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Then substituting in Eq. (4.20)

W L/4 L
Vp = —— [ / 3L? —x)dx+ | (Lx — xP)(L — x)dx}
8EI | Jo L/4

which gives

_ 57wL?
B = 6144E1

For the deflection at the mid-span point the bending moment at any section due to the
actual loading is identical to the expression above. With the unit load applied at C

(L—x)

M1=§inAc and M, = in CD

Substituting in Eq. (4.20)
W L2 L
Ve = — U (Le* —x)dx + | (Lx —x*)(L — x)dx}
4EI | Jo L2

from which

_ SwL*
T 384EI

e
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S.5.1

This problem is most readily solved by the application of the unit load method.
Therefore, from Eq. (5.20), the vertical deflection of C is given by

FoFivL :
Ave=)" B @

and the horizontal deflection by

FoFuL ..
Auc=) —= (ii)

in which F v and F y are the forces in a member due to a unit load positioned at C and
acting vertically downwards and horizontally to the right, in turn, respectively. Further,
the value of L/AE (= 1/20 mm/N) for each member is given and may be omitted from
the initial calculation. All member forces (see Table S.5.1) are found using the method
of joints which is described in textbooks on structural analysis, for example, Structural
and Stress Analysis by T. H. G. Megson (Elsevier, 2005).
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Table S.5.1

Member Fo(N) Fiv Fiu FoFy v FoF1u
DC 16.67 1.67 0 27.84 0

BC —13.33 —1.33 1.0 17.73 —13.33
ED 13.33 1.33 0 17.73 0

DB —10.0 —-1.0 0 10.0 0

AB —16.67 —1.67 0.8 27.84 —13.34
EB 0 0 0.6 0 0

> =101.14 > =-26.67

Note that the loads F v are obtained most easily by dividing the loads F by a factor of
10. Then, from Eq. (i)

1
Ayc =101.4 x 0= 5.07 mm
which is positive and therefore in the same direction as the unit vertical load. Also from
Eq. (ii)
1
AH,C = —26.67 x % = —1.33mm

which is negative and therefore to the left.
The actual deflection, A, is then given by

A= /Ay + Afc =5.24mm

which is downwards and at an angle of tan~1(1.33/5.07) = 14.7° to the left of vertical.

5.5.2

Figure S.5.2 shows a plan view of the plate. Suppose that the point of application of
the load is at D, a distance x from each side of the plate. The deflection of D may be
found using the unit load method so that, from Eq. (5.20), the vertical deflection of D
is given by

FoF1L .
Ap = Z T 6]

Initially, therefore, the forces, Fy, must be calculated. Suppose that the forces in the
wires at A, B and C due to the actual load are Fy s, Fop and Fy c, respectively. Then
resolving vertically

Foa + Fop + Foc =100 (ii)
Taking moments about the edges BC, AC and AB in turn gives
Foa x4 =100x (iii)
Fop x4 x sinA = 100x
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Fig. S.5.2
i.e.
Fop x4 x 0.6 =100x @iv)
and
Foc x 3 =100x (v)

Thus, from Egs (iii) to (v)
4Fo A =2.4Fy = 3FoC
so that
Foa =0.6Fys Foc =0.8FyB
Substituting in Eq. (ii) gives
Fop =41.7N
Hence
Foao=250N and Foc =334N

Now apply a unit load at D in the direction of the 100 N load. Then
Fio=025 Fip=0417 Fic=0.334
Substituting for Fo A, F1 A, etc. in Eq. (i)

1440

- 25 x 0.25 4+ 41.7 x 0.417 + 33.4 x 0.334
(/8 x 12 % 196000 = < 022 +41.7 % +33.4%0.334

Ap

1.€.

Ap = 0.33 mm

39



40

Solutions Manual

$.5.3

Suppose that joints 2 and 7 have horizontal and vertical components of displacement
u, v2, u7, and vy, respectively as shown in Fig. S.5.3. The displaced position of the
member 27 is then 2'7’. The angle « which the member 27 makes with the vertical is
then given by

1 Uy —uz
3a+v7 — vy

o = tan

Fig. S.5.3
which, since « is small and v;7 and v, are small compared with 3a, may be written as

U7 — up
3a

®

o=

The horizontal components uy and #7 may be found using the unit load method,
Eq. (5.20). Thus

F0F1 oL F0F1 7L ..
I @

where F12 and F1 7 are the forces in the members of the framework due to unit loads
applied horizontally, in turn, at joints 2 and 7, respectively. The solution is completed
in tabular form (Table S.5.3). Substituting the summation terms in Eqs (ii) gives

192Pa _ 570Pa
3AE 7T 9AE

uy = —

Now substituting for u, and u7 in Eq. (i)

_382P
"~ 9AE
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Table S.5.3
Member Length Fo Fip Fi7 FoF,L FoFy 7L
27 3a 3P 0 0 0 0
87 Sa 5P/3 0 5/3 0 125Pa/9
67 4a —4P/3 0 —4/3 0 64Pa/9
21 4a 4p —4/3 0 —64Pa/3 0
23 Sa 0 5/3 0 0 0
26 Sa —5P 0 0 0 0
38 3a 0 0 0 0 0
58 Sa 0 0 0 0 0
98 Sa 5P/3 0 5/3 0 125Pa/9
68 3a 0 0 0 0 0
16 3a 3pP 0 0 0 0
56 4a —16P/3 0 —4/3 0 256Pa/9
13 3a 0 0 0 0 0
43 Sa 0 5/3 0 0 0
93 34a 0 0 0 0 0
03 S5a 0 0 0 0 0
15 Sa —5P 0 0 0 0
10 4a 8P —4/3 0 —128Pa/3 0
> =—192Pa/3 > =570Pa/9
S.5.4

(a) The beam is shown in Fig. S.5.4. The principle of the stationary value of the total
complementary energy may be used to determine the deflection at C. From Eq. (5.13)

ac= [aM i
c= /L o ()
P
A B cl D F
PA | | \ APp
2 —>z EVz2 |2
| g
L/4 | L/4 | L/4 | L/4

Fig. 5.5.4

in which, since the beam is linearly elastic, d8=(M/EIl)dz. Also the beam is
symmetrical about its mid-span so that Eq. (i) may be written

L2 Mde
Ac=2] ZZZ i
¢ /0 EIdP " (@)

