
Stochastic variables and processes

In this chapter, we’re going to examine stochastic variables and stochastic processes. First, we look at
one stochastic variable. Then, we examine multiple stochastic variables. Finally, we’re going to examine
stochastic processes. What kind of properties can such processes have?

1 Stochastic variables and their properties

1.1 Probability distribution and probability density functions

Let’s examine a stochastic variable x̄, also called a random variable. A stochastic variable can be
seen as a normal variable x, but with uncertainty concerning its value. For example, in 1/3 of the cases
its value may be 2, but in the other 2/3 of the cases, its value may be 3.

Every random variable has an associated probability distribution function Fx̄(x), also known as the
cumulative distribution function. This function is defined as the probability that x̄ ≤ x. So, in
formal notation,

Fx̄(x) = Pr {x̄ ≤ x} . (1.1)

Such a function has several evident properties. We have Fx̄(−∞) = 0 and Fx̄(+∞) = 1. Also, the
function is monotonically increasing. So, if a ≤ b then also Fx̄(a) ≤ Fx̄(b).

There is also the probability density function fx̄(x), abbreviated as PDF. (Note that PDF does
not mean probability distribution function!) The PDF is defined as the derivative of the probability
distribution function. So,

fx̄(x) =
dFx̄(x)

dx
. (1.2)

It immediately follows that fx̄(x) ≥ 0. We also have∫ ∞

−∞
fx̄(x) = 1,

∫ b

−∞
fx̄(x) = Fx̄(b) and

∫ b

−a

fx̄(x) = Fx̄(b)− Fx̄(a). (1.3)

1.2 Moments of distributions

Often, it is very hard, if not impossible, to exactly determine Fx̄(x) and fx̄(x). But we may try to
determine other quantities. For example, we have defined the ith moment of the PDF as

mi = E
{
x̄i

}
=

∫ ∞

−∞
xifx̄(x) dx. (1.4)

So, we have m0 = 1. Also, m1 = µx̄ is the mean or average of x̄. A similar and even more important
quantity is the ith central moment m′

i. It is defined as

m′
i = E

{
(x̄− µx̄)i

}
=

∫ ∞

−∞
(x− µx̄)ifx̄(x) dx. (1.5)

Now we have m′
1 = 0. Also, m′

2 = σ2
x̄ is the variance of the stochastic process. The square root of the

variance, being σx̄, is called the standard deviation.
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1.3 The normal distribution

There is one very important and common type of distribution. This is the normal distribution, also
known as the Gaussian distribution. Its PDF is given by

fx̄(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (1.6)

Quite trivially, this distribution has µ = µx̄ as mean and σ2 = σ2
x̄ as variance.

The central limit theorem states that the PDF of a process, caused by a large number of other random
processes, approximates the PDF of the Gaussian distribution. Such situations often occur in real life.
So, in the remainder of this summary, we will mostly assume that unknown stochastic processes are
normally distributed. All that is then left for us to do is to determine the mean µx̄ and the variance σ2

x̄.

2 Multiple stochastic variables

2.1 Definitions for multiple random variables

Let’s examine the case where we have two random variables x̄ and ȳ. The joint probability distribution
function Fx̄ȳ(x, y) is now defined as

Fx̄ȳ(x, y) = Pr {x̄ ≤ x ∧ ȳ ≤ y} , (2.1)

where the ∧ operator means ‘and’. We thus have Fx̄ȳ(−∞, b) = Fx̄ȳ(a,−∞) = 0, Fx̄ȳ(+∞,+∞) = 1,
Fx̄ȳ(a,+∞) = Fx̄(a) and Fx̄ȳ(+∞, b) = Fȳ(b).

Similarly, the joint probability density function (joint PDF) fx̄ȳ(x, y) is defined as

fx̄ȳ(x, y) =
∂2Fx̄ȳ(x, y)

∂x∂y
. (2.2)

The joint PDF has as properties∫ a

−∞

∫ b

−∞
fx̄ȳ(x, y) dx dy = Fx̄ȳ(a, b),

∫ ∞

−∞
fx̄ȳ(x, y) dy = fx̄(x) and

∫ ∞

−∞
fx̄ȳ(x, y) dx = fȳ(y). (2.3)

It may occur that the value of one of the two random variables is known. Let’s suppose that it is given
that ȳ = y1. We can then find the conditional distribution of x̄ given ȳ using

fx̄(x|ȳ = y1) =
fx̄ȳ(x, y1)

fȳ(y1)
. (2.4)

2.2 Moments of joint distributions

The joint moment mij of two random variables x̄ and ȳ is defined as

mij = E
{
x̄iȳj

}
=

∫ ∞

−∞

∫ ∞

−∞
xiyjfx̄ȳ(x, y) dx dy. (2.5)

The sum n = i+j is called the order of the joint moment. It can be noted that m10 = µx̄ and m01 = µȳ.
Also, the second order moment m11 is called the average product Rx̄ȳ.

