i) gives
∫ r

0
(Fr − RCz)(−z)dz = 0

from which

RC = 1.5F

Note that Eq. (i) does not include the effects of shear and axial force. If these had
been included the value of RC would be 1.4F; the above is therefore a reasonable
approximation. Also, from Eq. (1.50), G = 3E/8.

The unit load method may now be used to complete the solution. Thus, from the first
of Eqs (5.21), Eq. (5.20) and Eq. (20.18)

δB,H =
∫

L

M0M1

EI
ds +

∫

L

F0F1

AE
ds +

∫

L

S0S1

GA′ ds (ii)

In BC

M0 = Fr sin θ M1 = r sin θ

F0 = F sin θ F1 = sin θ

S0 = F cos θ S1 = cos θ

In CD

M0 = F(r − 1.5z) M1 = (r − 1.5z)

F0 = F F1 = 1

S0 = 1.5F S1 = 1.5

Substituting these expressions in Eq. (ii) gives

δB,H =
∫ π/2

0

Fr3 sin2 θ

EI
dθ +

∫ π/2

0

Fr sin2 θ

AE
dθ +

∫ π/2

0

Fr cos2 θ

GA′ dθ

+
∫ r

0

F

EI
(r − 1.5z)2dz +

∫ r

0

F

AE
dz +

∫ r

0

2.25F

GA′ dz

or

δB.H =400Fr

AE

∫ π/2

0

1

2
(1 − cos 2θ)dθ + Fr

AE

∫ π/2

0

1

2
(1 − cos 2θ)dθ

+ 32Fr

3AE

∫ π/2

0

1

2
(1 + cos 2θ)dθ + 400F

Ar2E

∫ r

0
(r2 − 3rz + 2.25z2)dz

+ F

AE

∫ r

0
dz + 24F

AE

∫ r

0
dz

from which

δB,H = 448.3Fr

AE
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S.5.21

From Clerk–Maxwell’s reciprocal theorem the deflection at A due to W at B is equal
to the deflection at B due to W at A, i.e. δ2.

What is now required is the deflection at B due to W at B.
Since the deflection at A with W at A and the spring removed is δ3, the load in the

spring at A with W at B is (δ2/δ3)W which must equal the load in the spring at B with
W at B. Thus, the resultant load at B with W at B is

W −
(

δ2

δ3

)
W = W

(
1 − δ2

δ3

)
(i)

Now the load W at A with the spring in place produces a deflection of δ1 at A. Thus,
the resultant load at A is (δ1/δ3)W so that, if the load in the spring at A with W at A is
F, then W − F = (δ1/δ3)W , i.e.

F = W

(
1 − δ1

δ3

)
(ii)

This then is the load at B with W at A and it produces a deflection δ2. Therefore, from
Eqs (i) and (ii) the deflection at B due to W at B is

W

(
1 − δ2

δ3

)

W

(
1 − δ1

δ3

)δ2

Thus the extension of the spring with W at B is

(
1 − δ2

δ3

)

(
1 − δ1

δ3

)δ2 − δ2

i.e.

δ2

(
δ1 − δ2

δ3 − δ1

)

S.5.22

Referring to Fig. S.5.22
RA = RB = 1000 N from symmetry.
The slope of the beam atA and B may be obtained from the second of Eqs (16.32), i.e.

v′′ = − M

EI
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360 mm 720 mm 720 mm 600 mm

2000 N

C A F B D

z

RA RB

Fig. S.5.22

where, for the half-span AF, M = RAz = 1000z. Thus

v′′ = −1000

EI
z

and

v′ = −500

EI
z2 + C1

When z = 720 mm, v′ = 0 from symmetry and hence C1 = 2.59 × 108/EI. Hence

v′ = 1

EI
(−500z2 + 2.59 × 108)

Thus v′ (at A) = 0.011 rads = v′ (at B). The deflection at C is then = 360 × 0.011 =
3.96 mm and the deflection at D = 600 × 0.011 = 6.6 mm.

