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Solutions Manual

Solutions to Chapter 1 Problems

S.1.1

The principal stresses are given directly by Eqs (1.11) and (1.12) in which
σx = 80 N/mm2, σy = 0 (or vice versa) and τxy = 45 N/mm2. Thus, from Eq. (1.11)

σI = 80

2
+ 1

2

√
802 + 4 × 452

i.e.

σI = 100.2 N/mm2

From Eq. (1.12)

σII = 80

2
− 1

2

√
802 + 4 × 452

i.e.

σII = −20.2 N/mm2

The directions of the principal stresses are defined by the angle θ in Fig. 1.8(b) in
which θ is given by Eq. (1.10). Hence

tan 2θ = 2 × 45

80 − 0
= 1.125

which gives

θ = 24◦11′ and θ = 114◦11′

It is clear from the derivation of Eqs (1.11) and (1.12) that the first value of θ

corresponds to σI while the second value corresponds to σII.
Finally, the maximum shear stress is obtained from either of Eqs (1.14) or (1.15).

Hence from Eq. (1.15)

τmax = 100.2 − (−20.2)

2
= 60.2 N/mm2

and will act on planes at 45◦ to the principal planes.
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S.1.2

The principal stresses are given directly by Eqs (1.11) and (1.12) in which σx =
50 N/mm2, σy = −35 N/mm2 and τxy = 40 N/mm2. Thus, from Eq. (1.11)

σI = 50 − 35

2
+ 1

2

√
(50 + 35)2 + 4 × 402

i.e.

σI = 65.9 N/mm2

and from Eq. (1.12)

σII = 50 − 35

2
− 1

2

√
(50 + 35)2 + 4 × 402

i.e.

σII = −50.9 N/mm2

From Fig. 1.8(b) and Eq. (1.10)

tan 2θ = 2 × 40

50 + 35
= 0.941

which gives

θ = 21◦38′(σI) and θ = 111◦38′(σII)

The planes on which there is no direct stress may be found by considering the
triangular element of unit thickness shown in Fig. S.1.2 where the plane AC represents
the plane on which there is no direct stress. For equilibrium of the element in a direction
perpendicular to AC

0 = 50AB cos α − 35BC sin α + 40AB sin α + 40BC cos α (i)

A

B
C

τ

α

35 N/mm2

40 N/mm2

50 N/mm2

Fig. S.1.2

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Solution-1-H6739.tex 24/1/2007 9: 28 Page 5

Solutions to Chapter 1 Problems 5

Dividing through Eq. (i) by AB

0 = 50 cos α − 35 tan α sin α + 40 sin α + 40 tan α cos α

which, dividing through by cos α, simplifies to

0 = 50 − 35 tan2 α + 80 tan α

from which

tan α = 2.797 or −0.511

Hence

α = 70◦21′ or −27◦5′

S.1.3

The construction of Mohr’s circle for each stress combination follows the procedure
described in Section 1.8 and is shown in Figs S.1.3(a)–(d).

Fig. S.1.3(a)

Fig. S.1.3(b)
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Fig. S.1.3(c)

Fig. S.1.3(d)

S.1.4

The principal stresses at the point are determined, as indicated in the question, by
transforming each state of stress into a σx, σy, τxy stress system. Clearly, in the
first case σx = 0, σy = 10 N/mm2, τxy = 0 (Fig. S.1.4(a)). The two remaining cases
are transformed by considering the equilibrium of the triangular element ABC in
Figs S.1.4(b), (c), (e) and (f). Thus, using the method described in Section 1.6
and the principle of superposition (see Section 5.9), the second stress system of
Figs S.1.4(b) and (c) becomes the σx, σy, τxy system shown in Fig. S.1.4(d) while
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10 N/mm2

Fig. S.1.4(a) Fig. S.1.4(b)

Fig. S.1.4(c)

Fig. S.1.4(d)

the third stress system of Figs S.1.4(e) and (f) transforms into the σx, σy, τxy system of
Fig. S.1.4(g).

Finally, the states of stress shown in Figs S.1.4(a), (d) and (g) are superimposed
to give the state of stress shown in Fig. S.1.4(h) from which it can be seen that
σI = σII = 15 N/mm2 and that the x and y planes are principal planes.
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Fig. S.1.4(e) Fig. S.1.4(f)

Fig. S.1.4(g)

Fig. S.1.4(h)

S.1.5

The geometry of Mohr’s circle of stress is shown in Fig. S.1.5 in which the circle is
constructed using the method described in Section 1.8.

