
Spectral analysis of discrete processes

In the previous chapter, we have examined spectral analysis for continuous-time processes. However,
when working with computers, we can only deal with discrete-time processes. So, that’s we’ll focus on in
this chapter. First, we’ll look at how we can make a signal discrete. Second, we examine multiple ways
to transform such discrete signals. Finally, we find out how can actually estimate the PSD function from
a transformed discrete signal.

1 Making a signal discrete: sampling

1.1 The working principle of sampling

Let’s suppose that we have a continuous signal x(t). The Fourier transform of this function is X(ω). But
we don’t want a continuous signal. Instead, we want a discrete signal. To acquire one, we first define the
pulse train y(t) as

y(t) =
+∞∑

n=−∞
δ(t− n∆t), (1.1)

where n is an integer, ∆t is the sampling period and ωs = ω0 = 2π/∆t is the sampling frequency.
According to a trick from the previous chapter, this pulse train has a Fourier transform of

Y (ω) =
2π

∆t

+∞∑
n=−∞

δ

(
ω − n

2π

∆t

)
. (1.2)

We can use y(t) to create the discrete signal z(t) of x(t). To do this, we multiply x(t) by y(t). Thus,

z(t) = x(t)y(t) =
+∞∑

n=−∞
x(t) δ(t− n∆t). (1.3)

Now we would like to find the Fourier transform Z(ω) of z(t). Since multiplication in the time domain
means convolution in the frequency domain, we get

Z(ω) =
1
2π

X(ω) ∗ Y (ω) =
1
2π

∫ +∞

−∞
X(ξ)Y (ω − ξ) dξ. (1.4)

By inserting the relation for Y (ω) and by working things out further, we can then find that

Z(ω) =
1

∆t

+∞∑
n=−∞

X(ω − nω0). (1.5)

So basically, to find Z(ω), we take X(ω), scale it by 1/∆t, make copies of it and then shift it by integer
multiples of ω0. This thus makes Z(ω) periodic. By the way, the above function Z(ω) is the continuous-
time Fourier transform (CTFT) of the discrete signal. We will examine the discrete-time Fourier
transform later in this chapter.

It is interesting to note the duality with the ‘making-a-function-periodic’ trick from the last chapter.
There, we made a normal function x(t) periodic by copying it and shifting these copies by integer multiple
of T0. The result was a discrete version of the original Fourier transform, scaled by a factor 1/T0. Here,
we make a function discrete with time step ∆t. The result is a copied-and-shifted version of the original
Fourier transform, scaled by a factor 1/∆t.

1

1.2 Losing data due to sampling

Of course, the downside of sampling is that data is lost. In the time domain, we only have data at
the points z(k∆t) (or alternatively, z[k]). The data in between these points is lost. In the frequency
domain, something different occurs. Let’s examine the function Z(ω) in the interval [−ωs/2, ωs/2]. In
this interval, we don’t only have the original function X(ω). Instead, copies of shifted versions of X(ω)
are also added. This often makes it impossible to extract the original function X(ω) in this interval. This
phenomenon is called aliasing.

Luckily, there is a trick to reduce this problem. We simply take the original signal X(ω) and, before we
alias it, we remove all frequencies higher than the so-called Nyquist frequency ωn = ωs/2. (Alterna-
tively, we can select the sampling frequency ωs to be twice as high as the highest frequency that already
exists.) This does mean that we lose some data about the higher frequencies. However, the resulting
adjusted signal X(ω) won’t be effected by the sampling. In other words, we keep perfect information
about the more important lower frequencies.

Based on this information, we can also answer the question when we can reconstruct the exact original
signal x(t) from the sampled signal z(t). Let’s suppose that X(ω) is a bandlimited signal. This
means that there is a frequency ωM such that if |ω| > ωM , then X(ω) = 0. If we now choose the
sampling frequency ωs such that ωs > 2ωM , then we can perfectly reconstruct the original signal x(t)
from the sampled signal z(t). If this is not the case, then there will be errors. (This theorem is called
the (Shannon) sampling theorem.)