Of course, there is also a joint central moment m′
ij . It is defined as

m′
ij = E

{
(x̄− µx̄)i(ȳ − µȳ)j

}
=

∫ ∞

−∞

∫ ∞

−∞
(x̄− µx̄)i(ȳ − µȳ)jfx̄ȳ(x, y) dx dy. (2.6)
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The second order joint moments m′
20 and m′

02 are equal to the variances of x̄ and ȳ: m′
20 = σ2

x̄ and
m′

02 = σ2
ȳ. The other second order joint moment m′

11 is called the covariance Cx̄ȳ. It satisfies

m′
11 = Cx̄ȳ = Rx̄ȳ − µx̄µȳ = m11 −m10m01. (2.7)

Finally, we can define the correlation Kx̄ȳ as

Kx̄ȳ =
Cx̄ȳ

σx̄σȳ
=

m′
11√

m10m01
. (2.8)

2.3 Properties of multiple random variables

Let’s examine two random variables x̄ and ȳ. We say that x̄ and ȳ are. . .

• orthogonal if E {x̄ȳ} = 0.
• fully correlated if E {x̄ȳ} = µx̄µȳ ± σx̄σȳ or, equivalently, if Kx̄ȳ = ±1.
• uncorrelated if E {x̄ȳ} = E {x̄}E {ȳ} = µx̄µȳ or, equivalently, if Kx̄ȳ = 0. We now have Cx̄ȳ = 0

and σ2
x̄+ȳ = σ2

x̄ + σ2
ȳ. Also, x̄− µx̄ and ȳ − µȳ are orthogonal.

• independent if fx̄ȳ(x, y) = fx̄(x)fȳ(y). This also implies that x̄ and ȳ are uncorrelated. (Though
the converse is not always true.)

3 Stochastic processes

3.1 Basics of stochastic processes

Let’s suppose that we are doing an experiment several times. It could occur that the output signal x(t)
of the experiment is always the same: it is a deterministic function. However, often uncertainty is
involved. In this case, the output x(t) is a bit different every time. The output signal x̄(t) is then called
a stochastic function or a stochastic process. At every time τ , the value of x̄(τ) is a stochastic
variable.

Every time we run the experiment, we get a certain output x(t). This output is called a realization of
the stochastic process x̄(t). The set of all realizations is called the ensemble of the process.

There always is a certain chance that a stochastic process x̄(t) results in a certain realization x(t). If
this chance is constant in time (that is, the distribution of x̄(t) is constant), then we call the process
stationary. It is very hard, if not impossible, to show that a process is stationary. So it is often simply
assumed that stochastic processes are stationary.

3.2 The distribution of stochastic processes

Previously, we talked about a stochastic process x̄(t). Every stochastic process also has a probability
distribution and probability density function, which are defined as

Fx̄(x; t) = Pr {x̄(t) ≤ x} and fx̄(x; t) =
∂Fx̄(x; t)

∂x
. (3.1)

Now let’s examine two stochastic processes x̄(t) and ȳ(t). The joint distribution of these two processes
is defined as

Fx̄ȳ(x, y; t1, t2) = Pr {x̄(t1) ≤ x ∧ ȳ(t2) ≤ y} and fx̄ȳ(x, y; t1, t2) =
∂2Fx̄ȳ(x, y; t1, t2)

∂x∂y
. (3.2)
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Often, it is assumed that the processes x̄(t) and ȳ(t) are stationary. This means that not the times t2
and t1 theirselves are important, but only the time difference τ = t2 − t1. We can thus write

Fx̄ȳ(x, y; τ) = Pr {x̄(t) ≤ x ∧ ȳ(t + τ) ≤ y} and fx̄ȳ(x, y; τ) =
∂2Fx̄ȳ(x, y; τ)

∂x∂y
. (3.3)

3.3 Properties of stochastic processes

Let’s suppose that we know the joint distribution function fx̄ȳ(x, y; τ) of two stationary processes x̄(t)
and ȳ(t). We can now define the moment function mij(τ) of these processes as

mij(τ) = E
{
x̄(t)iȳ(t + τ)j

}
=

∫ ∞

−∞

∫ ∞

−∞
xiyjfx̄ȳ(x, y; τ) dx dy. (3.4)