From Fig. S.1.5

σx = OP1 = OB − BC + CP1 (i)
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O
C

τ

σ

τmax

τmax

P1

P2

Q1 (σx, τxy)

Q2 (sy,�τxy)

B (σI)

Fig. S.1.5

In Eq. (i) OB = σI, BC is the radius of the circle which is equal to τmax and

CP1 =
√

CQ2
1 − Q1P2

1 =
√

τ2
max − τ2

xy. Hence

σx = σI − τmax +
√

τ2
max − τ2

xy

Similarly

σy = OP2 = OB − BC − CP2 in which CP2 = CP1

Thus

σy = σI − τmax −
√

τ2
max − τ2

xy

S.1.6

From bending theory the direct stress due to bending on the upper surface of the shaft
at a point in the vertical plane of symmetry is given by

σx = My

I
= 25 × 106 × 75

π × 1504/64
= 75 N/mm2

From the theory of the torsion of circular section shafts the shear stress at the same
point is

τxy = Tr

J
= 50 × 106 × 75

π × 1504/32
= 75 N/mm2
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Substituting these values in Eqs (1.11) and (1.12) in turn and noting that σy = 0

σI = 75

2
+ 1

2

√
752 + 4 × 752

i.e.

σI = 121.4 N/mm2

σII = 75

2
− 1

2

√
752 + 4 × 752

i.e.

σII = −46.4 N/mm2

The corresponding directions as defined by θ in Fig. 1.8(b) are given by Eq. (1.10)
i.e.

tan 2θ = 2 × 75

75 − 0
= 2

Hence

θ = 31◦43′(σI)

and

θ = 121◦43′(σII)

S.1.7

The direct strains are expressed in terms of the stresses using Eqs (1.42), i.e.

εx = 1

E
[σx − ν(σy + σz)] (i)

εy = 1

E
[σy − ν(σx + σz)] (ii)

εz = 1

E
[σz − ν(σx + σy)] (iii)

Then

e = εx + εy + εz = 1

E
[σx + σy + σz − 2ν(σx + σy + σz)]

i.e.

e = (1 − 2ν)

E
(σx + σy + σz)

whence

σy + σz = Ee

(1 − 2ν)
− σx
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Substituting in Eq. (i)

εx = 1

E

[
σx − ν

(
Ee

1 − 2ν
− σx

)]

so that

Eεx = σx(1 + ν) − νEe

1 − 2ν

Thus

σx = νEe

(1 − 2ν)(1 + ν)
+ E

(1 + ν)
εx

or, since G = E/2(1 + ν) (see Section 1.15)

σx = λe + 2Gεx

Similarly

σy = λe + 2Gεy

and

σz = λe + 2Gεz

S.1.8

The implication in this problem is that the condition of plane strain also describes the
condition of plane stress. Hence, from Eqs (1.52)

εx = 1

E
(σx − νσy) (i)

εy = 1

E
(σy − νσx) (ii)

γxy = τxy

G
= 2(1 + ν)

E
τxy (see Section 1.15) (iii)

The compatibility condition for plane strain is

∂2γxy

∂x ∂y
= ∂2εy

∂x2 + ∂2εx

∂y2 (see Section 1.11) (iv)

Substituting in Eq. (iv) for εx, εy and γxy from Eqs (i)–(iii), respectively, gives

2(1 + ν)
∂2τxy

∂x ∂y
= ∂2

∂x2 (σy − νσx) + ∂2

∂y2 (σx − νσy) (v)
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Also, from Eqs (1.6) and assuming that the body forces X and Y are zero

∂σx

∂x
+ ∂τzy

∂y
= 0 (vi)

∂σy

∂y
+ ∂τxy

∂x
= 0 (vii)

Differentiating Eq. (vi) with respect to x and Eq. (vii) with respect to y and adding gives

∂2σx

∂x2 + ∂2τxy

∂y ∂x
+ ∂2σy

∂y2 + ∂2τxy

∂x ∂y
= 0

or

2
∂2τxy

∂x ∂y
= −

(
∂2σx

∂x2 + ∂2σy

∂y2

)

Substituting in Eq. (v)

−(1 + ν)

(
∂2σx

∂x2 + ∂2σy

∂y2

)

= ∂2

∂x2 (σy − νσx) + ∂2

∂y2 (σx − νσy)

so that

−(1 + ν)

(
∂2σx

∂x2 + ∂2σy

∂y2

)

