
Multivariable stochastic processes

Previously, we have only dealt with single-input single-output systems. But what happens if you insert
a stochastic vector into a multi-input system? That’s what we’ll look at in this chapter. First, we’ll look
at some multivariable probability theory. After that, we’re going to examine the properties of signals as
they are passed through a system. Finally, we discuss how we can use the impulse response function.

1 Multivariable probability theory

1.1 Distribution functions of stochastic vectors

Let’s examine a stochastic vector x̄. This is simply a vector of stochastic variables. So, we have

x̄ =
[
x̄1 x̄2 . . . x̄n

]T

. (1.1)

The probability distribution function and the probability density function simply equal the joint proba-
bility distribution/density functions of the variables x̄i. So,

Fx̄(x) = Pr {x̄1 ≤ x1 ∧ x̄2 ≤ x2 ∧ . . . ∧ x̄n < xn} and fx̄(x) =
∂nFx̄(x)

∂x1 ∂x2 . . . ∂xn
. (1.2)

1.2 Properties of stochastic vectors

In practice, we generally can’t determine the exact distribution functions. Instead, we’ll simply look at
important parameters. For example, the mean (or average) µx̄ is defined as

µx̄ = E {x̄} =
[
E {x̄1} E {x̄2} . . . E {x̄n}

]T

. (1.3)

So, applying the expectation operator E to a vector or matrix simply means applying it to every individual
element of the vector/matrix. Similarly to the mean, we also have the n ×m covariance matrix Cx̄ȳ

of two stochastic vectors x̄ (size n) and ȳ (size m). It is defined as

Cx̄ȳ = E
{
(x̄− µx̄)(ȳ − µȳ)T

}
. (1.4)

In the above equation, we again simply have to take the expectation of every parameter (x̄i−µx̄i
)(ȳj−µȳj

)
of the matrix (x̄− µx̄)(ȳ − µȳ)T to find Cx̄ȳ.

Next to the covariance matrix, we of course also have the autocovariance matrix Cx̄x̄. It can be noted
that this is a symmetric matrix (Cx̄ix̄j

= Cx̄j x̄i
). Also, its diagonal elements are the variances of the

individual parameters (Cx̄ix̄i
= σ2

x̄i
). We can use the autocovariance matrix to find the correlation

matrix Kx̄x̄. This matrix is defined as

Kx̄x̄ =


Cx̄1x̄1
σx̄1σx̄1

Cx̄1x̄2
σx̄1σx̄2

· · · Cx̄1x̄n

σx̄1σx̄n
Cx̄1x̄2
σx̄1σx̄2

Cx̄2x̄2
σx̄2σx̄2

· · · Cx̄2x̄n

σx̄2σx̄n

...
...

. . .
...

Cx̄1x̄n

σx̄1σx̄n

Cx̄2x̄n

σx̄2σx̄n
· · · Cx̄nx̄n

σx̄n σx̄n

 =


1 Cx̄1x̄2

σx̄1σx̄2
· · · Cx̄1x̄n

σx̄1σx̄n
Cx̄1x̄2
σx̄1σx̄2

1 · · · Cx̄2x̄n

σx̄2σx̄n

...
...

. . .
...

Cx̄1x̄n

σx̄1σx̄n

Cx̄2x̄n

σx̄2σx̄n
· · · 1

 . (1.5)

Stochastic vectors can be transformed linearly. For example, we may have ȳ = Ax̄. Let’s suppose that
we know the properties of the vector x̄. The properties of ȳ can then be found using

µȳ = Aµx̄ and Cȳȳ = ACx̄x̄AT . (1.6)
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1.3 Properties of multivariable stochastic processes

We can extend the above properties to stochastic processes. Let’s examine the multivariable stochastic
processes x̄(t) and ȳ(t). Once more, we assume that these properties are stationary. In a previous
chapter, we defined the covariance function Cx̄ȳ(τ) of the signals x̄(t) and ȳ(t) as the covariance between
x̄(t) and ȳ(t + τ). We do exactly the same to define the covariance function Cx̄ȳ(τ) of the two processes
x̄(t) and ȳ(t). We thus get

Cx̄ȳ(τ) = E
{
(x̄(t)− µx̄(t))(ȳ(t + τ)− µȳ(t + τ))T

}
. (1.7)

Once we have the covariance function, we can find the power spectral density Sx̄ȳ(ω) function for
multivariable stochastic processes. This is once more simply the Fourier transform of Cx̄ȳ(τ). So,
Sx̄ȳ(ω) = F {Cx̄ȳ(τ)}. By the way, when you want to take the Fourier transform of a matrix, you simply
transform all the individual elements of the matrix separately.