In AC
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so that
dM  z
P 2
Eq. (ii) then becomes
L/4  py2 L/2 p2
Ac=2 / ——dz +/ —dz (iii)
0 4 <ﬂ > L4 4EI
2

Integrating Eq. (iii) and substituting the limits gives

_ 3pL’
"~ 128EI

C

(b) When the beam is encastré at A and F, fixed end moments M4 and M are induced.
From symmetry Ma = Mg. The total complementary energy of the beam is, from

Eq. (4.18)
M
C=// dédM — PAc
LJo

from which

aC oM

—_— = / dd—— =0 @iv)

oM p L OMp

from the principle of the stationary value. From symmetry the reactions at A and F are
each P/2. Hence

P
M = EZ — My (assuming My is a hogging moment)

Then
oM

My

Thus, from Eq. (iv)

a9C _Z/L/ZM oM
Ma " Jo

e /p Lizp (p
o=2[/0 e <§Z—MA> (—1)dz+/L/4 E(Ez—MA) (—l)dz}

from which

or

_5PL
AT
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S.5.5

The unit load method, i.e. the first of Eqs (5.21), may be used to obtain a solution.

Thus

MoM;
EI

in which the M| moments are due to a unit load applied horizontally at C. Then, referring
to Fig. S.5.5, in CB

dz ®

dcH =

My=W(R —Rcosf) M;=1xz

and in BA
My=W2R M;=1xz
| R
TB __ .6y \c
z w
4R
-y A
Y e
Fig. S.5.5

Hence, substituting these expressions in Eq. (i) and noting that in CB ds = R df and in
BAds=dz

1 T 4R
ScH=— / —WR3(1 — cos ) sin9d9+/ 2WRzdz
’ EI 0 0
i.e.
1 3 cos207" 2-4R
ScH = I {—WR |:—cose+ 2 i|0 + WR[z"],
so that
5 14WR3 (i
= 11
CH= g

The second moment of area of the cross-section of the post is given by

1= 6”—4(1004 — 94%) = 1.076 x 10% mm*
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Substituting the value of I and the given values of W and R in Eq. (ii) gives

dcH = 53.3mm

S.5.6

Either of the principles of the stationary values of the total complementary energy or
the total potential energy may be used to solve this problem.
From Eq. (5.12) the total complementary energy of the system is

M
:/f deM—/wvdz )
LJO L

in which w is the load intensity at any point in the beam and v the vertical displacement.
Equation (i) may be written in the form

M
=// —dsz—/wvdz
LJo EI L

since, from symmetrical bending theory

8z M
8 = — = —8z
R EI

/ﬁdz—/wvdz (i)

Alternatively, the total potential energy of the system is the sum of the strain energy
due to bending of the beam plus the potential energy V, of the applied load. The strain
energy U, due to bending in a beam may be shown to be given by

M
/ 2EIC

TPE=U+V = /ﬁdz—/vadz (ii1)

Hence

Hence

Eqgs (ii) and (iii) are clearly identical.
Now, from symmetrical bending theory

M_ d?v

El ~ d2

Therefore Eq. (ii) (or (iii)) may be rewritten

LEL (v’ L
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Now
74 . 27z 2wz z
v = aj sin — + ap sin — w=—(1——)
L L L 2L
so that
d2v 2 oz 4% | 2ng
d_22 —dai 3 s T azﬁ s T
Substituting in Eq. (iv)
El7* (L 7%  =nz 472 2mz\°
ZTE ( L2 s1n——l—a2 2 smT> dz
2wo [ b 94 2nz 72 Tz 2 . 2nz
A ; (alzsm T + apzsin T - ali sin T QZZ sin T) dz

which, on expanding, gives

Elr* /L 22 ™ g T2 in 27 4 lea2sin? 2\ d
= — sin® — ajap sin — sin — sin® —
ST A R e A ) @)™
_Zﬂ g a snlﬂ-i—a s1n2i—a is E_aisn‘l% dz (v)
L Jo \WO T TSR T T T )

Eq. (v) may be integrated by a combination of direct integration and integration by

parts and gives
Eln* (alL 8 . 1 N 4 N arwolL
= arL | —aiw -4+ —
24\ 2 s\ 7 28 2

From the principle of the stationary value of the total complementary energy

(vi)

aC

aC

— =0 and — =0
da day
From Eq. (vi)
aC EIn* W()L
— =a|— — —— 4
day YR 7O )
Hence
2woL
4
a = (= +4)
Also
aC 8EIT*  woL
_ = — az —_
day L3 2
whence
woL*
ap =
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The deflected shape of the beam is then

4
wol* [ 2, . Tz 1 27z
“=7[?(7’ TS T e T

At mid-span when z=L/2

L4
V=0, 00918WO

S.5.7

This problem is solved in a similar manner to P.5.6. Thus Eq. (iv) of S.5.6 is directly

applicable, i.e.
EI (v’
C=| —|-—) dz—- d i
/L2<dz2> Z /éwvz 1)

inz ..
v = Z a; sin — (i1)

in which

and w may be expressed as a function of z in the form w = 4woz(L — z)/L> which
satisfies the boundary conditions of w=0atz=0and z=L and w=wyg at z=L/2.
From Eq. (ii)

Substituting in Eq. (i)

El (1 & Sitrh 2 inz 4wy [F > . imz
C=— Zal 7 dz — ?/0 z(L —z);ai sin sz (iii)

Now

L 5 iTm2 Ly i2mz z L . 27z L L
sin“ —dz = —{1—-cos dz=|=- — —sin = —
0 L 0 2 L 2 2w L 0 2

L3 213
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Thus Eq. (iii) becomes
E1a2 4 4w0 L’ 213 )
C = Z Za, |:——cosm+ ?cosm— n3(cosm— 1)}

or

EIa2 ot 4w0 2a;L3
C= 1 —cosim iv
; Z 5 ( i) (iv)

The value of (1 — cos im) is zero when i is even and 2 when i is odd. Therefore Eq. (iv)
may be written
EIa2 AL 16w0a,-L
4L3 IRF
From the principle of the stationary value of the total complementary energy

i is odd

aC Ela,4 4 16wyl

- _ =0
da;  2L3 33
Hence
_ 32woL?
"TOELAT
Then

00 4 .
32woL inz
v = ——=—sin— iisodd
Zl: Eli'n’? L
At the mid-span point where z = L/2 and using the first term only in the expression for v

W0L4
94.4E1

Um.s. =

$.5.8

The lengths of the members which are not given are:
Lin=9v2a Liz=15a Lig=13a Ly =5a

The force in the member 14 due to the temperature change is compressive and equal to
0.7A. Also the change in length, A4, of the member 14 due to a temperature change 7' is
LisoT = 13a x 2.4 x 10~°T. This must also be equal to the change in length produced
by the force in the member corresponding to the temperature rise. Let this force be R.