Similarly, we can define the central moment function m′
ij(τ) as

m′
ij(τ) = E

{
(x̄(t)− µx̄)i(ȳ(t + τ)− µȳ)j

}
=

∫ ∞

−∞

∫ ∞

−∞
(x− µx̄)i(y − µȳ)jfx̄ȳ(x, y; τ) dx dy. (3.5)

Several of these moments have special names. The cross product function Rx̄ȳ(τ) is equal to m11(τ)
and the cross covariance function Cx̄ȳ(τ) is equal to m′

11(τ). Also, the cross correlation function
Kx̄ȳ(τ) is defined as

Kx̄ȳ(τ) =
Cx̄ȳ(τ)
σx̄σȳ

. (3.6)

Next to these three cross-functions, we also have three auto-functions. They are the auto product
function Rx̄x̄(τ), the auto covariance function Cx̄x̄(τ) and the auto correlation function Kx̄x̄(τ).
They are defined identically as the cross-functions, with the only difference that we substitute ȳ(t + τ)
by x̄(t + τ).

The cross correlation function Kx̄ȳ(τ) is an indication of the correlation between two stochastic processes
x̄(t) and ȳ(t + τ). But you might be wondering, what is the auto correlation function Kx̄x̄(τ) good for?
Well, it gives an indication of how much the value of x̄(t + τ) at time t + τ depends on the value of x̄(t)
at time t. We’ll examine how this works.

First, we can note that Kx̄x̄(τ) gives the correlation between the random variables x̄(t) and x̄(t + τ).
Generally, if τ becomes big, then the signals x̄(t) and x̄(t + τ) will be uncorrelated: Kx̄x̄(τ) will go to
zero. But for small (absolute) values of τ , the signals x̄(t) and x̄(t+ τ) are correlated a lot. (Especially if
τ = 0, because Kx̄x̄(0) = 1.) How fast Kx̄x̄(τ) goes to zero now determines how fast the signal x̄(t) loses
its influence on x̄(t + τ).

3.4 Ergodic processes

Let’s examine a stochastic process x̄(t). We can examine all possible realizations x(t) of this process. If
we then take the (weighted) average of these realization values, we will find the ensemble average µx̄(t)
at time t.

However, in real life, we don’t know all realizations of a stochastic process x̄(t). All we have is one
realization x(t). The average value µx of this realization is called the time average. An ergodic
process is now defined as a process in which these averages are equal. Or, more formally, it is defined
as a process for which, for every function g(x), we have

E {g(x̄(t))} = lim
T→∞

1
2T

∫ T

−T

g(x̄(t)) dt. (3.7)
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In real life, because we only have one realization, we often assume that a process is ergodic. This implies
that our single realization is representative for the entire process. In other words, we can use it to derive
the process properties. For this, we can use

µx̄ = lim
T→∞

1
2T

∫ T

−T

x(t) dt, σ2
x̄ = lim

T→∞

1
2T

∫ T

−T

(x(t)− µx̄)2 dt = lim
T→∞

1
2T

∫ T

−T

x(t)2 dt− µ2
x̄, (3.8)

Rx̄ȳ(τ) = lim
T→∞

1
2T

∫ T

−T

x(t)y(t + τ) dt, and Cx̄ȳ(τ) = lim
T→∞

1
2T

∫ T

−T

x(t)y(t + τ) dt− µx̄µȳ. (3.9)

3.5 White noise

One special type of a stochastic process is white noise w̄(t). White noise has a zero mean: µw̄ = 0.
Next to this, the value of w̄(t) has absolutely no influence on the value of w̄(t + τ) with τ 6= 0. Thus,
Cw̄w̄(τ) = 0 for τ 6= 0. To be more precise, the auto covariance function of white noise is defined as

Cw̄w̄(τ) = Wδ(τ), (3.10)

where W is called the intensity of the white noise and δ(τ) is the Dirac delta function. However,
white noise is only a convenient theoretical trick. In real life, white noise as defined above does not
occur. To show this, we can look at the variance σ2

w̄ of w̄(t). It is given by σ2
w̄ = Cw̄w̄(0) = ∞. This

is physically of course impossible. So instead, in real life, we usually call a stochastic process x̄(t) white
noise if Cx̄x̄(τ) ≈ 0 for |τ | > ε for some sufficiently small ε.
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