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i.e.

1.29 + 8.14 =
√

72 + 4τ2
xy

from which τxy = 3.17 N/mm2.
The shear force at P is equal to Q so that the shear stress at P is given by

τxy = 3.17 = 3Q

2 × 150 × 300
from which

Q = 95 100 N = 95.1 kN.

Solutions to Chapter 2 Problems

S.2.1

The stress system applied to the plate is shown in Fig. S.2.1. The origin, O, of the axes
may be chosen at any point in the plate; let P be the point whose coordinates are (2, 3).

2p

2p

3p3p

4p

4p

4p

4p

y

xO

P (2,3)

Fig. S.2.1

From Eqs (1.42) in which σz = 0

εx = −3p

E
− ν

2p

E
= −3.5p

E
(i)

εy = 2p

E
+ ν

3p

E
= 2.75p

E
(ii)

Hence, from Eqs (1.27)

∂u

∂x
= −3.5p

E
so that u = −3.5p

E
x + f1(y) (iii)
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where f1(y) is a function of y. Also

∂v

∂y
= 2.75p

E
so that v = −2.75p

E
y + f2(x) (iv)

in which f2(x) is a function of x.
From the last of Eqs (1.52) and Eq. (1.28)

γxy = 4p

G
= ∂v

∂x
+ ∂u

∂y
= ∂f2(x)

∂x
+ ∂f1(y)

∂y
(from Eqs (iv) and (iii))

Suppose

∂f1(y)

∂y
= A

then

f1( y) = Ay + B (v)

in which A and B are constants.
Similarly, suppose

∂f2(x)

∂x
= C

then

f2(x) = Cx + D (vi)

in which C and D are constants.
Substituting for f1(y) and f2(x) in Eqs (iii) and (iv) gives

u = −3.5p

E
x + Ay + B (vii)

and

v = 2.75p

E
y + Cx + D (viii)

Since the origin of the axes is fixed in space it follows that when x = y = 0, u = v = 0.
Hence, from Eqs (vii) and (viii), B = D = 0. Further, the direction of Ox is fixed in space
so that, when y = 0, ∂v/∂x = 0. Therefore, from Eq. (viii), C = 0. Thus, from Eqs (1.28)
and (vii), when x = 0.

∂u

∂y
= 4p

G
= A

Eqs (vii) and (viii) now become

u = −3.5p

E
x + 4p

G
y (ix)
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v = 2.75p

E
y (x)

From Eq. (1.50), G = E/2(1 + ν) = E/2.5 and Eq. (ix) becomes

u = p

E
(−3.5x + 10y) (xi)

At the point (2, 3)

u = 23p

E
(from Eq. (xi))

and

v = 8.25p

E
(from Eq. (x))

The point P therefore moves at an angle α to the x axis given by

α = tan−1 8.25

23
= 19.73◦

S.2.2

An Airy stress function, φ, is defined by the equations (Eqs (2.8)):

σx = ∂2φ

∂y2 σy = ∂2φ

∂x2 τxy = − ∂2φ

∂x ∂y

and has a final form which is determined by the boundary conditions relating to a
particular problem.

Since

φ = Ay3 + By3x + Cyx (i)

∂4φ

∂x4 = 0
∂4φ

∂y4 = 0
∂4φ

∂x2∂y2 = 0

and the biharmonic equation (2.9) is satisfied. Further

σx = ∂2φ

∂y2 = 6Ay + 6Byx (ii)

σy = ∂2φ

∂x2 = 0 (iii)

τxy = − ∂2φ

∂x ∂y
= −3By2 − C (iv)

The distribution of shear stress in a rectangular section beam is parabolic and is zero
at the upper and lower surfaces. Hence, when y = ±d/2, τxy = 0. Thus, from Eq. (iv)

B = −4C

3d2 (v)
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The resultant shear force at any section of the beam is −P. Therefore

∫ d/2

−d/2
τxyt dy = −P

Substituting for τxy from Eq. (iv)

∫ d/2

−d/2
(−3By2 − C)t dy = −P

which gives

2t

(
Bd3

8
+ Cd

2

)
= P

Substituting for B from Eq. (v) gives

C = 3P

2td
(vi)

It now follows from Eqs (v) and (vi) that

B = −2P

td3 (vii)

At the free end of the beam where x = l the bending moment is zero and thus σx = 0
for any value of y. Therefore, from Eq. (ii)

6A + 6Bl = 0

whence

A = 2Pl

td3 (viii)

Then, from Eq. (ii)

σx = 12Pl

td3 y − 12P

td3 xy

or

σx = 12P(l − x)

td3 y (ix)

Equation (ix) is the direct stress distribution at any section of the beam given by
simple bending theory, i.e.

σx = My

I
where M = P(l − x) and I = td3/12.