From the reciprocal theorem the deflection at F due to a load of 3000 N at
C = 3.96 × 3000/2000 = 5.94 mm and the deflection at F due to a load of 3000 N at
D = 6.6 × 3000/2000 = 9.9 mm. Therefore the total deflection at F due to loads of
3000 N acting simultaneously at C and D is 5.94 + 9.9 = 15.84 mm.

S.5.23

Since the frame is symmetrical about a vertical plane through its centre only half need
be considered. Also, due to symmetry the frame will act as though fixed at C (Fig.
S.5.23).

If the frame were unsupported at B the horizontal displacement at B, �B,T, due to the
temperature rise may be obtained using Eq. (5.32) in which, due to a unit load acting
horizontally at B, M1 = 1 × (r sin 30◦ + r sin θ). Hence

�B,T =
∫ π/2

−π/6
(0.5r + r sin θ)

2αT

d
r dθ

i.e.

�B,T = 2αTr2

d
[0.5θ − cos θ]π/2

−π/6
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B

C

I

30°

θ
r

HB

Fig. S.5.23

which gives

�B,T = 3.83αTr2

d
(to the right) (i)

Suppose that in the actual frame the horizontal reaction at B is HB. Since B is not
displaced, the ‘displacement’�B,H produced by HB must be equal and opposite to �B,T
in Eq. (i). Then, from the first of Eqs (5.21) and noting that M0 = −HB(0.5r + r sin θ)

�B,H = − 1

EI

∫ π/2

−π/6
HB(0.5r + r sin θ)2r dθ

i.e.

�B,H = −HBr3

EI

∫ π/2

−π/6
(0.25 + sin θ + sin2 θ)dθ

Hence

�B,H = −HBr3

EI

[
0.75θ − cos θ − sin 2θ

4

]π/2

−π/6

so that

�B,H = −2.22HBr3

EI
(to the left) (ii)

Then, since

�B,H + �B,T = 0

−2.22HBr3

EI
+ 3.83αTr2

d
= 0

from which

HB = 1.73EITα

d
(iii)
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The maximum bending moment in the frame will occur at C and is given by

M(max) = HB × 1.5r

Then, from symmetrical bending theory the direct stress through the depth of the frame
section is given by

σ = My

I
(see Eqs (16.21))

and

σmax = M(max)y(max)

I
i.e.

σmax = HB × 1.5r × 0.5d

I
or, substituting for HB from Eq. (iii)

σmax = 1.30ETα

S.5.24

The solution is similar to that for P.5.23 in that the horizontal displacement of B due to
the temperature gradient is equal and opposite in direction to the ‘displacement’ pro-
duced by the horizontal reaction at B, HB. Again only half the frame need be considered
from symmetry.

Referring to Fig. S.5.24

M1 = r cos ψ in BC and Cd

Fig. S.5.24

Then, from Eq. (5.32)

�B,T =
∫ π/4

0
(r cos ψ)α

θ0 cos 2ψ

h
r dψ +

∫ π/2

π/4
(r cos ψ)α

(
0

h

)
r dψ
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i.e.

�B,T = r2αθ0

h

∫ π/4

0
cos ψ cos 2ψ dψ

or

�B,T = r2αθ0

h

∫ π/4

0
(cos ψ − 2 sin2 ψ cos ψ)dψ

Hence

�B,T = r2αθ0

h

[
sin ψ − 2

3
sin3 ψ

]π/4

0

which gives

�B,T = 0.47r2αθ0

h
(to the right) (i)

From the first of Eqs (5.21) in which M0 = −HBr cos ψ

�B,H =
∫ π/2

0
−HBr cos ψ r cos ψ

EI
r dψ

i.e.

�B,H = −HBr3

EI

∫ π/2

0
cos2 ψ dψ

or

�B,H = −HBr3

EI

∫ π/2

0

1

2
(1 + cos 2ψ)dψ

whence

�B,H = −0.79HBr3

EI
(to the left) (ii)

Then, since �B,H + �B,T = 0, from Eqs (i) and (ii)

−0.79HBr3

EI
+ 0.47r2αθ0

h
= 0

from which

HB = 0.59EIαθ0

rh

Then

M = HBr cos ψ

so that

M = 0.59EIαθ0 cos ψ

h
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