Solutions Manual

Solutions to Chapter 1 Problems

S.1.1

The principal stresses are given directly by Eqgs (1.11) and (1.12) in which
o, = 80 N/mm?, oy =0 (or vice versa) and 7, =45 N/mm?. Thus, from Eq. (1.11)

80 1
O‘I=7+§ 802+4X452

i.e.
o1 = 100.2 N/mm?
From Eq. (1.12)

80 1 o
CIH=——§ 80- +4 x 45

2
i.e.
o = —20.2N/mm?

The directions of the principal stresses are defined by the angle 6 in Fig. 1.8(b) in
which 6 is given by Eq. (1.10). Hence

2 x 45
tan 29 = =1.125
80 -0

which gives
0 =24°11" and 6 =114°11
It is clear from the derivation of Eqs (1.11) and (1.12) that the first value of 6
corresponds to o1 while the second value corresponds to oyj.

Finally, the maximum shear stress is obtained from either of Eqgs (1.14) or (1.15).
Hence from Eq. (1.15)

100.2 — (—20.2
Tmax = % = 60.2N/mm?>

and will act on planes at 45° to the principal planes.
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S.1.2

The principal stresses are given directly by Eqs (1.11) and (1.12) in which o, =
50 N/mm?, o, = —35 N/mm? and 7, = 40 N/mm?. Thus, from Eq. (1.11)

50—35 1
o="5—+ 5\/(50+35)2+4 x 402
1.e.
o1 = 65.9N/mm?
and from Eq. (1.12)
50—-35 1
on="—0"— - E‘/(SO +35)2 + 4 x 402

i.e.
on = —50.9N/mm?
From Fig. 1.8(b) and Eq. (1.10)

2 x 40

= 0.941
50+ 35

tan 260 =

which gives
6 =21°38'(o1) and 0= 111°38'(oy1)

The planes on which there is no direct stress may be found by considering the
triangular element of unit thickness shown in Fig. S.1.2 where the plane AC represents
the plane on which there is no direct stress. For equilibrium of the element in a direction
perpendicular to AC

0 = 50AB cos @ — 35BC sin @ + 40AB sin « + 40BC cos o @)

50 N/mm? <€

Y |B
40 N/mm? 4—“

35N/mm?

Fig. 5.1.2
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Dividing through Eq. (i) by AB
0=50cosa —35tana sina 4 40 sin o 4 40 tan « cos &
which, dividing through by cos «, simplifies to

0 = 50 — 35tan® o + 80 tan «

from which
tano = 2.797 or —0.511
Hence
a=70°21" or —27°5
S.1.3

The construction of Mohr’s circle for each stress combination follows the procedure
described in Section 1.8 and is shown in Figs S.1.3(a)—(d).

7(N/mm?)
A 20 =23°
10 —
Q, (54,5)
! T Lo LT L o pNmm?)
(0] 10 20 3 40 50 60
Q, (30,—-5)
Fig. 5.1.3(a)
7 (N/mm?)
A
10
Q, (54,5)
I | il LG } a —» o (N'/mm?)
o] 10 20 3 40 50 60
Q, (30,-5)
20=23°

Fig. 5.1.3(b)
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7 (N/mm?)

A
26=159° 1 10

Q, (—60,5)
o (Nimm?) e ——pC
-6 -50 = -30 -20 10 o]
Q, (—36,—5)
+-10
Fig. 5.1.3(c)
7 (N/mm?)

> 5 (N/mm?
0

T T
-50 —40 —-30 —-20_~10 O

Fig. 5.1.3(d)

S.1.4

The principal stresses at the point are determined, as indicated in the question, by
transforming each state of stress into a oy, oy, Tyy stress system. Clearly, in the
first case o, =0, 0, =10 N/mm?2, Ty =0 (Fig. S.1.4(a)). The two remaining cases
are transformed by considering the equilibrium of the triangular element ABC in
Figs S.1.4(b), (c), (e) and (f). Thus, using the method described in Section 1.6
and the principle of superposition (see Section 5.9), the second stress system of
Figs S.1.4(b) and (c) becomes the oy, 0y, Ty, system shown in Fig. S.1.4(d) while
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T 10 N/mm?

l 10 N/mm? (o)

Fig. S.1.4(a) Fig. S.1.4(b)

10 N/mm?
C

10 N/mm?
Fig. S.1.4(c)
2.5 N/mm?
4.33 N/mm? A
. mm
— 7.5N/mm? 7.5 N/mm? (0,)
<« 4.33N/mm? (1)
Y
2.5 N/mm? (0,)
Fig. S.1.4(d)

the third stress system of Figs S.1.4(e) and (f) transforms into the o, oy, Ty, system of
Fig. S.1.4(g).