1.3 Reconstruction of the original signal

The transformation of the discrete-time signal z(t) back to the continuous-time signal x(t) is called
signal reconstruction. To do this, we should simply take Z(ω) and only use the values in the interval
[−ωs/2, ωs/2]. In other words, if we take as reconstruction filter R(ω) a block function with width ωs,
then we will simply have as reconstructed signal

Xr(ω) = Z(ω)R(ω). (1.6)

If we put this equation in the time-domain, then the reconstruction filter will be a sinc function. So,
r(t) = sinc

(
ωst
2

)
= sinc

(
πt
∆t

)
. To find the reconstructed signal xr(t) in the time domain, we can then use

the convolution integral

xr(t) = z(t) ∗ r(t) =
∫ +∞

−∞
x(θ)δ(θ − n∆t) sinc

(ωs

2
(t− θ)

)
. (1.7)

The above integrand only gives a nonzero value if θ = n∆t. Thus, we find that

xr(t) =
+∞∑
−∞

x(n∆t) sinc
(ωs

2
(t− n∆t)

)
. (1.8)

So, the reconstructed signal is a sum of sinc functions. The nth sinc function has its center at t = n∆t
(so, at the nth sample) and has magnitude x(n∆t) (which is the magnitude of the nth sample). Also,
the sinc function is zero at the position of the other samples. So, at least we can always be sure that
x(n∆t) = xr(n∆t) for all n. That is, the reconstructed signal equals the original signal at the position
of the samples. In between these samples. xr(t) usually only approximates x(t).

1.4 Reconstruction with insufficient data

The previous reconstruction method requires us to have z(t) available at all times t. But in practice,
this often isn’t the case, as we can’t look into the future. To solve this problem, we use a different

2

reconstruction method, called the zero-order hold (ZOH). We now simply say that the reconstructed
signal xr(t) equals the last sample that we have found. So,

xr(t) = z(k∆t) for k∆t ≤ t < (k + 1)∆t. (1.9)

This method is actually equivalent with using as reconstruction signal r(t) a block with width ∆t, shifted
in time by ∆t/2. So, r(t) = b(t−∆t/2). In the frequency domain, we then have

R(ω) = e−jω∆t/2B(ω) = e−jω∆t/2∆t sinc
(

ω∆t

2

)
. (1.10)

Alternatively, there is also the first-order hold (FOH), but we won’t discuss that method here.

2 Discrete Fourier transforms

2.1 The discrete-time Fourier transform

It is time to really start to work in discrete time. First, we will denote x(n∆t) simply as x[n], and similarly,
z(n∆t) = z[n]. (Note that x[n] and z[n] in fact are the same.) Now we define the discrete-time Fourier
transform (DTFT) of a discrete signal x[n] as

X(Ω) = F {x[n]} =
+∞∑

n=−∞
x[n]e−jΩn and x[n] = F−1 {X(Ω)} =

1
2π

∫ +∞

−∞
X(Ω)ejΩn dΩ. (2.1)

The DTFT X(Ω) is very similar to the CTFT Z(ω) of the discrete signal z(t). The fundamental difference
is that we now don’t use ω but Ω. The relation between the two is given by Ω = ω∆t. Also, as can be
seen from the above relation, the DTFT X(Ω) has a period of 2π, whereas the CTFT Z(ω) has a period
of 2π/∆t. And finally, we don’t use times n∆t anymore, but we simply use indices n. So, the DTFT can
be seen as a ‘normalized’ version of the CTFT, such that the factor ∆t has been taken out.