From the unit load method, Eq. (5.20)

FoFL .
Ag = Z— 6Y)
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In this case, since R and the unit load are applied at the same points, in the same
direction and no other loads are applied when only the temperature change is being
considered, Fop = RF. Equation (i) may then be written

FIL
As =R Z A‘—E (ii)
The method of joints may be used to determine the F| forces in the members. Thus
ool Fa_T3 o _lev2o . -20 28
14 = 13 = 13 12 = 13 24 = 13 23 = 13

Eq. (ii) then becomes

A _p| Px13a 352 x15a  (16V2)° x9v2a 20 x 5a N 28? x 3a
= AE 132AE 1322AE 132AE ' 132AE
or
Ra 3 2 2 2 2
At = (13 4357 5 154167 x 184207 x 5+ 287 x 3)
i.e.
_ 29532aR
T T1324E
Then
295324(0.7A
130 x 24 x 10-67 = 22224074)
132AE
so that
T =56
S.5.9

Referring to Figs P.5.9(a), (b) and S.5.9 it can be seen that the members 12, 24 and 23
remain unloaded until P has moved through a horizontal distance 0.25 cosa, i.e. a
distance of 0.25 x 600/750 = 0.2 mm. Therefore, until P has moved through a hori-
zontal distance of 0.2 mm P is equilibrated solely by the forces in the members 13,
34 and 41 which therefore form a triangular framework. The method of solution is to
find the value of P which causes a horizontal displacement of 0.2 mm of joint 1 in this
framework.

Using the unit load method, i.e. Eq. (5.20) and solving in tabular form (see
Table S.5.9(a)).

Then

1425.0P

02 = —F7——
300 x 70000
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1 2
P &
o
450 mm
4 3
T
600 mm
Fig. S.5.9
Table S.5.9(a)
Member Length (mm) Fy F FoF|L
13 750 1.25P 1.25 1171.9P
14 450 —0.75P —0.75 253.1P
43 600 0 0 0
> =1425.0P
from which
P =2947N

The corresponding forces in the members 13, 14 and 43 are then
Fi13 =3683.8N Fi4 = —22103N Fy3=0

When P =10000N additional forces will be generated in these members corre-
sponding to a load of P’ =10000 — 2947 = 7053 N. Also P’ will now produce forces in
the remaining members 12, 24 and 23 of the frame. The solution is now completed in a
similar manner to that for the frame shown in Fig. 5.8 using Eq. (5.16). Suppose that R is
the force in the member 24; the solution is continued in Table S.5.9(b). From Eq. (5.16)

2592R + 1140P" =0

Table S.5.9(b)

Member Length (mm) F JF/0R  FL(0F/0R)

12 600 —0.8R —-0.8 384R

23 450 —0.6R —-0.6 162R

34 600 —0.8R -0.8 384R

41 450 —(0.6R+0.75P") —0.6 162R +202.5P’
13 750 R+1.25P 1.0 750R +937.5P'
24 750 R 1.0 750R

> =2592R + 1140P'
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so that
R— 1140 x 7053
N 2592
i.e.
R = -3102N
Then

Fip = —0.8 x (—3102) = 2481.6 N (tension)

Fr3 = —0.6 x (—=3102) = 1861.2 N (tension)

F34 = —0.8 x (—3102) = 2481.6 N (tension)

Fq1 = —0.6 x (—=3102) — 0.75 x 7053 — 2210.3 = —5638.9 N (compression)
F13 = —-3102 4+ 1.25 x 7053 + 3683.8 = 9398.1 N (tension)

F>4 = —3102.0 N (compression)

$.5.10

Referring to Fig. S.5.10(a) the vertical reactions at A and D are found from statical
equilibrium. Then, taking moments about D

Ra3l+ w3l =0
ie.
Rp = —— (downwards)
Hence
wl
Rp = 5 (upwards)
Also for horizontal equilibrium

wl )
Ha + 5= Hp 1)

The total complementary energy of the frame is, from Eq. (5.12)

M [
C:// dedM—HAAA,H—RAAA,V—HDAD,H—RDAD,VJr/w/Adz (ii)
LJO 0

in which AA H, Aav, Apn and Apy are the horizontal and vertical components of
the displacements at A and D, respectively and A is the horizontal displacement of
the member AB at any distance z from A. From the principle of the stationary value
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2EI 2EI

Fig. S.5.10(a)

of the total complementary energy of the frame and selecting Aa n as the required

displacement

M
d0—— — App =0

aC _/
O0Hx J, 0Ha

In this case Aa g =0 so that Eq. (iii) becomes

oM
/ w2 _g
L OHp

or, since d0 = (M /EI)dz

MM
| EIoHA ©
In AB
M= —H wzd oM _
T
In BC
M = Raz — Hyl Wit oM _ I
=Raz—Hal === o
In DC

1
M = —Hpz = — (HA + K) z  from Eq. (i),

(iii)

(iv)

TN
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Substituting these expressions in Eq. (iv) gives

I wz3 213 1 wl wi?
— (—Hu =2 d = |~ Hal = == ) (=Da
/02151( Az )(Z)Z+f0 g\ 2 (=hdz
+/l Uiy ) dmade =0
| 3E A= )u-de=

or
1 l 21/3 l3
—/ (HAZ —I——) f —z+le+— dz
2 Jo 6
1 1 2
+- f HAZ? + ——
2 Jo
from which
29
2HAP + Ewl‘* =0
or
Hx = —29wl1/90
Hence, from Eq. (i)
Hp = 8wl /45

Thus

8w/%/45
7w/i?/45
B c 8w/2/45
7wl2/45
0.173w/? Bending moment is
drawn on the tension
2, side of each member
45
A D

Fig. 5.5.10(b)
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Whenz=0,Mag =0andwhenz =1, Mg = 7wlz/45. Also, dM g /dz =0 for a turning
value, i.e.
AMag _ 29wl 3wz _
dz 90 6l

from which z = +/29/451. Hence M ag(max) = 0.173wl.

