
Spectral analysis of continuous processes

In the previous chapter, we have examined systems in the time-domain. In both this chapter and the
next one, we’re going to look at the frequency domain. To do that, we first examine Fourier series and
the Fourier transform. With this theory, we can then examine the properties of systems in the frequency
domain. This chapter concerns the continuous-time case, while the next chapter deals with discrete time.

1 Fourier series

1.1 Continuous-time Fourier series

Let’s examine a periodic function x(t). (Periodic means that there is some T such that x(t) = x(t + T )
for all t.) We can approximate x(t) by summing up several basis functions. In the continuous-time
Fourier series (CTFS) approximation, we use sines and cosines as basis functions. So, we approximate
x(t) like

x̃(t) =
N−1∑
k=0

(ak cos(kω0t) + bk sin(kω0t)) = a0 +
N−1∑
k=1

(ak cos(kω0t) + bk sin(kω0t)) . (1.1)

The fundamental frequency is generally chosen to be ω0 = 2π/T . (The frequency kω0 is now called
the kth harmonic.) In this case, all basis functions are orthogonal on the interval [t0, t0 + T ]. This
means that, if k and l are positive integers, we have∫ t0+T

t0

sin(kω0t) cos(lω0t) dt = 0, (1.2)∫ t0+T

t0

sin(kω0t) sin(lω0t) dt =

{
0 if k 6= l
T
2 if k = l,

(1.3)

∫ t0+T

t0

cos(kω0t) cos(lω0t) dt =

{
0 if k 6= l
T
2 if k = l.

(1.4)

We can use the above equations to find the coefficients a0, ak and bk. We will then find that

a0 =
1
T

∫ t0+T

t0

x(t) dt, (1.5)

ak =
2
T

∫ t0+T

t0

x(t) cos(kω0t) dt, (1.6)

bk =
2
T

∫ t0+T

t0

x(t) sin(kω0t) dt. (1.7)

It is interesting to note that a0 is, in fact, the average of the signal x(t).

1.2 Continuous-time Fourier series in complex form

Using complex numbers, we can write the equations of the previous paragraph in a much easier form.
Let’s denote j =

√
−1 as the complex number. As you know, we can write ejωt = cos(ωt) + j sin(ωt), so

cos(ωt) =
1
2
(
ejωt + e−jωt

)
and sin(ωt) =

1
2j

(
ejωt − e−jωt

)
. (1.8)
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We can now rewrite equation (1.1) to

x̃(t) =
N−1∑

k=−(N−1)

ckejkω0t, with ck =
1
T

∫ t0+T

t0

x(t)e−jkω0t dt. (1.9)

Note that the coefficients ck are complex numbers as well. However, they are set such that the approx-
imation x̃(t) is a real-valued function. In the above equation, the left relation is called the synthesis
equation. This is because it constructs/synthesizes the approximation x̃(t) from basis functions. The
right relation is called the analysis equation. This is because it analyses how to approximate x(t) using
basis functions.

We can also find the relationships between the coefficients ak, bk and ck. These are

c0 = a0, ck =
1
2
(ak − jbk), c−k =

1
2
(ak + jbk), (1.10)

a0 = c0, ak = 2Re{ck} = 2Re{c−k}, bk = −2Im{ck} = 2Im{c−k}. (1.11)

The latter relations follow from the fact that ck and c−k are complex conjugates. We denote this by
ck = c∗−k.

1.3 Properties of the Fourier series

The Fourier transform has several properties. We’ll mention a couple of them. First of all, let’s examine
N . When N increases, then the approximation x̃(t) of x(t) becomes better. And, if N → ∞, then
x̃(t) → x(t).

When we find the Fourier transform of an even function, then we will only get cosine terms. So, bk = 0
for all k. (An even function x(t) satisfies x(t) = x(−t).) Similarly, when we find the Fourier transform
of an odd function, we only get sine terms. So, ak = 0 for all k. (An odd function x(t) satisfies
x(t) = −x(−t).)

Let’s look at the average of the squared signal x(t)2. It can be shown that this equals the sum of the
squared Fourier series coefficients. So,

1
T

∫ t0+T

t0

x(t)2 dt = a2
0 +

∞∑
k=1

1
2
(
a2

k + b2
k

)
=

∞∑
k=−∞

|ck|2. (1.12)

This relation is called Parseval’s theorem for the Fourier series expansion.