2 Stochastic processes in systems

2.1 Continuous-time and discrete-time systems

Let’s examine a multivariable linear system. We denote the state vector by x, the input vector by u and
the output vector by y. We can write the system in its state space form. This is done for continuous
(left) and discrete systems (right) like

ẋ(t) = Ax(t) + Bu(t), x[k + 1] = Φx[k] + Γu[k], (2.1)

y(t) = Cx(t) + Du(t), y[k] = Cx[k] + Du[k]. (2.2)

Now let’s ask ourselves an interesting question. What will happen if we don’t put a deterministic input
vector u into the system, but a stochastic input vector ū? Well, we usually assume that ū is a Gaussian
vector. And in this case, it can be shown that x̄ and ȳ will be Gaussian vectors as well. How to find
their properties will be discussed in the upcoming two sections.

2.2 Properties for continuous-time systems

Let’s examine the state equation ẋ(t) = Ax(t) + Bu(t) of a continuous system. This equation can be
solved. We will then find that

x(t) = Φ(t, t0)x(t0) +
∫ t

t0

Φ(t, τ)Bu(τ) dτ, (2.3)

where Φ(t, t0) is the transition matrix, defined as

Φ(t, t0) = e(t−t0)A = I + (t− t0)A +
(t− t0)2A2

2!
+

(t− t0)3A3

3!
+ . . . =

+∞∑
n=0

(t− t0)nAn

n!
. (2.4)

Now let’s suppose that we use white noise w̄(t) as input. We thus have µw̄ = 0 and Cw̄w̄(τ) = Wδ(τ),
where W is the intensity matrix. We can use the above equations to find the mean µx̄(t) and the
covariance matrix Cx̄x̄(t) of the resulting stochastic state vector x̄(t) at time t. We will have µx̄(t) =
Φ(t, t0)µx̄(t0) and

Cx̄x̄(t1, t2) = Φ(t1, t0)Cx̄x̄(t0, t0)Φ(t2, t0)T +
∫ min(t1,t2)

t0

Φ(t1, τ)BWBT Φ(t2, τ)T dτ. (2.5)
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Note that we have used the notation Cx̄x̄(t1, t2), instead of the normal notation Cx̄x̄(τ). The reason
for this is that the stochastic process x̄(t) is not necessarily stationary. If we simply want to know the
covariance matrix of x̄(t) at time t, then we can insert t1 = t2 = t. We denote this matrix then as Cx̄x̄(t).
(Note that this is a different matrix function than Cx̄x̄(τ).)

When dealing with systems, we usually aren’t interested in transient behavior. Instead, it would be nice
to know the steady state solution Cx̄x̄,ss of the above equation. By setting dCx̄x̄(t, t)/dt to zero, it can
be derived that

0 = ACx̄x̄,ss + Cx̄x̄,ssA
T + BWBT . (2.6)

This is the continuous-time Lyapunov equation. A unique solution only exists if the matrix A is
exponentially stable. (In other words, all eigenvalues are strictly negative.) If this is the case, then the
solution is given by

Cx̄x̄,ss =
∫ +∞

t0

eτABWBT eτAT

dτ. (2.7)

It is interesting to note that the above equation is equal to equation (2.5) when t →∞. The covariance
matrix of exponentially stable systems thus always converges to the steady state covariance matrix.

2.3 Properties for discrete-time systems

In the previous paragraph, we considered a continuous system. Now, let’s examine a discrete system.
The state of this system satisfies the linear difference equation x[k+1] = Φx[k]+Γu[k]. Let’s suppose
that we derived this discrete system from a continuous system. If ∆t is the sampling time, then we have

Φ = Φ(tk+1, tk) = e∆t A = I + ∆t A +
∆t2A2

2!
+

∆t3A3

3!
+ . . . =

+∞∑
n=0

∆tnAn

n!
, (2.8)

Γ = ∆t B +
∆t2AB

2!
+

∆t3A2B

3!
+ . . . =

+∞∑
n=1

∆tnAn−1B

n!
. (2.9)