The bending moment distributions in BC and CD are linear and Mp = Twi?/45,
Mp =0 and Mc = Hpl = 8wi*/45.

The complete bending moment diagram for the frame is shown in Fig. S.5.10(b).

S.5.11

The bracket is shown in Fig. S.5.11 in which Rc is the vertical reaction at C and Mc is
the moment reaction at C in the vertical plane containing AC.

Fig. 5.5.11

From Eq. (5.12) the total complementary energy of the bracket is given by

M T
=f/ d@dM-f-// d¢dT — McOc — RcAc — PAp
LJO LJO

in which T is the torque in AB producing an angle of twist, ¢, at any section and the
remaining symbols have their usual meaning. Then, from the principle of the stationary
value of the total complementary energy and since c = Ac =0

aC M 8M .
—_— = — ——dz = @)
ORc . EI 8RC 1. GJ ORc
and
aC M oM T oT .
I _ (MM [Ty (i)
oM 1 EI oM¢c 1. GJ OMc

From Fig. S.5.11
Mac =Rczi —Mc Tac=0
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so that
oM ac oM ac 1 0T Ac dTAc 0
= Z = — = =
Re 1 aMc dRc  oMc
Also
Map = —P7 + Rc(z0 —4acosa) + Mc cosa
ie.
16a 4
Mag = —P2+Rc |22 — = + gMc
Hence
Mpg _ 16a Mg _ 4
ke 275 aMc s
Finally
Tag = Rcdasina — Mc sina
1.e.
Trn — 12aR 3M
AB = 5 C 5 C
so that

0T AB _ 12a  0TaB . 3
dRc 5 Mc 5

Substituting these expressions in Eq. (i)

/401(1% Mc)zi d +/Sa ! Pz + R 16a) L 4y
0 EI cz1 C)Z1 411 0 L5EI 22 cl|l2 5 5 C

16a q +/5“ 1 12aR 3M 12ad 0 (i
X - — — |\ —Rc— ¢ — = 111
2775 )% T ) 361 5 €T 57C) T2

Note that for the circular section tube AC the torsion constant J (i.e. the polar second
moment of area) =2 x 1.5/ from the theorem of perpendicular axes.
Integrating Eq. (iii), substituting the limits and noting that G/E = 0.38 gives

55.17Rca — 16.18Mc — 1.11 Pa =0 (@iv)

Now substituting in Eq. (ii) for Mac, 0Mac/0Mc, etc.

/4a1(R Mc)(—1)d +/5a ! Pz +R 16a +4M 4d
0 EI c<1 C 4| 0 1.5EI 22 (ol B4 5 5 C 5 22

% 1 (12a 3 3
— (ZRe — Zmc) (-2 )dzm =0
+/0 3GI< 5 €75 C)( 5) 2 ™
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from which
16.58 Rca — 7. 711 Mc + 6.67Pa =0 (vi)

Solving the simultaneous Eqgs (iv) and (vi) gives

Rc=0.72P

$.5.12

Suppose that R is the tensile force in the member 23, i.e. R =xPy. Then, from Eq. (5.15)

oF; .
Zx R =0 )

in which, for members 12, 23 and 34

7L 7i\" ..
)\.[ZEL[:7 1+ '[_0 (11)

But 7; = F;/A; so that Eq. (ii) may be written

Ai:% 1+ i" (ii1)
AE; Ao

For members 15, 25, 35 and 45 which are linearly elastic

N FiL; (iv)

i=— iv
AE

The solution is continued in Table S.5.12. Summing the final column in Table S.5.12

gives

——[1 4 (x )]+2ﬁRL[1+( X))+ —— 8L (P +2—R>+—16RL—0 v)
fA AE V3AE V3) \BAE
from Eq. (i)

Noting that R = xPy, Eq. (v) simplifies to

1
4x[1 + (ax)"] + 6x[1 + (ax)"] + 8 + % +16x=0

or

16
10x(ox)" + x (10 + —=+ 16) +8=0
V3

from which

o ¥ 435 +0.80=0
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Table S.5.12
Member L,‘ Ai F,' 3Fi/3R A.i )\iaFi/aR
2RL R \" 2RL .
12 2L A/V3 R/V3 1/4/3 E[H(A—m)] m[1+(ouc)]
2v/3RL R \"] 2v3RL .
23 2L//3 A R 1 E [H(/Tm)] E [1 4+ (ax)"]
2RL R \" 2RL .
34 2L A/3 R/V3 1/v/3 E[H(ATO)] m[1+(om)]
(Po + 2R//3)2L AL
15 2L A —Py—2R/N3 —2/3 — Py +2R//3
0 —2R/3 —2//3 " NI /+/3)
4RL SRL
25 2L A/3 —2R/\3 —2//3 —— —
/N3 /3 W3 - NTT
4RL 8RL
35 2L A/3 —2R/\3 —2//3 —— —
/N3 /3 N3 - T
45 2L A —Py—2R/N3 —2//3 72—L(P0+2R/«/§) 47L(P0+2R/ﬁ)
AE V3AE
S.5.13

Suppose that the vertical reaction between the two beams at C is P. Then the force
system acting on the beam AB is as shown in Fig. S.5.13. Taking moments about B

Fig. 5.5.13

SO

that

The total complementary energy of the beam is, from Eq. (5.12)

RaA x9.154+P x6.1—-100x3.05=0

N

l100 kN

A C F
By, —» 2z
L 3.05m | 3.05m L 3.05m

Ra =33.3-0.67P

M
C:// d9dM — PAc — 100Ar =0
LJO
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where Ac and Af are the vertical displacements at C and F, respectively. Then, from
the principle of the stationary value of the total complementary energy of the beam

a9C oM
== [ do=—= — Ac =
ap — J, op

whence, as in previous cases

M oM .
= e @
L
In AC
Mac = Raz = (33.3 — 0.67P)z
so that
oM
AC _ _0.67z
P
In CF
Mcr = Raz + P(z — 3.05) = 33.3z + P(0.33z — 3.05)
from which
oM,
F o 0.33;—3.05
aP
In FB

Mg = Raz 4+ P(z —3.05) — 100(z — 6.1) = —66.7z + 610 + P(0.33z — 3.04)

which gives

0MgB
oP

=0.33z-3.04

Substituting these expressions in Eq. (i)
3.05
EIAc = f (33.3 = 0.67P)z(—0.67z)dz
0