Finally, we can consider the Fourier series expansion of the nth derivative of x(t). We then find that it
equals

dnx(t)
dtn

=
∞∑

k=−∞

(jkω0)nckejkω0t. (1.13)

2 The continuous-time Fourier transform

2.1 The Fourier transform equations

Previously, we have derived the Fourier series of periodic functions. However, now we examine an aperi-
odic function. This function can, in fact, be seen as a periodic function with period T = ∞. So we can
approximate it using a Fourier series. If we take N = ∞ and t0 = − 1

2T , then we get

x̃(t) = lim
T→∞

(
+∞∑

k=−∞

ω0

2π

(∫ + 1
2 T

− 1
2 T

x(t)e−jkω0t dt

)
ejkω0t

)
. (2.1)
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However, if T → ∞, then ω0 = 2π/T becomes infinitesimally small. So, we rewrite it as dω. This then
turns the sum into an integral. We should then also denote kω0 simply as ω. This turns the above
equation into

x̃(t) =
1
2π

∫ +∞

−∞

(∫ +∞

−∞
x(t)e−jωt dt

)
ejωt dω. (2.2)

The inner integral from the above equation is called the Fourier integral. In fact, it is the Fourier
transform X(ω) of the signal x(t). This Fourier transform is denoted as

X(ω) = F {x(t)} =
∫ +∞

−∞
x(t)e−jωt dt. (2.3)

The outer integral is the inverse Fourier transform. It is written as

x(t) = F−1 {X(ω)} =
1
2π

∫ +∞

−∞
X(ω)ejωt dω. (2.4)

It must be noted that, in literature, there is no general consensus on where to place the 1/2π term in
the above two equations. Some people put it in the first, other people put it in the second, and other
people put the term

√
1/2π in both terms. Also, when you use the frequency in Hertz instead of rad/s,

the whole term vanishes altogether. In this summary, however, we’ll simply use the notation of the above
two equations.

2.2 Fourier transforms of basic functions

It can be worthwhile to remember the Fourier transform of several basic functions. When remembering
them, it is convenient to keep in mind that X(ω) is an indication of how ‘strong’ the frequency ω is
present in the signal. This may make it easier to remember. Now we’ll list a couple of basic transforms.

• F {1} = 2πδ(ω), where δ(ω) is again the Dirac delta function. So basically, only the frequency
ω = 0 is present in the signal x(t) = 1.

• F {cos(ω0t)} = π (δ(ω + ω0) + δ(ω − ω0)). So, the frequencies ω = ω0 and ω = −ω0 are present in
the signal x(t) = cos(ω0t).

• Let’s define the block function b(t) with width T and the sinc function according to

b(t) =


1 if |t| < T/2,

1/2 if |t| = T/2,

0 if |t| > T/2,

and sinc(x) =
sin(x)

x
. (2.5)

Now, we have B(ω) = F {b(t)} = T sinc
(
ω T

2

)
. It is interesting to note that, if T →∞, then b(t) = 1

for all t. Thus, B(ω) → 2πδ(ω).
• Let’s consider the block function b(ω) with width W in the frequency domain. Now let’s take the

inverse Fourier transform. We then get F−1 {b(ω)} = W
2π sinc

(
W
2 t
)
.

By the way, the sinc function is quite an important function. This function has a big peak of sinc(x) = 1
at x = 0. For the rest, it is zero if ω = 2πk/T , with k a nonzero integer. Also, the sinc function is an
even function. So, sinc(x) = sinc(−x).

It is interesting to note that transforming a block function gives a sinc-function, while transforming the
sinc-function gives a block-function. This is due to the duality property of the Fourier transform. This
property states that

if F {x(t)} = X(ω) or, equivalently, x(t) = F−1 {X(ω)} then F {X(t)} = 2πx(−ω). (2.6)
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2.3 Making a function periodic

Let’s suppose that we have some function x(t). We can make this function periodic by ‘copying’ it and
moving it by integer multiples of T0. This gives us the periodic function xp(t), being

xp(t) =
+∞∑

n=−∞
x(t + nT0). (2.7)

Because the above function is periodic with period T0, we can find the Fourier series. But now it can
be shown that the coefficients ck of this series actually equal X(kω0)/T0, where X(ω) = F {x(t)} and
ω0 = 2π/T0. So, the coefficients ck can simply be derived from X(ω).