Note the similarity between the discrete-time system matrix Φ and the continuous-time transition matrix
Φ(t, t0). (That’s the reason why the same symbol is used for both parameters.) The direct equation for
finding x[k] is now given by

x[k] = Φkx[0] +
k−1∑
n=0

ΦnΓu[k − n− 1]. (2.10)

Let’s suppose that we use white noise w̄[k] as input. So, we have µw̄ = 0 and Cw̄w̄[k] = Wdδ[k]. (By the
way, δ[k] is the Kronecker delta function. We have δ[k] = 1 if k = 0 and δ[k] = 0 otherwise. Also,
Wd is the intensity of the discrete noise.) With this data, the properties of x[k] can be derived. We find
that µx̄[t] = Φnµx̄[0] and

Cx̄x̄[k1, k2] = Φk1 x̄[0, 0]
(
ΦT

)k2 +
min(k1,k2)−1∑

n=0

ΦnΓWdΓT
(
ΦT

)n
. (2.11)

Often, we only want to find the covariance matrix of the stochastic variable x̄[k] at time k. We then
simply take k1 = k2 = k. The resulting matrix is denoted as Cx̄x̄[k].

Let’s suppose that we have some continuous process, and we are turning this into a discrete process. We
already know how to find the system matrices Φ and Γ. However, given that we know the continuous
noise intensity matrix W , how do we find the discrete noise intensity matrix Wd? It can be shown that,
for small time steps ∆t, we approximately have Wd = W/∆t. If we use this intensity matrix, then our
discrete system is a good approximation of our non-discrete system.
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We remain with the question of how to find the steady state covariance matrix Cx̄x̄,ss. This time, it can
be shown that it must satisfy

Cx̄x̄,ss = ΦCx̄x̄,ssΦT + ΓWdΓT . (2.12)

This is the discrete-time Lyapunov equation. A unique solution exists if Φ is exponentially stable.
(That is, if all eigenvalues λ of Φ satisfy |λ| < 1.) However, no analytic solution is available. Instead, the
solution is usually found using computational/numerical methods.

3 The impulse response function

3.1 Finding the impulse response function

When examining a system, it is always interesting to look at the relation between the input and the
output. Let’s suppose that this relation is given by the impulse response matrix hȳū(t) or, in an
abbreviated notation, simply h(t). If we denote the Fourier transform of this matrix by H(ω), then we
have

ȳ(t) = h(t) ∗ ū(t) and Ȳ(ω) = H(ω)Ū(ω). (3.1)

The question remains: how can we find the impulse response function? For that, we can use the equation

h(t) = CΦ(t, t0)B + D. (3.2)

Let’s suppose that we have a system of which we do not know the system matrices. However, we are able
to experiment with the system. How do we now find the impulse response function? Well, first we set the
initial state x(t0) to zero. Then, we simply set all inputs to zero, except for one input ui(t). We put an
impulse function on this input. (So, ui(t) = δ(t).) The resulting output y(t) now equals the ith column
hi(t) of the impulse response matrix h(t). Perform this trick for all inputs/columns i and we have found
the impulse response matrix h(t).

There is also a slightly alternative method. It can be shown that putting an impulse function on ui(t) is
equivalent to giving the system an initial condition x(t0) = Bi, with Bi the ith column of B. So, if we
apply this trick for all inputs/columns i, then we have again found the impulse response matrix h(t).

3.2 The covariance matrix and the PSD function

Having the impulse response matrix can be very convenient. We can use it to find the covariance matrices
between ū(t) and ȳ(t). This is done using

Cūȳ(τ) = Cūū(τ) ∗ h(τ)T , Cȳū(τ) = Cūȳ(−τ)T = h(−τ) ∗ Cūȳ(τ), (3.3)

Cȳȳ(τ) = h(−τ) ∗ Cūū(τ) ∗ h(τ)T . (3.4)

If we Fourier transform the above equations to the frequency domain, then we will find the power spectral
density function. So,

Sūȳ(ω) = Sūū(ω)H(ω)T , Sȳū(ω) = Sūȳ(−ω)T = H(−ω)Sūȳ(ω), (3.5)

Sȳȳ(ω) = H(−ω)Sūū(ω)H(ω)T . (3.6)

By the way, all the above tricks also work if you use x̄ instead of ȳ. But you then of course need to use
the impulse response matrix hx̄ū(t) instead of hȳū(t).
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