
Asymmetric responses to turbulence

In the previous chapter we examined the symmetric response of an aircraft to turbulence. In this chapter,
we’ll focus on the asymmetric response. This is a bit more difficult than the symmetric response. Why
this is the case will be examined first. After that, the asymmetric force and moment coefficients will be
derived. At the end, the asymmetric PSD functions and the equations of motion will be examined.

1 The covariance and PSD function in two-dimensional space

1.1 Deriving the covariance matrix

Previously, we have assumed that the turbulence only varies in a longitudinal direction. This works when
we’re examining longitudinal motions. But when examining lateral motions, the lateral distance y also
needs to be taken into account. So, in this chapter, the turbulence parameters ug, vg and wg depend on
x and y. The turbulence covariance matrix is thus given by

Cūū(x, y) =

Cugug
(x, y) 0 0

0 Cvgvg
(x, y) 0

0 0 Cwgwg
(x, y)

 . (1.1)

Note that, due to the isotropic assumption, the parameters ug, vg and wg are mutually independent. We
also have Cugug (x, y) = E {ug(0, 0), ug(x, y)} and the same for vg and wg.

Let’s denote the distance to the point P = (x, y) by r =
√

x2 + y2. When the functions f(r) and g(r)
are known, the terms Cugug

(x, y) and Cvgvg
(x, y) of the covariance matrix can be found using

Cugug
(x, y) = σ2

ug

(
f(r)

(x

r

)2

+ g(r)
(y

r

)2
)

and Cvgvg
(x, y) = σ2

vg

(
f(r)

(y

r

)2

+ g(r)
(x

r

)2
)

. (1.2)

Also, we have Cwgwg
(x, y) = σ2

wg
g(r). However, often the covariance matrices are expressed, not in x

and y, but in the dimensionless parameters x/Lg and y/Lg. It could be worthwhile to keep this in mind
when reading other texts on atmospheric flight dynamics.

1.2 Deriving the power spectral density function

To derive the PSD function, we simply take the Fourier transform of the covariance matrix. This time,
the covariance matrix is a function of two variables. The Fourier transform thus becomes

S(ΩxLg,ΩyLg) =
∫ +∞

−∞

∫ +∞

−∞
C

(
x

Lg
,

y

Lg

)
e−j(ΩxxΩyy) d

x

Lg
d

y

Lg
. (1.3)

Note that, for the PSD matrix, we have also used dimensionless parameters. This time they are ΩxLg

and ΩyLg.

For the Dryden spectral form, the above integral can be solved. The obtained results are

Sugug (ΩxLg,ΩyLg) = πσ2
ug

1 + Ω2
xL2

g + 4Ω2
yL2

g(
1 + Ω2

xL2
g + Ω2

yL2
g

)5/2
, (1.4)

Svgvg
(ΩxLg,ΩyLg) = πσ2

vg

1 + 4Ω2
xL2

g + Ω2
yL2

g(
1 + Ω2

xL2
g + Ω2

yL2
g

)5/2
, (1.5)

Swgwg
(ΩxLg,ΩyLg) = πσ2

wg

3Ω2
xL2

g + 3Ω2
yL2

g(
1 + Ω2

xL2
g + Ω2

yL2
g

)5/2
. (1.6)
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There is a relation with the one-dimensional variant S′ugug
(ΩxLg) of the PSD function which we’ve used

in earlier chapters. To find it from the above equation, we apply the inverse Fourier transform for the
parameter (ΩyLg). We thus have

S′ugug
(ΩxLg) =

1
2π

∫ +∞

−∞
Sugug

(ΩxLg,ΩyLg) d(ΩyLg). (1.7)

The same relation holds for S′vgvg
(ΩxLg) and S′wgwg

(ΩxLg).

The turbulence field resulting from the PSD function can be seen as a superpositioning of multiple
turbulence fields. Each turbulence field has spatial frequencies Ωx and Ωy and corresponding wavelengths
λx = 2π/Ωx and λy = 2π/Ωy. The turbulence velocity is now given by

ug = ugmax
Re

(
ej(Ωxx+Ωyy)

)
, (1.8)

with the same for vg and wg. The above function can be seen as a sinusoid wave in two-dimensional
space. The direction in which the waves ‘run’ is then given by arctan(Ωy/Ωx).

2 Finding the asymmetric forces and moments

2.1 Asymmetric forces and moments caused by longitudinal gusts ug

To investigate the aircraft response to turbulence, we need to look at the forces and moments caused by
turbulence. We’ll do that now. First, we will examine the asymmetric forces and moments caused by
longitudinal gusts ug. For this, we use equation (1.8). In fact, we rewrite it to

ug(x, y) = ugmax
cos(Ωxx) cos(Ωyy) + ugmax

sin(Ωxx) sin(Ωyy) = ug1(x, y) + ug2(x, y). (2.1)

The first part ug1(x, y) of the above equation is symmetric. It will thus not cause any asymmetric forces
and moments. So, we will only examine the asymmetric function ug2(x, y). To do this, we look at a small
strip of the wing. For this small strip, we calculate the change in lift dL. We can then integrate y dL
over the entire wing to calculate the rolling moment caused by the gust. This gives us the coefficient of
rolling motion due to gust