Alternatively, we can also find the continuous-time Fourier transform of xp(t). This then becomes

Xp(ω) =
+∞∑

n=−∞

X(ω)
T0

δ(ω − nω0). (2.8)

Note that this is a discrete function: it only has values at certain points.

Let’s see how this trick works for the block function b(t). First, we define the periodic block function
bp(t) as

bp(t) =


1 if |t| < T/2 + nT0,

1/2 if |t| = T/2 + nT0,

0 if |t| > T/2 + nT0.

(2.9)

We can now find the Fourier series coefficients ck. They will turn out to be equal to T
T0

sinc
(
kω T

2

)
, which

is exactly what the above trick predicts them to be.

3 Spectral analysis applied to systems

3.1 Spectral analysis

Let’s examine a stochastic process x̄(t). If we try to analyze it in the frequency domain, we run into a
problem. The resulting Fourier transform will be different for every realization x(t). However, usually
we aren’t interested in x(t). Instead, we are interested in the energy of the process x̄(t). This energy is
generally proportional to x̄(t)2 or, when two processes are involved, to x̄(t)ȳ(t+ τ). (Here, we do assume
that x̄(t) and ȳ(t) have zero mean. If not, they can be normalized by subtracting the mean from the
process.)

We know that the product x̄(t)ȳ(t+τ) is related to Cx̄ȳ(τ). So, let’s examine this parameter. We assume
that both x̄(t) and ȳ(t) are ergodic processes. x(t) and y(t) are realizations of these processes, with
corresponding Fourier transforms X(ω) and Y (ω). It can now be shown that Cx̄ȳ(τ) equals

Cx̄ȳ(τ) = lim
T→∞

1
2T

1
2π

∫ +∞

−∞
Y (ω)X(−ω)ejωτ dω. (3.1)

We can define the power spectral density function (PSD function) Sx̄ȳ(ω) as

Sx̄ȳ(ω) = lim
T→∞

1
2T

Y (ω)X(−ω). (3.2)

The relation between the covariance function Cx̄ȳ(τ) and the power spectral density function Sx̄ȳ(ω) is
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then very easy. It is given by

Sx̄ȳ(ω) = F {Cx̄ȳ(τ)} =
∫ +∞

−∞
Cx̄ȳ(τ)e−jωτ dτ, (3.3)

Cx̄ȳ(τ) = F−1 {Sx̄ȳ(ω)} =
1
2π

∫ +∞

−∞
Sx̄ȳ(ω)ejωτ dω. (3.4)

By the way, if Sx̄ȳ(ω) concerns two different processes, then we call it the cross-power spectral density
function. If it concerns only one process, then we have the auto-power spectral density function
Sx̄x̄(ω).

3.2 The Laplace transform versus the Fourier transform

Let’s examine a system. This system has input ū(t), output ȳ(t) and an impulse response function h(t).
When dealing with systems, people often confuse the Laplace transform with the Fourier transform.
These two transforms are, respectively, defined as

X(s) = L{x(t)} =
∫ +∞

−∞
x(t)e−st dt and X(ω) = F {x(t)} =

∫ +∞

−∞
x(t)e−jωt dω. (3.5)

The Laplace transform is more general than the Fourier transform. (If you insert the special case s = jω
in the Laplace transform, you get the Fourier transform.) The Laplace transform H(s) = Y (s)/U(s) of
the impulse response function h(t) is called the transfer function. It can be used very well to investigate
the transient responses of the system. (Think of the final value theorem and such.)

However, the Fourier transform has its qualities as well. The Fourier transform H(ω) = Y (ω)/U(ω)
of h(t) is called the frequency response function (FRF). It can be used very well to examine the
frequency response of the system. Since, in this chapter, we’re examining the frequency response of
time-invariant processes, we will use the FRF.