6.1
+ / [33.3z 4+ P(0.33z — 3.05)](0.33z — 3.05)dz
3.05

9.15
+ / [—66.7z + 610 + P(0.33z — 3.05)](0.33z — 3.05)dz
6.1
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which simplifies to
3.05
EIAC = / (=22.27% 4+ 0.44Pz%)dz
0

6.1
T / (10.99z2 + 0.11Pz% — 2.02Pz + 9.3P — 101.62)dz
3.05

9.15
+ / (—22.012% + 404.7z + 0.11Pz> — 2.02Pz + 9.3P — 1860.5)dz
6.1

Integrating this equation and substituting the limits gives
EIAc =12.78P — 1117.8 (ii)

From compatibility of displacement, the displacement at C in the beam AB is equal
to the displacement at C in the beam ED. The displacement at the mid-span point in a
fixed beam of span L which carries a central load P is PL3/192EI. Hence, equating this
value to Ac in Eq. (ii) and noting that Ac in Eq. (ii) is positive in the direction of P

(12.78P — 1117.8) = P 6.
—(12. — B =Px —
192

which gives

P = 80.1kN
Thus
A _801x10° x 6.1° x 10°
€~ 792 x 200000 x 83.5 x 10°
i.e.

Ac = 5.6 mm

Note: The use of complementary energy in this problem produces a rather lengthy
solution. A quicker approach to finding the displacement Ac in terms of P for the beam
AB would be to use Macauley’s method (see, e.g. Structural and Stress Analysis by
T. H. G. Megson (Elsevier, 2005)).

S.5.14

The internal force system in the framework and beam is statically determinate so that
the unit load method may be used directly to determine the vertical displacement of D.
Hence, from the first of Eqs (5.21) and Eq. (5.20)

@
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3wa >2  {swunitiength 21
CYYVYVYVYVYVVYY V‘%A

<

4a 4a 4a

Fig. 5.5.14

Referring to Fig. S.5.14 and taking moments about A

8 2
Romda—1.5wSY _ 3wal2a = 0
from which
Rgu =28wa
Hence
Ran = —28wa

From the vertical equilibrium of the support G, Rg,v =0, so that, resolving vertically
Rav —1.5w8a —3wa =0
ie.
Rav = 15wa

With a unit vertical load at D
RG,H =4 RA,H = —4 RA,V =1 RG,V =0
For the beam ABC, in AB

ISWZ% 2
= 15waz; —0.75wzy; M1 =1xz

M() = RA,VZ] -

and in BC
My = 15wazpy — 0.75wz% M =1x2
Hence

Z wa 1 . w. wa 2 . w. 2 Z
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Suppose 71 =z, =z say, then

MoM, 16 _ [% ) 3 32w , 075 4%
= 2 15 —0.75wz)dz = 5az3 — —=
| TE Z A2E” ), (15waz wz”)dz A7E az 1 z .
ie.
MMy - _ 8704wa’
L E YT AE

The solution is continued in Table S.5.14.

Table S.5.14

Member L A Fo F FoF{L/A
AB 4a 4A 28wa 4 112wa? /A
BC 4a 4A 28wa 4 112wa?/A
CD 4a A 4wa 4/3 64wa?/3A
DE 5a A —5wa -5/3 125wa? /3A
EF 4a A —4wa —4/3 64wa? /3A
FG 4a A —28wa —4 448wa® /A
CE 3a A 3wa 1 Iwa? /A
CF 5a A —30wa -10/3 500wa’ /A
BF 3a A 18wa 2 108wa? /A

3" =4120wa?/34

Thus
Ap — 8704wa’® N 4120wa?
AE 3AE
1.€.
30232wa?
PTTaE
S.5.15

The internal force systems at C and D in the ring frame are shown in Fig. S.5.15. The
total complementary energy of the half-frame is, from Eq. (5.12)

M
C=// d6dM — FAg
LJo

in which Agp is the horizontal displacement of the joint B. Note that, from symmetry,
the translational and rotational displacements at C and D are zero. Hence, from the
principle of the stationary value of the total complementary energy and choosing the
horizontal displacement at C (=0) as the unknown

aC M M
— = =——dz;=0 (i)
aNc  J; EI aNc
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InCB
Mcg = Mc — Nc(r — rcos6y)
At B, Mcg =0. Thus
Mc = Nc(r + rsin30°) = 1.5Ncr

Eq. (ii) then becomes

Mcg = Ncr(0.5 4+ cos61)

Then
= r(0.5 4+ cos 6
NG r(0.5 + 1)
In DB
MDB = MD — ND(V — r COS 92)
Fig. 5.5.15

Again the internal moment at B is zero so that
Mp = Np(r — rsin30°) = 0.5Npr
Hence
Mpp = Npr(cosfr — 0.5)

Also, from horizontal equilibrium

Np +Nc=F
so that

Np =F — Nc

(ii)

(iii)

(iv)

)

(vi)

(vii)

(viii)
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and Eq. (viii) may be written

Mpg = (F — N¢)r(cos 6, — 0.5) (ix)
whence

oM

8NDCB = —r(cosf —0.5) (x)

Substituting from Eqgs (iv), (v), (ix) and (x) in Eq. (i)

120° 60°
F—N
/ —Ncr3(0.5 + cos 0)2d6; — / F=NE) 3005, — 0.52d6, = 0
0 EI 0 XEI

ie.
120° 60°
F — N,
Nc f (0.25 + cos 0 + cos? 0;)d6; — (F=Ne) / (cos? 6y — cos 0r +0.25)d6, = 0
0 X 0

which, when expanded becomes

120° cos 26, (F — N¢)
Nc 0.75 + cos 0y + o, — ————
0

X
60°
26
X / (COS 2 _ cos 0 + 0.75) dé, =0
0 2
Hence
in20; 1'% (F — Nc) [sin26 60°
Ne [0.7501 +sing 4+ 2 1} ¢ c) [Sm 2 _ sin6, +0.7592} —0
0 X 4 0
from which
F—N
2.22N¢ — 01365 =N _ (xi)
X

The maximum bending moment in ADB is equal to half the maximum bending
moment in ACB. Thus

Then, from Eqgs (vii) and (iii)
0.5Npr = 0.75Ncr
so that
0.5(F — Nc) = 0.75Nc¢
i.e.