= ∂2σy

∂x2 + ∂2σx

∂y2 − ν

(
∂2σx

∂x2 + ∂2σy

∂y2

)

which simplifies to

∂2σy

∂x2 + ∂2σx

∂y2 + ∂2σx

∂x2 + ∂2σy

∂y2 = 0

or
(

∂2

∂x2 + ∂2

∂y2

)
(σx + σy) = 0

S.1.9

Suppose that the load in the steel bar is Pst and that in the aluminium bar is Pal. Then,
from equilibrium

Pst + Pal = P (i)

From Eq. (1.40)

εst = Pst

AstEst
εal = Pal

AalEal
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Since the bars contract by the same amount

Pst

AstEst
= Pal

AalEal
(ii)

Solving Eqs (i) and (ii)

Pst = AstEst

AstEst + AalEal
P Pal = AalEal

AstEst + AalEal
P

from which the stresses are

σst = Est

AstEst + AalEal
P σal = Eal

AstEst + AalEal
P (iii)

The areas of cross-section are

Ast = π × 752

4
= 4417.9 mm2 Aal = π(1002 − 752)

4
= 3436.1 mm2

Substituting in Eq. (iii) we have

σst = 106 × 200 000

(4417.9 × 200 000 + 3436.1 × 80 000)
= 172.6 N/mm2 (compression)

σal = 106 × 80 000

(4417.9 × 200 000 + 3436.1 × 80 000)
= 69.1 N/mm2 (compression)

Due to the decrease in temperature in which no change in length is allowed the strain
in the steel is αstT and that in the aluminium is αalT . Therefore due to the decrease in
temperature

σst = EstαstT = 200 000 × 0.000012 × 150 = 360.0 N/mm2 (tension)

σal = EalαalT = 80 000 × 0.000005 × 150 = 60.0 N/mm2 (tension)

The final stresses in the steel and aluminium are then

σst(total) = 360.0 − 172.6 = 187.4 N/mm2 (tension)

σal(total) = 60.0 − 69.1 = −9.1 N/mm2 (compression).

S.1.10

The principal strains are given directly by Eqs (1.69) and (1.70). Thus

εI = 1

2
(−0.002 + 0.002) + 1√

2

√
(−0.002 + 0.002)2 + (+0.002 + 0.002)2
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i.e.

εI = +0.00283

Similarly

εII = −0.00283

The principal directions are given by Eq. (1.71), i.e.

tan 2θ = 2(−0.002) + 0.002 − 0.002

0.002 + 0.002
= −1

Hence

2θ = −45◦ or +135◦

and

θ = −22.5◦ or +67.5◦

S.1.11

The principal strains at the point P are determined using Eqs (1.69) and (1.70). Thus

εI =
[

1

2
(−222 + 45) + 1√

2

√
(−222 + 213)2 + (−213 − 45)2

]
× 10−6

i.e.

εI = 94.0 × 10−6

Similarly

εII = −217.0 × 10−6

The principal stresses follow from Eqs (1.67) and (1.68). Hence

σI = 31 000

1 − (0.2)2 (94.0 − 0.2 × 271.0) × 10−6

i.e.

σI = 1.29 N/mm2

Similarly

σII = −8.14 N/mm2

Since P lies on the neutral axis of the beam the direct stress due to bending is zero.
Therefore, at P, σx = 7 N/mm2 and σy = 0. Now subtracting Eq. (1.12) from (1.11)

σI − σII =
√

σ2
x + 4τ2

xy
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i.e.

1.29 + 8.14 =
√

72 + 4τ2
xy

from which τxy = 3.17 N/mm2.
The shear force at P is equal to Q so that the shear stress at P is given by

τxy = 3.17 = 3Q

2 × 150 × 300
from which

Q = 95 100 N = 95.1 kN.

Solutions to Chapter 2 Problems

S.2.1

The stress system applied to the plate is shown in Fig. S.2.1. The origin, O, of the axes
may be chosen at any point in the plate; let P be the point whose coordinates are (2, 3).

2p

2p

3p3p

4p

4p

4p

4p

y

xO

P (2,3)

Fig. S.2.1

From Eqs (1.42) in which σz = 0

εx = −3p

E
− ν

2p

E
= −3.5p

E
(i)

εy = 2p

E
+ ν

3p

E
= 2.75p

E
(ii)

Hence, from Eqs (1.27)

∂u

∂x
= −3.5p

E
so that u = −3.5p

E
x + f1(y) (iii)
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