Clg = Clug

(
Ωy

b

2

)
ûg, where Clug

(
Ωy

b

2

)
= − 4

Sb

∫ b
2

0

clc sin(Ωyy)y dy. (2.2)

(Keep in mind that cl and c also still depend on y.) The rolling moment due to turbulence Clg is similar
to the rolling moment due to a yawing motion Clrw

caused by the wing. In fact, we can relate the two
parameters through Clug

(
Ωy

b
2

)
according to

Clug

(
Ωy

b

2

)
= −Clrw

h

(
Ωy

b

2

)
, where h

(
Ωy

b

2

)
=

b

2

∫ b
2

0
clc sin(Ωyy)y dy∫ b

2
0

clcy2 dy
. (2.3)

Determining the yawing coefficient due to longitudinal gust Cng
goes in a similar way. We now find that

Cng
= Cnug

(
Ωy

b

2

)
ûg, where Cnug

(
Ωy

b

2

)
= −Cnrw

h

(
Ωy

b

2

)
. (2.4)

The function h
(
Ωy

b
2

)
is exactly the same as earlier. Finally, the lateral forces due to longitudinal gusts

CYug
are assumed to be negligible. So, CYug

= 0.
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2.2 Asymmetric forces and moments caused by lateral gusts vg

Let’s examine the asymmetric forces and moments caused by lateral gusts vg. We can split up vg in a
similar way as ug. However, vg is an asymmetric velocity. So this time we need to use the symmetric
part vg1(x, y) = vgmax cos(Ωxx) cos(Ωyy) in our calculations. Also, we assume that vg is approximately
constant along the wing. Thus, cos(Ωyy) ≈ 1. We now define the gust angle of sideslip βg as

βg =
vg

V
=

vgmax
cos(Ωxx)
V

. (2.5)

We would like to find the coefficients CYg
, Clg and Cng

. Using a derivation similar to the one used in the
previous chapter, we can find that

CYg =
(
CYβg

+ CYβ̇g
Db

)
βg, Clg =

(
Clβg

+ Clβ̇g
Db

)
βg and Cng =

(
Cnβg

+ Cnβ̇g
Db

)
βg. (2.6)

Also, like in the previous chapter, we have

CYβg
= CYβ

, Clβg
= Clβ and Cnβg

= Cnβ
. (2.7)

The other three coefficients can, also analagous to the previous chapter, be approximated using

CYβ̇g
= CYβ̇

+ CYr
, Clβ̇g

= Clβ̇
+ Clr and Cnβ̇g

= Cnβ̇
+ Cnr

. (2.8)

For aircraft with straight wings and a relatively small tailplane, these three derivatives are often negligible.
So, for the sake of simplicity, we often simply use CYβ̇g

= Clβ̇g
= Cnβ̇g

= 0.

2.3 Asymmetric forces and moments caused by vertical gusts wg

When examining vertical gusts, we use the symmetric part wg2(x, y) = wgmax
sin(Ωxx) sin(Ωyy) of the

vertical gust wg(x, y). The gust angle of attack is still defined as αg(x, y) = wg(x, y)/V . The coefficients
Clαg

and Cnαg
are now very similar to the coefficients Clug

and Cnug
. In fact, we have

Clg = Clαg

(
Ωy

b

2

)
αg and Cng

= Cnαg

(
Ωy

b

2

)
αg. (2.9)

Here, the functions Clαg

(
Ωy

b
2

)
and Cnαg

(
Ωy

b
2

)
are similar to the functions Clug

(
Ωy

b
2

)
and Cnug

(
Ωy

b
2

)
,

respectively. The above coefficients can also be related to the coefficients for a rolling motion, according
to

Clαg

(
Ωy

b

2

)
= Clpw

h

(
Ωy

b

2

)
and Cnαg

(
Ωy

b

2

)
= Cnpw

h

(
Ωy

b

2

)
. (2.10)

Finally, we assume that the side force due to αg is negligible. So, CYαg
= 0.

2.4 Alternative derivation of vg coefficients

There is an alternative way to derive the coefficients CYβg
, Clβg

, Cnβg
, CYβ̇g

, Clβ̇g
and Cnβ̇g

. In this
method, we make use of the gust penetration effect, just like we did in the previous chapter. First, a gust
βg hits the wing and the fuselage. (We assume that the aircraft CG and the wing aerodynamic center
coincide.) A time τ = lv/V later, the gust hits the vertical tailplane. (lv ≈ xv − xcg is the distance
between the wing and the aircraft CG.) However, the gust at the vertical tailplane has a magnitude

βvg
=

(
1− ∂σ

∂β

)
βg, (2.11)
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with σ the sidewash caused by the wing/fuselage. We can now approximate

CYg = CYβg
βg + CYβ̇g

Dbβg. (2.12)

Based on the above data, the coefficients CYβg
and CYβ̇g

can be determined. They are

CYβg
= CYfβ

− CYvα

(
Vv

V

)2
Sv

S

(
1− ∂σ

∂β

)
, (2.13)