F — Nc = 1.5N¢
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Substituting for F — Nc in Eq. (xi)

L.5Nc
— =

2.22Nc — 0.136 x 0

whence

x =0.092

S.5.16

From symmetry the shear force in the tank wall at the lowest point is zero. Let the
normal force and bending moment at this point be No and Mo, respectively as shown
in Fig. S.5.16.

Fig. 5.5.16

The total complementary energy of the half-tank is, from Eq. (5.12)

M P
C=// dodM — —Ap
LJo 2

where Ap is the vertical displacement at the point of application of P. Since the rotation
and translation at O are zero from symmetry then, from the principle of the stationary
value of the total complementary energy

oC M oM .
= | S de= ()
Mo J; EI oMo
and
aC M oM .
——dz=0 (i1)

aNo _ J, EI aNo
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At any point in the tank wall
0

M = Mo + No(r — rcosf) — /0 pr? sin (0 — ¢)d¢ (iii)
For unit length of tank
p=mrip
where p is the density of the fuel.
At the position 6,
p = ph = p(r 4+ rcos¢)
Hence

P
p=—(1+4cos¢)
r
and the last term in Eq. (iii) becomes
o pr . Pr [? . .
—(1 4+ cos¢)sin(6 — ¢p)dp = — (1 4 cos ¢)(sin B cos ¢ — cos B sin ¢p)d¢
0o 7 T Jo

Expanding the expression on the right-hand side gives
pr (% . . . 2 .
— (sinf cos ¢ — cos B sin ¢ + sin & cos” ¢ — cos d sin ¢ cos ¢)d¢
T Jo

Pr 0 .
=— |1+ =sinf —cosfH
T 2

Hence Eq. (iii) becomes
Pr 0 . .
M:Mo—|—Nor(1—c059)——(l—l-zsmé’—cosQ) >iv)
T

so that

oM oM
—— =1 and — =r(l —cosb)
oMo oNo

Substituting for M and 0M/9dMg in Eq. (i) and noting that EI = constant,

T Pr 0 .
Mo + Nor(l —cosf) — — 1—|—5s1n0—cos9 do =0 v)
0 b
from which
3Pr .
Mo+ Nor—— =0 (vi)
2

Now substituting for M and d0M/0No in Eq. (ii)

T Pr 6 .
/ Mo + Nor(l —cosf) — — 1+§sm9—cos9 r(l —cos6)dd =0
0 b4
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The first part of this integral is identical to that in Eq. (v) and is therefore zero. The
remaining integral is then

T Pr 6 .
/ Mo + Nor(l —cos8) — — 1+Esm0—cos.9 cosfdé =0
0 T

which gives

No _SPr_

2 4
Hence

No = 0.398P
and from Eq. (vi)

Mo = 0.080Pr

Substituting these values in Eq. (iv)

M = Pr(0.160 — 0.080 cos & — 0.1596 sin 6)

S.5.17

The internal force systems at A and B are shown in Fig. S.5.17; from symmetry the
shear forces at these points are zero as are the translations and rotations. It follows that
the total complementary energy of the half-frame is, from Eq. (5.12)

M
C:// dodM
LJO

Fig. 5.5.17

From the principle of the stationary value of the total complementary energy

aC M M
— = == dz=0 (i)
Mg J; EI oMy
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and
aC M oM
— = ———dz=0 (i)
ONg 1. EI ONg
In BC
poz®
M = Mg + > (iii)
so that
oM _ oM —0
Mg ONp
In CA

. a (asin 0)2 Po 5
M = Mg — Nasin6 + ppa (acos@ — 5) +poT + ?(a —acos6)

which simplifies to

2
M = Mg —NBaSinO—i—% (iv)
Hence
oM oM .
—— =1 — = —gsinf
oMp ONp

Substituting for M and dM/0Mp in Eq. (i)

a 1 poZ2 71/21 ) p0a2
— (M + 2% )4 — (Mg — Ngasino+ 222 Y ado =0
/o 2EI( Bt Z+/0 g1 \MB —Basint+ o Ja

i.e.
Z3 a a2 /2
— [Mgz—l-poT] +a|:MBQ+NBacos(9+pOT:| =0
0 0

which simplifies to
2.071Mg — Nga + 0.869pga’ = 0
Thus
Mg — 0.483Nga + 0.420poa® = 0 )
Now substituting for M and dM/0Ng in Eq. (ii)
/077/2 % (MB — Npasinf + pOTaZ> (—asinf)add =0

or

/2 . 5 pod® .
Mp sin 6§ — Na sin 6’+Tsm9 de=0
0
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which gives
Mg — 0.785Npa + 0.5ppa® = 0 (vi)

Subtracting Eq. (vi) from Eq. (v)
0.302Nga — 0.08ppa’ = 0

so that
N = 0.265pga

Substituting for Np in Eq. (v) gives
Mg = —0.292poa’

Therefore, from Eq. (iii)
poa’ »  poa’
Mc = My + T = —0.292ppa” + T
i.e.

Mc = 0.208poa’

and from Eq. (iv)

2
Ma = —0.292pga® — 0.265pga” + "%

ie.
Ma = —0.057poa*
Also, from Eq. (iii)

Mgc = —0.292pod> + ‘%zz (vii)

At a point of contraflexure Mpc =0. Thus, from Eq. (vii), a point of contraflexure
occurs in BC when z2 = 0.58442, i.e. when z =0.764a. Also, from Eq. (iv), Mca =0
when sin 6 = 0.208/0.265 = 0.785, i.e. when 6 = 51.7°.