3.3 System analysis in the frequency domain

Let’s suppose that we know the properties of the stochastic input process ū(t) which we put into a system.
We also know the system dynamics, in the form of the impulse response function h(t) or, alternatively,
its Fourier transform H(ω). Can we then find the properties of the stochastic output process ȳ(t)?

The answer is simple: yes we can. First of all, we can find the mean µȳ of ȳ(t). It is given by µȳ = H(0)µū.
However, usually we assume that the mean is zero. (If not, then we can normalize the signals by
subtracting the mean.) If this is the case, then we can find the covariance function for ū and ȳ. We have

Cūȳ(τ) = Cūū(τ) ∗ h(τ) =
∫ +∞

−∞
Cūū(τ − θ)h(θ) dθ. (3.6)

The ∗ operator indicates the convolution integral, which is defined as shown above. Also,

Cȳū(τ) = Cūȳ(−τ) = Cūū(τ) ∗ h(−τ) and Cȳȳ(τ) = Cūū(τ) ∗ h(τ) ∗ h(−τ). (3.7)

To find the power spectral density function, we can simply take the Fourier transform. And luckily, the
convolution integral in the time domain is simply multiplication in the frequency domain. So,

Sūȳ(ω) = F {Cūȳ(τ)} = H(ω)Sūū(ω), Sȳū(ω) = H(−ω)Sūū(ω) and Sȳȳ(ω) = |H(ω)|2Sūū(ω).
(3.8)

The variance of the output process can now be found using

σ2
ȳ = Cȳȳ(τ = 0) =

1
2π

∫ +∞

−∞
Sx̄x̄(ω) dω =

1
π

∫ +∞

0

Sx̄x̄(ω) dω =
1
π

∫ +∞

0

|H(ω)|2Sūū(ω) dω. (3.9)
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3.4 White and colored noise in the frequency domain

Previously, we have defined white noise w̄(t). The covariance function was Cw̄w̄(τ) = Wδ(τ). The power
spectral density function now becomes

Sw̄w̄(ω) =
∫ +∞

−∞
Cw̄w̄(τ)e−jωτ dτ = W. (3.10)

In real life, this of course isn’t possible. (A signal can’t have energy at all frequencies.) So instead, we
call a signal white noise if Sw̄w̄(ω) = W for −ω1 < ω < ω1, with ω1 sufficiently big.

Now let’s suppose that we use white noise as the input ū(t) of a system. The resulting output has a
power spectral density function of Sȳȳ(ω) = |H(ω)|2W . The variance of the output can then be found
using

σ2
ȳ = W

(
1
2π

∫ +∞

−∞
|H(ω)|2 dω

)
. (3.11)

The output can be seen as filtered white noise, also known as colored noise, with the FRF H(ω) as the
shaping filter.

3.5 A system with noise

Let’s consider a system with input ū(t) and output x̄(t). Assume that we don’t know the frequency
response function H(ω) of the system. But luckily, we can measure the output. However, the measured
output ȳ(t) is distorted by a noise n̄(t). Thus, ȳ(t) = x̄(t) + n̄(t). The question is, can we find H(ω)?
Yes, we can. After some derivation, we can find that

H(ω) =
Sūȳ(ω)
Sūū(ω)

. (3.12)

We can also find information about the noise n̄(t). Its PSD function is given by

Sn̄n̄(ω) = Sȳȳ(ω)− |H(ω)|2Sūū(ω) = Sȳȳ(ω)− |Sūȳ(ω)|2

Sūū(ω)
. (3.13)

Finally, we can also compare the real output signal x̄(t) to the measured output signal ȳ(t). We then
find that

Sx̄x̄(ω)
Sȳȳ(ω)

=
|H(ω)2|Sūū(ω)

Sȳȳ(ω)
=

|Sūȳ(ω)2|
Sūū(ω)Sȳȳ(ω)

= Γūȳ(ω)2, where Γūȳ(ω) =

√
|Sūȳ(ω)2|

Sūū(ω)Sȳȳ(ω)
. (3.14)

The function Γūȳ(ω) is called the coherence between the system input ū(t) and the measured output
ȳ(t). A value of 0 indicates no coherence, while a value of 1 indicates full coherence.
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