Finally, the states of stress shown in Figs S.1.4(a), (d) and (g) are superimposed
to give the state of stress shown in Fig. S.1.4(h) from which it can be seen that
o1 =op = 15N/mm? and that the x and y planes are principal planes.
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10 N/mm? 10 N/mm?

10 N/mm? 10 N/mm?
Fig. 5.1.4(e) Fig. 5.1.4(f)
2.5 N/mm?
A
4.33 N/mm? —————
= 7.5N/mm? 7.5 N/mm? (o,)

T 5 4.33N/mm? (1)

Y
2.5N/mm? (o,)

Fig. S.1.4(g)
T 15N/mm?
15N/mm? <€— > 15N/mm?
i 15N/mm?
Fig. S.1.4(h)
S.1.5

The geometry of Mohr’s circle of stress is shown in Fig. S.1.5 in which the circle is
constructed using the method described in Section 1.8.
From Fig. S.1.5

oy = OP; = OB — BC + CP, (i)
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Fig. 5.1.5

In Eq. (i) OB=o01, BC is the radius of the circle which is equal to T,z and

CP, = /CQ% — QIP% = /rr%mX — r)%y. Hence
Ox = O] — Tmax + v rrznax - T)%y

Similarly
Oy = OP2 =0B - BC — CP2 in which CP2 = CP]
Thus
Oy = O — Tmax — +/ Toax — ‘L')%y
S.1.6

From bending theory the direct stress due to bending on the upper surface of the shaft
at a point in the vertical plane of symmetry is given by

My 25x10°x 75
Oy = — =

== " —75N/mm?
1 7 x 1504 /64 /

From the theory of the torsion of circular section shafts the shear stress at the same
point is

Tr 50 x 10° x 75

Lo X 95N /mm?
7 T 7 x 150432 /mm

Tyy =
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Substituting these values in Egs (1.11) and (1.12) in turn and noting that o, =0

75 1
(71=7+§ 752+4X752
i.e.
o1 = 121.4N/mm?
75 1\/7
= — — =752+ 4 x 752
on 3 5 + 4 x
ie.

o = —46.4N/mm”
The corresponding directions as defined by 6 in Fig. 1.8(b) are given by Eq. (1.10)

1.e.
2x 75
tan 26 = X =2
75 -0
Hence
0 = 31°43' (o)
and
0 = 121°43'(on)
S.1.7

The direct strains are expressed in terms of the stresses using Eqgs (1.42), i.e.

1 .
Ex = E[Gx —v(oy + 07)] (1)
&y = ploy = vox +02)] (ii)
1
& = E[Uz —v(oyx + 0y)] (iii)
Then
1
e=¢;+e+e = E[Ux+5y+az —2v(ox + 0y + 07)]
ie.
(1—-2v)
e=——(0x + oy +07)
whence
Ee
oy+o; =

— oy
1-2v)
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1 Ee
Aol R I

Substituting in Eq. (i)

so that
Ee, = oy(1 +v) — E¢
1—2v
Thus
vEe E

Oy =

+ £
(I=20(1+v) A+
or, since G = E/2(1 4+ v) (see Section 1.15)

oy = e + 2Gey,
Similarly

oy = Ae + 2Ge,y
and

0; = Ae + 2Ge;
S.1.8

The implication in this problem is that the condition of plane strain also describes the
condition of plane stress. Hence, from Eqs (1.52)

Ex = E(GX - Vo'y) ()
gy = E(O'y — Voy) (i1)
2(1

Yoy = %‘y _ X ; 1y (see Section 1.15) (iii)

The compatibility condition for plane strain is

82yxy _ 328), stx
axdy  ax2  9y?