2.2 The discrete Fourier transform

A different type of transform is the discrete Fourier transform (DFT). (Don’t confuse the DTFT with
the DFT!) Let’s suppose that we have N samples x[n] (0 ≤ n < N), taken with a sampling time ∆t over
a measurement time T . (So, T = N∆t.) The DFT X[k] of x[n] is now given by

X[k] =
N−1∑
n=0

x[n]e−jk 2π
N n and, as inverse, x[n] =

1
N

N−1∑
k=0

X[k]ejn 2π
N k. (2.2)

Just like the DTFT resembles the CTFT, so does the DFT resemble the CTFS. To see how, compare the
above equation with the relations for the CTFS, given by

ck =
1
T

∫ t0+T

t0

x(t)e−jk 2π
T t dt and x(t) =

+∞∑
k=−∞

ckejk 2π
T t. (2.3)

So, the period T from the CTFS resembles the number of measurements N in the DFT. In fact, the
function X[k] is periodic with period N . So, X[k] = X[k + N] for all k. Also, it can be noted that
X[−k] = X[n− k] = X∗[k], where X∗[k] is the complex conjugate of X[k]. (Remember that we also had
c−k = c∗k with the CTFS.)

Let’s denote fs = 1/∆t as the sampling frequency (in Hertz). Also, we say that fs/N = 1/N∆t = 1/T is
the frequency resolution (FR) of the DFT in Hertz. (The FR in radians per second is 2πfs/N .) The

3

DFT can now be used to measure how ‘strong’ the frequency f = mfs/N (with −N/2 < m < N/2) is
present in the signal x[n]. To see how this works, let’s examine a signal with frequency f0, like

x(t) = cos(2πf0t), or equivalently, x[k] = cos(2πf0k∆t). (2.4)

Let’s first assume that we can write f0 = mfs/N for some integer m. (That is, f0 is a multiple of the
frequency resolution. We do ought to have m < N/2 though, since higher frequencies can’t be measured
with only N measurements.) In this case, |X[±m]| will have a relatively high value, while X[k] = 0 if
k 6= ±m. But now assume that we can’t write f0 = mfs/N for some integer m. In this case, spectral
leakage occurs. This means that X[k] will have a value for about all k. This makes it hard to determine
the actual frequency of the signal.

2.3 Applying a window

The DFT has leakage, while the DTFT does not. So, to prevent leakage, we can in a way draw inspiration
from the DTFT. We start with a signal x[n]. (For example, the one of equation (2.4).) When we use the
DFT to acquire X[k], we only consider the signal x[n] for 0 ≤ n < N . We want to do a similar thing
with the DTFT. So, we define the rectangular time window w[n] as

w[n] =

{
1 if 0 ≤ n < N,

0 otherwise.
(2.5)

We then define the signal y[n] = w[n]x[n]. We put this signal y[n] into the DTFT and find Y (Ω). It can
now be shown that X[k] actually equals Y (Ω) on the corresponding points. (That is, if Ω = 2πk/N .)

Although the above is interesting, it doesn’t solve the leakage problem. However, things are different if
we use a different time window. Several good time windows are available. We could, for example, try the
Hanning window

h[k] =

{
1
2

(
1− cos

(
2πk
N

))
= sin2

(
πk
N

)
if 0 ≤ k < n,

0 otherwise.
(2.6)

If we apply this window to the signal x[k] (and thus get y[k] = h[k]x[k]) and put this new signal into the
DFT, then there generally is less leakage. So, this significantly reduces our problem.

2.4 The fast Fourier transform

Let’s suppose that we have a signal x[n] and we want to find the DFT X[k]. We could simply use equation
(2.2). However, this would require N2 computations. The fast Fourier transform (FFT) is a very
efficient algorithm that finds the DFT with only N log2 N computations. Especially for big N , this saves
a lot of computation time.