$.5.18

Consider the half-frame shown in Fig. S.5.18(a). On the plane of antisymmetry through
the points 7, 8 and 9 only shear forces S7, Sg and Sy are present. Thus from the horizontal
equilibrium of the frame

S74+ 83+ S9g —6ag =0 @)
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S; «— Sg€«—— Sg«——
q I “ I % q |a
—> 7 > z ZST
4 5A 6
q P q ¢ P
3a | 3a |
I i

Fig. S.5.18(a)

Also, from the overall equilibrium of the complete frame and taking moments about
the corner 6

2aq6a + 6aq2a — 2P3a =0
which gives
q = P/4a

The total complementary energy of the half-frame is, from Eq. (5.12)

M
csz d9dM — PAs — PAg =0
LJO

Noting that the horizontal displacements at 7, 8 and 9 are zero from antisymmetry, then

oC M oM ..
— =] ——dz=0 (i1)
057 1. EI 087
and
aC M oM
— =[] ——dz=0 (i)
0Sg 1. EI 0Sg
In 74
M =S87z1 and 0M/dS7=2z1 oM/dSg =0
In 45
M = S1a+qaz; and OM/dS;=a oM/3Ss =0
In 85
M = Sgzz and 0M/3S; =0 0M/3Ss =23
In 56

M = S7a+ Sga+ qa(B3a + z4) — Pz4 and 0M/3S;=a 0M/dSg =a
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In 69
M = S7(a — z5) + Ss(a — z5) + 6a*q — 3Pa + 6aqzs
and
M /3S7 = (a —z5) OM/3Sg = (a— z5)

Substituting the relevant expressions in Eq. (ii) gives
a 3a 3a
/ Srzidzi+ | ($1a® + ga’z)dz + / [S7a + Ssa + ga(3a + z4) — Pzaladza
0 0 0

a
+ / [S7(a — z5) + Sg(a — z5) + 6a2q — 3Pa + 6aqzs](a — z5)dzs = 0 @iv)
0

from which
2087 + 10Sg + 66aqg — 18P =0 v)

Now substituting for M and dM /9Sg in Eq. (iii)

a 3a
/ ng% dzz + / [S7a + Sga + ga(Ba + z4) — Pz4]adzy
0 0
a
+ / [S7(a — z5) + Ss(a — z5) + 6a”q — 3Pa + 6aqzs)(a — z5)dzs =0 (Vi)
0

The last two integrals in Eq. (vi) are identical to the last two integrals in Eq. (iv). Thus,

Eq. (vi) becomes
1087 + 1183 + 52.5ag — 18P =0 (vii)

The simultaneous solution of Eqgs (v) and (vii) gives

whence, since ¢ = P/4a
Sg = 0.69P
Substituting for Sg in either of Eqs (v) or (vii) gives
S7=-0.27P
Then, from Eq. (i)
So = 1.08P

The bending moment diagram is shown in Fig. S.5.18(b) in which the bending
moments are drawn on the tension side of each member.
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1.17 Pa
0.48 Pa
3 0.27 Pa 2 1.08 Pa 1
0.27 Pa 0.69 Pa .
Bending moments
1.17Pa drawn on the tension
0.48 Pa \\ 1.08 Pa \ side of each member
4

0.27 Pa 5 1.08 Pa

5 0.69 Pa
1.08 Pa

0.27 Pa

Fig. 5.5.18(b)

$.5.19

From the overall equilibrium of the complete frame

2nr
/ grds=T
0

which gives

271r2q =T

1.e.

Fig. 5.5.19
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Considering the half frame shown in Fig. S.5.19 there are only internal shear forces
on the vertical plane of antisymmetry. From the vertical equilibrium of the half-frame

b
S1+ 85+ 53 +/ gsinarda =0
0
Substituting for g from Eq. (i) and integrating
T b4
S1+8 + 83+ —[—cosaly =0
2y

which gives

T
Si+S+8=—— (ii)
r

The vertical displacements at the points 1, 2 and 3 are zero from antisymmetry so
that, from Eq. (5.12), the total complementary energy of the half-frame is given by

M
C=// dodm
LJo

Then, from the principle of the stationary value of the total complementary energy

oC M oM
—_— = — —dz (i11)
a5 1 EI 35S
and
oC M oM .
— = [ ——dz (iv)
AV 1. EI 05>
In the wall 14
6
M = Sirsinf — / qlr —rcos (0 — a)]rdo
0
i.e.
. T . 0
M = §irsinf — —[a — sin(a — )],
21
which gives
. T .
M = Sirsinf — — (0 — sin 0) )
21
whence
oM .
— =rsinf — =0
081 2

In the wall 24
M = Srx (vi)
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and
oM oM
—_— = O — =X
LAY EAY)
In the wall 43
T
M = Sirsinf — —(6 — sin6) + Srrsin 6
21
and

oM ) oM .
— =rsind — =rsinf
051 EAY)

Substituting for M and dM/dS; in Eq. (iii)
3n/4 T
/ |:S1r sinf — — (0 — sin 9):| rsin Or d6
0 2
T T
—I—/ |:S1rsin9——(9—sin9)+52rsin0}rsin@rd@:O
37/4 27

which simplifies to
/ﬂ [Slrsine L sin@)} r?sin0de + /ﬂ Sprisingdd =0
0 27 3n/4
Integrating and simplifying gives
S1r—0.16T + 0.095,r =0
Now substituting for M and dM/9S; in Eq. (iv)
r/N2
/4 0
Integrating and simplifying gives
Sir—0.69T + 1.83Sr =0
Subtracting Eq. (ix) from Eq. (viii)
0.53T — 1.74S,r =0

whence

0.30T
Sy =

r
From Eq. (viii)

0.13T
S

(vii)

(viii)

T T
/ |:Slrsin9—2—(9—sin9)+S2rSin9}rsin@rd@—i—/ ngzdx:O
3 T

(ix)



Solutions to Chapter 5 Problems

and from Eq. (ii)
—0.75T

Hence, from Eqgs (v) to (vii)

M4 =T(0.29sin 0 — 0.160)

My3 = T(0.59sin 0 — 0.160)

S$.5.20

Initially the vertical reaction at C, Rc, must be found. From Eq. (5.12) the total
complementary energy of the member is given by

M
C=// d6dM — RcAc — FAp
LJO

From the principle of the stationary value of the total complementary energy and since
Ac=0
oC M oM
— =] ——ds=0 (1)
oRc 1 EI 0Rc

Referring to Fig. S.5.20

Fig. 5.5.20
In BC
. oM
M =Frsinf and — =0
ORc
In CD
oM
M=Fr—Rcz and — = —z

ORc
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Substituting these expressions in Eq. (i) gives

/ (Fr — Rc2)(—=2)dz =0
0

from which
Rc = 1.5F

Note that Eq. (i) does not include the effects of shear and axial force. If these had
been included the value of Rc would be 1.4F; the above is therefore a reasonable
approximation. Also, from Eq. (1.50), G=3E/8.