(see Section 1.11) @iv)

Substituting in Eq. (iv) for &y, &y and yx, from Eqgs (i)(iii), respectively, gives

82 2

3t
xy
= @(Gy —voy) + W(Ux — voy) (v)

ox oy

2(1 +v)
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Also, from Eqgs (1.6) and assuming that the body forces X and Y are zero

&2 @ =0 (vi)
ox ay

doy 0

Dy T (vi)
ay ox

Differentiating Eq. (vi) with respect to x and Eq. (vii) with respect to y and adding gives

For Py oy Py .
ax2  dydx Ay oxdy

zazrxy _ oy n ale
ox dy ox2 dy?

or

Substituting in Eq. (v)

o, %0y 9% 8%
—(1 + v) (W; + ﬁ) = ﬁ(ﬂy — vcx) + W(O—x — vay)

so that

Fo, %oy Fo, %oy 3oy %oy
-1 - _
( +v)(8x2 + dy? ox2 + dy? "\ o2 + dy?

which simplifies to
#oy, %oy %o oy

ox?2 + dy? + ox2 + dy? =0

or

¥ P
(@4‘@) (0x+0y)=0

S.1.9

Suppose that the load in the steel bar is Py and that in the aluminium bar is P,. Then,
from equilibrium

Py + Py =P (1)
From Eq. (1.40)

Py Py
= gal =
AstEst AalEal

Est
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Since the bars contract by the same amount

Pst Pal ..
= (i1)
AstEst AalEal
Solving Eqgs (i) and (ii)
AstEst AalEal
Py=—7——F al = .
AstEst + AalEal AstEst + AalEal
from which the stresses are
E E
o a oal e (iii)

= P = P
AstEst + AalEal AstEst + AalEal

The areas of cross-section are

7T x 752 5 7(100? — 75%) )
= =44179mm” Ay = ————— =3436.1mm

Substituting in Eq. (iii) we have

B 10% x 200 000
T (4417.9 x 200000 4 3436.1 x 80000)
B 10% x 80000
T (4417.9 x 200000 4 3436.1 x 80000)

Ost = 172.6 N/mm2 (compression)

=69.1N/ mm? (compression)

Oal

Due to the decrease in temperature in which no change in length is allowed the strain
in the steel is o T and that in the aluminium is «, 7. Therefore due to the decrease in
temperature

oy = Egage T = 200000 x 0.000012 x 150 = 360.0 N/mm2 (tension)
a1 = EqaT = 80000 x 0.000005 x 150 = 60.0 N/mm2 (tension)

The final stresses in the steel and aluminium are then

og(total) = 360.0 — 172.6 = 187.4N/mm? (tension)
o (total) = 60.0 — 69.1 = —9.1 N/mm2 (compression).

S.1.10

The principal strains are given directly by Eqs (1.69) and (1.70). Thus

1 1
& = E(—O.OO2 + 0.002) + E\/(—O.OO2 +0.002)2 + (+0.002 + 0.002)?
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i.e.
g1 = +0.00283
Similarly
en = —0.00283
The principal directions are given by Eq. (1.71), i.e.
2(—0.002) +0.002 — 0.002

tan 26 = 0.002 + 0.002 =1
Hence
26 = —45° or +135°
and
6 = —22.5° or +67.5°
S.1.11

The principal strains at the point P are determined using Eqs (1.69) and (1.70). Thus

el = [l(_zzz +45) + L\/(—zzz +213)2 4 (=213 — 45)2} x 107°
2 V2

ie.
er=94.0 x 107°
Similarly
e = —217.0 x 107°

The principal stresses follow from Eqs (1.67) and (1.68). Hence

31000 6
o= ———(94.0 — 0.2 x 271.0) x 10
1 —(0.2)2
i.e.
o1 = 1.29N/mm?
Similarly

omr = —8.14 N/mm?

Since P lies on the neutral axis of the beam the direct stress due to bending is zero.
Therefore, at P, o, =7 N/mm? and oy =0. Now subtracting Eq. (1.12) from (1.11)

o1 — O] =1/O')%+4T)%y
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1.29 4+ 8.14 = /72 +4T)%y

from which 7y, =3.17 N/mm?.
The shear force at P is equal to Q so that the shear stress at P is given by
30
2 x 150 x 300

1.€.

Ty =317 =

from which
0 =95100N = 95.1kN.

Solutions to Chapter 2 Problems

S.2.1

The stress system applied to the plate is shown in Fig. S.2.1. The origin, O, of the axes
may be chosen at any point in the plate; let P be the point whose coordinates are (2, 3).

2p
A
4p
YA eP@3) i
3p 3p
(0] X
4p
4
P Y
2p
Fig. 5.2.1
From Eqgs (1.42) in which o, =0
U S 0
* E E E
2 3p 275
P I (ii)

Hence, from Eqs (1.27)

ou 3.5p that 3.5p HAG) (iii)
— = ——— sotha =—— ii
ox E ! E SRR
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