The shear stress distribution given by Eq. (iv) is

τxy = 6P

td3 y2 − 3P

2td
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or

τxy = 6P

td3

(
y2 − d2

4

)
(x)

Equation (x) is identical to that derived from simple bending theory and may be found
in standard texts on stress analysis, strength of materials, etc.

S.2.3

The stress function is

φ = w

20h3 (15h2x2y − 5x2y3 − 2h2y3 + y5)

Then

∂2φ

∂x2 = w

20h3 (30h2y − 10y3) = σy

∂2φ

∂y2 = w

20h3 (−30x2y − 12h2y + 20y3) = σx

∂2φ

∂x ∂y
= w

20h3 (30h2x − 30xy2) = −τxy

∂4φ

∂x4 = 0

∂4φ

∂y4 = w

20h3 (120y)

∂4φ

∂x2 ∂y2 = w

20h3 (−60y)

Substituting in Eq. (2.9)

∇4φ = 0

so that the stress function satisfies the biharmonic equation.
The boundary conditions are as follows:

• At y = h, σy = w and τxy = 0 which are satisfied.
• At y = −h, σy = −w and τxy = 0 which are satisfied.
• At x = 0, σx = w/20h3 (−12h2y + 20y3) �= 0.

Also
∫ h

−h
σx dy = w

20h3

∫ h

−h
(−12h2y + 20y3)dy

= w

20h3 [−6h2y2 + 5y4]h−h

= 0

i.e. no resultant force.
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Finally

∫ h

−h
σxy dy = w

20h3

∫ h

−h
(−12h2y2 + 20y4)dy

= w

20h3 [−4h2y3 + 4y5]h−h

= 0

i.e. no resultant moment.

S.2.4

The Airy stress function is

φ = p

120d3 [5(x3 − l2x)(y + d)2(y − 2d) − 3yx(y2 − d2)2]

Then

∂4φ

∂x4 = 0
∂4φ

∂y4 = −3pxy

d3

∂4φ

∂x2∂y2 = 3pxy

2d3

Substituting these values in Eq. (2.9) gives

0 + 2 × 3pxy

2d3 − 3pxy

d3 = 0

Therefore, the biharmonic equation (2.9) is satisfied.
The direct stress, σx, is given by (see Eqs (2.8))

σx = ∂2φ

∂y2 = px

20d3 [5y(x2 − l2) − 10y3 + 6d2y]

When x = 0, σx = 0 for all values of y. When x = l

σx = pl

20d3 (−10y3 + 6d2y)

and the total end load = ∫ d
−d σx1 dy

= pl

20d3

∫ d

−d
(−10y3 + 6d2y)dy = 0

Thus the stress function satisfies the boundary conditions for axial load in the x direction.
Also, the direct stress, σy, is given by (see Eqs (2.8))

σy = ∂2φ

∂x2 = px

4d3 ( y3 − 3yd2 − 2d3)
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When x = 0, σy = 0 for all values of y. Also at any section x where y = −d

σy = px

4d3 (−d3 + 3d3 − 2d3) = 0

and when y = +d

σy = px

4d3 (d3 − 3d3 − 2d3) = −px

Thus, the stress function satisfies the boundary conditions for load in the y direction.
The shear stress, τxy, is given by (see Eqs (2.8))

τxy = − ∂2φ

∂x ∂y
= − p

40d3 [5(3x2 − l2)( y2 − d2) − 5y4 + 6y2d2 − d4]

When x = 0

τxy = − p

40d3 [−5l2( y2 − d2) − 5y4 + 6y2d2 − d4]

so that, when y = ±d, τxy = 0. The resultant shear force on the plane x = 0 is given by

∫ d

−d
τxy1 dy = − p

40d3

∫ d

−d
[−5l2( y2 − d2) − 5y4 + 6y2d2 − d4]dy = −pl2

6

From Fig. P.2.4 and taking moments about the plane x = l,

τxy(x = 0)12dl = 1

2
lpl

2

3
l

i.e.

τxy(x = 0) = pl2

6d

and the shear force is pl2/6.
Thus, although the resultant of the Airy stress function shear stress has the same

magnitude as the equilibrating shear force it varies through the depth of the beam
whereas the applied equilibrating shear stress is constant. A similar situation arises on
the plane x = l.