CYβ̇g
= CYvα

(
Vv

V

)2
Sv

S

(
1− ∂σ

∂β

)
. (2.14)

By the way, CYfβ
is the contribution of the fuselage to CYβ

. It is used because the wing hardly effects
the coefficient CYβ

. A similar expression as the one above can be derived for Clg and Cng
. However, for

these two parameters, the coefficients are given by

CYβg
= Clwβ

− CYvα

(
Vv

V

)2
Sv

S

(
zv − zcg

b
cos α− xv − xcg

sin
α

) (
1− ∂σ

∂β

)
, (2.15)

CYβ̇g
= CYvα

(
Vv

V

)2
Sv

S

(
zv − zcg

b
cos α− xv − xcg

sin
α

) (
1− ∂σ

∂β

)
, (2.16)

CYβg
= Cnfβ

− CYvα

(
Vv

V

)2
Sv

S

(
xv − xcg

b
cos α− zv − zcg

sin
α

) (
1− ∂σ

∂β

)
, (2.17)

CYβ̇g
= CYvα

(
Vv

V

)2
Sv

S

(
xv − xcg

b
cos α− zv − zcg

sin
α

) (
1− ∂σ

∂β

)
. (2.18)

3 The PSD function and the asymmetric equations of motion

3.1 The PSD function of force and moment coefficients

We now know how to find the force and moment coefficients that are acting on the aircraft. The next
step is to find the PSD functions of them. The method for this is mostly the same for all coefficients.
But we’re going to demonstrate it on Clg . Equation (2.2) now implies that

SClg Clg
(ΩxLg,ΩyLg, B) = C2

lug
(ΩyLgB) Sûgûg

(ΩxLg,ΩyLg). (3.1)

In the above equation, we have defined another dimensionless coefficient: B = b
2Lg

. Usually, the coefficient
B is known. So then the above equation is two-dimensional. It would, however, be preferable for the
equation to be one-dimensional. We can make it one-dimensional using

SClg Clg
(ΩxLg, B) = C2

lrw

∫ ∞

0

h2 (ΩyLgB) Sûgûg
(ΩxLg,ΩyLg) d(ΩyLg) = C2

lrw
Iûgûg

(ΩxLg, B), (3.2)

where the effective one-dimensional PSD function Iûgûg
(ΩxLg, B) is defined as the integral in the

above equation. The variance of the force coefficient Clg can now be found using

E
{

C2
lg

}
=

1
2π

∫ +∞

−∞
SClg Clg

(ΩxLg, B) d(ΩxLg) =
1
2π

C2
lrw

∫ +∞

−∞
Iûgûg (ΩxLg, B) d(ΩxLg). (3.3)
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3.2 Approximating the one-dimensional PSD function

The above method can be simplified. It can be assumed that the product clc has a negligible influence
on the value of h (ΩyLgB). In this case, h (ΩyLgB) can be solved analytically. We then have

h (ΩyLgB) =
b

2

∫ b
2

0
sin(Ωyy)y dy∫ b

2
0

y2 dy
= 3

sin(ΩyLgB)− (ΩyLgB) cos(ΩyLgB)
(ΩyLgB)2

. (3.4)

Based on this, the function Iûgûg (ΩxLg, B), and similarly the function Iαgαg (ΩxLg, B) as well, can be
approximated. This is done using the equations

Iûgûg
(ΩxLg, B) = Iûgûg

(0, B)
1 + τ2

3 Ω2
xL2

g

(1 + τ2
1 Ω2

xL2
g)(1 + τ2

2 Ω2
xL2

g)
, (3.5)

Iαgαg (ΩxLg, B) = Iαgαg (0, B)
1 + τ2

6 Ω2
xL2

g

(1 + τ2
4 Ω2

xL2
g)(1 + τ2

5 Ω2
xL2

g)
. (3.6)

It is important to remember that the above equations are approximations. But they do prove to be quite
acceptable approximations. The constants τ1 to τ6 in the above equation depend on B. Their values can
be found in tables.

3.3 The asymmetric equations of motion for an aircraft in turbulence

Let’s derive the asymmetric equations of motion of an aircraft, when turbulence is involved. Based on
the assumptions that have been made, the relations that have been found and the coefficients that have
been calculated, we can find that

CYβ
− 2µbDb CL CYp CYr − 4µb

0 − 1
2Db 1 0

Clβ 0 Clp − 4µbK
2
XDb Clr + 4µbKXZDb

Cnβ
0 Cnp

+ 4µbKXZDb Cnr
− 4µbK

2
ZDb




β

ϕ
pb
2V
rb
2V

 =

−


0 CYδr

0 CYβ
0

0 0 0 0 0
Clδa

Clδr
−Clrw

Clβ Clpw

Cnδa
Cnδr

−Cnrw
Cnβ

Cnpw




δa

δr

ûg

βg

αg

 . (3.7)

Just like in the previous chapter, the above equations of motion can be put in state space form. For that,
you would have to use the definition Db = b

V
d
dt . Also, the equations can be combined with a state space

form of the gust filters. But again, we won’t discuss that here.
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