To apply the FFT, we first split the sequence x[n] up into even terms y[r] and odd terms z[r]. So,

y[r] = x[2r] and z[r] = x[2r + 1] for 0 ≤ r < N/2. (2.7)

For each of the sequences y[r] and z[r], we now find the DFTs Y [k] and Z[k] for 0 ≤ k < N/2. We then
put these two together to find X[k], according to

X[k] = Y [k] + e−j 2πk
N Z[k]. (2.8)

There is, however, a problem. During computations, we only have the values for Y [k] and Z[k] for
0 ≤ k < N/2. So the above equation only works for 0 ≤ k < N/2. But we need to find X[k] for
0 ≤ K < N . To solve this problem, we make use of the fact that Y [k] and Z[k] are, in reality, periodic

4

functions with period N/2. So, Y [k] = Y [k + N/2] and Z[k] = Z[k + N/2]. By using this fact, we can
find that, for N/2 ≤ K < N , we have

X[k + N/2] = Y [k + N/2] + e−j
2π(k+N/2)

N Z[k + N/2] = Y [k]− e−j 2πk
N Z[k]. (2.9)

(Note that we have used the fact that e−jπ = −1.) In this way, we can derive X[k] from Y [k] and Z[k]
in a very efficient way. The question remains, how do we find Y [k] and Z[k]? Well, this is simply done
recursively: we again use the FFT.

3 Calculating spectral estimates

3.1 An initial estimate

The DFT is quite popular, because it can be used to approximate the PSD function. Let’s suppose that
we have a stochastic process x̄(t). We have several samples x[n] of a realization of this process. We have
also found the DFT X[k] of x[n]. The Periodogram INx̄x̄

[k] of this signal x[n] is now defined as

INx̄x̄
[k] =

1
N

X[−k]X[k] =
1
N

X∗[k]X[k] =
1
N
|X[k]|2. (3.1)

This periodogram is an unbiased estimate of the discrete-time PSD function Sx̄x̄[k]. That is,

lim
N→∞

E {INx̄x̄
[k]} = Sx̄x̄(ω). (3.2)

However, it is not a consistent estimate: the variance doesn’t go to zero as N →∞. Instead, we have

lim
N→∞

var {INx̄x̄
[k]} = σ2

IN
= σ4

x̄ 6= 0. (3.3)

3.2 Improving the estimate

We would like to reduce the variance of our estimate INx̄x̄
[k]. One way to do this is to take multiple

signals x[n] and derive an estimate INx̄x̄
[k] for each one of them. However, the problem is that we usually

only have one signal x[n]. According to Bartlett’s procedure, we then simply divide this signal into K
signals, each having M samples, with N = KM . The ith signal would thus be x(i)[n] = x[n + (i− 1)M],
with 0 ≤ i < K and 0 ≤ n < M . The estimate Ŝx̄x̄[k] of the discrete-time PSD function now becomes

Ŝx̄x̄[k] =
1
K

K∑
i=1

I
(i)
M [k], with I

(i)
M [k] =

1
M

∣∣∣∣∣
M−1∑
n=0

x(i)[n]e−j 2πk
M n

∣∣∣∣∣
2

. (3.4)

The variance of the estimate Ŝx̄x̄[k] is now 1/K times the variance of each periodogram. So, that’s
a significant improvement. However, there of course is a downside. The frequency resolution equals
2πfs/M . So, decreasing the variance of the estimate means that you decrease the frequency resolution
as well. When applying Bartlett’s procedure, you thus have to make a tradeoff between these two
parameters.

Let’s suppose that we’ve finally found a satisfactory estimate Ŝx̄x̄[k] of the discrete-time PSD function
Sx̄x̄[k]. Now we want to find an estimate of the actual continuous-time PSD function Ŝx̄x̄(ω). What is
the relation between the two? Well, at the end of paragraph 1.1, we’ve seen that transforming a discrete
version of a signal with time step ∆t is the same as transforming the continuous signal, copying-and-
shifting it and scaling it by 1/∆t. To reverse this, we thus need to scale the function Ŝx̄x̄[k] back by a
factor ∆t. So,

Ŝx̄x̄(ω) = ∆tŜx̄x̄[k]. (3.5)

Here, we have ω∆t = 2πk
N . Do note though, that the estimate Ŝx̄x̄(ω) is only valid for −2πfs/2 < ω <

2πfs/2. Also, the resulting frequency resultion is given by 2πfs/M .

5