S.2.5

The stress function is

φ = w

40bc3 (−10c3x2 − 15c2x2y + 2c2y3 + 5x2y3 − y5)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Solution-1-H6739.tex 24/1/2007 9: 28 Page 22

22 Solutions Manual

Then

∂2φ

∂y2 = w

40bc3 (12c2y + 30x2y − 20y3) = σx

∂2φ

∂x2 = w

40bc3 (−20c3 − 30c2y + 10y3) = σy

∂2φ

∂x ∂y
= w

40bc3 (−30c2x + 30xy2) = −τxy

∂4φ

∂x4 = 0

∂4φ

∂y4 = w

40bc3 (−120y)

∂4φ

∂x2 ∂y2 = w

40bc3 (60y)

Substituting in Eq. (2.9)

∇4φ = 0

so that the stress function satisfies the biharmonic equation.
On the boundary, y = +c

σy = −w

b
τxy = 0

At y = −c

σy = 0 τxy = 0

At x = 0

σx = w

40bc3 (12c2y − 20y3)

Then ∫ c

−c
σx dy = w

40bc3

∫ c

−c
(12c2y − 20y3)dy

= w

40bc3 [6c2y2 − 5y4]c−c

= 0

i.e. the direct stress distribution at the end of the cantilever is self-equilibrating.
The axial force at any section is

∫ c

−c
σx dy = w

40bc3

∫ c

−c
(12c2y + 30x2y − 20y3)dy

= w

40bc3 [6c2y2 + 15x2y2 − 5y4]c−c

= 0

i.e. no axial force at any section of the beam.
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The bending moment at x = 0 is
∫ c

−c
σxy dy = w

40bc3

∫ c

−c
(12c2y2 − 20y4)dy

= w

40bc3 [4c2y3 − 4y5]c−c = 0

i.e. the beam is a cantilever beam under a uniformly distributed load of w/unit area with
a self-equilibrating stress application at x = 0.

S.2.6

From physics, the strain due to a temperature rise T in a bar of original length L0 and
final length L is given by

ε = L − L0

L0
= L0(1 + αT ) − L0

L0
= αT

Thus for the isotropic sheet, Eqs (1.52) become

εx = 1

E
(σx − νσy) + αT

εy = 1

E
(σy − νσx) + αT

Also, from the last of Eqs (1.52) and (1.50)

γxy = 2(1 + ν)

E
τxy

Substituting in Eq. (1.21)

2(1 + ν)

E

∂2τxy

∂x ∂y
= 1

E

(
∂2σy

∂x2 − ν
∂2σx

∂x2

)

+ α
∂2T

∂x2 + 1

E

(
∂2σx

∂y2 − ν
∂2σy

∂y2

)

+ α
∂2T

∂y2

or

2(1 + ν)
∂2τxy

∂x ∂y
= ∂2σy

∂x2 + ∂2σx

∂y2 − ν
∂2σx

∂x2 − ν
∂2σy

∂y2 + Eα∇2T (i)

From Eqs (1.6) and assuming body forces X = Y = 0

∂2τxy

∂y ∂x
= −∂2σx

∂x2

∂2τxy

∂x ∂y
= −∂2σy

∂y2

Hence

2
∂2τxy

∂x ∂y
= −∂2σx

∂x2 − ∂2σy

∂y2
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and

2ν
∂2τxy

∂x ∂y
= −ν

∂2σx

∂x2 − ν
∂2σy

∂y2

Substituting in Eq. (i)

−∂2σx

∂x2 − ∂2σy

∂y2 = ∂2σy

∂x2 + ∂2σx

∂y2 + Eα∇2T

Thus
(

∂2

∂x2 + ∂2

∂y2

)
(σx + σy) + Eα∇2T = 0

and since

σx = ∂2φ

∂y2 σy = ∂2φ

∂x2 (see Eqs (2.8))

(
∂2

∂x2 + ∂2

∂y2

)(
∂2φ

∂y2 + ∂2φ

∂x2

)
+ Eα∇2T = 0

or

∇2(∇2φ + EαT ) = 0

S.2.7

The stress function is

φ = 3Qxy

4a
− Qxy3

4a3

Then

∂2φ

∂x2 = 0 = σy

∂2φ

∂y2 = −3Qxy

2a3 = σx

∂2φ

∂x ∂y
= 3Q

4a
− 3Qy2

4a3 = −τxy

Also

∂4φ

∂x4 = 0
∂4φ

∂y4 = 0
∂4φ

∂x2 ∂y2 = 0

so that Eq. (2.9), the biharmonic equation, is satisfied.
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When x = a, σx = −3Qy/2a2, i.e. linear.
Then, when

y = 0 σx = 0

y = −a σx = 3Q

2a

y = +a σx = −3Q

2a

Also, when x = −a, σx = 3Qy/2a2, i.e. linear and when

y = 0 σx = 0

y = −a σx = −3Q

2a

y = +a σx = 3Q

2a

The shear stress is given by (see above)

τxy = −3Q

4a

(
1 − y2

a2

)
, i.e. parabolic

so that, when y = ±a, τxy = 0 and when y = 0, τxy = −3Q/4a.
The resultant shear force at x = ±a is

=
∫ a

−a
−3Q

4a

(
1 − y2

a2

)
dy

i.e.

SF = Q.

The resultant bending moment at x = ±a is

=
∫ a

−a
σxy dy

=
∫ a

−a

3Qay2

2a3 dy

i.e.

BM = −Qa.
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