The unit load method may now be used to complete the solution. Thus, from the first
of Egs (5.21), Eq. (5.20) and Eq. (20.18)

MoM FoF SoS
5B,H=/ 0 1ds+/ . 1ds+/°—}ds (ii)
. EI . AE . GA
In BC
My = Frsinf M =rsinf
Fo=Fsinf® F|=sinb
So =Fcosf S =cosb
In CD

My=F(r—152) M, = —1.52)
Fo=F Fi=1
So = 1.5F S =15

Substituting these expressions in Eq. (ii) gives

/2 Fr3 sin2 0 /2 Frsin? 0 /2 Frcos?
S = ———do+ do + —df
0 0 0

El AE GA’
+/0r§(r—1.5z)2dz+/orédz+/(;r 2‘sz/Fdz
or
511 =20 / "L~ cosamao+ T2 [T L0 cosmyae
AE J, 2 AE Jo 2
+ zilz /OJT/2 %(1 + cos 26)do + j(z(z)g /Or (r* = 3rz 4+ 2.257%)dz
PRI (P e
AE J, AE J,
from which

448.3Fr
AE

SBH =
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S.5.21

From Clerk—Maxwell’s reciprocal theorem the deflection at A due to W at B is equal
to the deflection at B due to W at A, i.e. ;.

What is now required is the deflection at B due to W at B.

Since the deflection at A with W at A and the spring removed is &3, the load in the
spring at A with W at B is (§2/63) W which must equal the load in the spring at B with
W at B. Thus, the resultant load at B with W at B is

W—<8—2>W=W(1—8—2> @)
83 83

Now the load W at A with the spring in place produces a deflection of §; at A. Thus,
the resultant load at A is (§1/63)W so that, if the load in the spring at A with W at A is

F,then W — F =(6§1/63)W, i.e.
81 ..
F=W{1-— (i)
33

This then is the load at B with W at A and it produces a deflection §,. Therefore, from
Egs (i) and (ii) the deflection at B due to W at B is

1.e.

$.5.22

Referring to Fig. S.5.22
Ra =Rp =1000N from symmetry.
The slope of the beam at A and B may be obtained from the second of Eqs (16.32), i.e.

M
El

/!
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2000N
C A F B D
| |
f e
—>» z
360 mm 720 mm 720 mm 600 mm
I I I

Fig. 5.5.22

where, for the half-span AF, M = Rpz = 1000z. Thus
1000

-——z

EI

1"
v

and

=202 c
= EIZ 1

When z =720 mm, v' =0 from symmetry and hence C; =2.59 x 108 /EI. Hence
1
= —(=500z% +2.59 x 108
V= gy (73007 4 2.59 > 107

Thus v’ (at A)=0.011rads=v" (at B). The deflection at C is then =360 x 0.011 =
3.96 mm and the deflection at D =600 x 0.011 = 6.6 mm.

From the reciprocal theorem the deflection at F due to a load of 3000N at
C =3.96 x 3000/2000 = 5.94 mm and the deflection at F due to a load of 3000 N at
D =6.6 x 3000/2000 = 9.9 mm. Therefore the total deflection at F due to loads of
3000 N acting simultaneously at C and D is 5.94 4+ 9.9 = 15.84 mm.

$.5.23

Since the frame is symmetrical about a vertical plane through its centre only half need
be considered. Also, due to symmetry the frame will act as though fixed at C (Fig.
S.5.23).

If the frame were unsupported at B the horizontal displacement at B, Ag T, due to the
temperature rise may be obtained using Eq. (5.32) in which, due to a unit load acting
horizontally at B, M| =1 x (r sin 30° + r sin §). Hence

/2 2aT
ABT = / (0.5r + rsinf)——rdo
—7/6 d

i.e.

2aTr?

d

[0.50 — cos 6172 ¢

ApT =



Fig. 5.5.23

which gives
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3.83aTr?
Apt = % (to the right) (i)

Suppose that in the actual frame the horizontal reaction at B is Hg. Since B is not
displaced, the ‘displacement’ Ag i produced by Hg must be equal and opposite to A T
in Eq. (i). Then, from the first of Eqs (5.21) and noting that My = —Hg(0.5r + r sin 0)

i.e.

Hence

so that

Then, since

from which

ApH = —

Apy = —
BH El

1 /2
Apy=—— / Hg(0.57 + rsin 6)*r do
—7/6

El

HB V3
EIl

/2
/ (0.25 + sin 6 + sin® )do
—71/6

HBr3

sin 29]”/2

|:0.750 —cosf —
4

—7/6

2.22Hgr3

ApH = ————— (to the left) (i1)

El

Agu+ ApT =0

2.22Hgr? N 3.83aTr?
EI d

1.73EIT«
B = g (iii)
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The maximum bending moment in the frame will occur at C and is given by
M(max) = Hg x 1.5r

Then, from symmetrical bending theory the direct stress through the depth of the frame
section is given by

My
o= T (see Egs (16.21))

and
M (max)y(max)
Umax =
1
i.e.
Hp x 1.5r x 0.5d
Omax = 7

or, substituting for Hg from Eq. (iii)

Omax = 1.30ETa

5.5.24

The solution is similar to that for P.5.23 in that the horizontal displacement of B due to
the temperature gradient is equal and opposite in direction to the ‘displacement’ pro-
duced by the horizontal reaction at B, Hg. Again only half the frame need be considered
from symmetry.

Referring to Fig. S.5.24

My = rcosy in BC and Cd

Fig. 5.5.24

Then, from Eq. (5.32)

/4 /2
ABT :/ (reos a2V gy / (r cos P)ar <9> rdy
0 h /4 h
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i.e.
rraby 74
AT = A cos Y cos 2y dyr
0
or
2060 (74
ABT = r Z 0 / (cosyr —2 sin? Y cos y)dyr
0

Hence

rraby [ . 2 .4 /4
ABT = sinyr — —sin” ¥
’ h 3 0

which gives

0.47r%ab
Apt = % (to the right) (i)

From the first of Eqs (5.21) in which My = —Hpgr cos ¥

7/2 Hgrcos ¥ rcos ¥
ABH = — d
B.H /0 Z rdy
ie.
HBr3 /2 5
ABH = — ZI /0 cos” ydy
or
Hgr® (721
ApHg = — =1 2yn)d
B.H £l /0 2( + cos2y)dyr
whence
0.79Hgr?
Apn = —— BT (0 the left) (ii)

EI
Then, since Apy + As 1 =0, from Egs (i) and (ii)

0.79Hgr?>  0.47r%ab,
_ BY + }"O(QZO

EI h
from which
_ 0.59EI a6y
B= rh
Then
M = Hgrcosy
so that

M 0.59EIo;100 cos ¥
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