Asymmetric responses to turbulence

In the previous chapter we examined the symmetric response of an aircraft to turbulence. In this chapter,
we’ll focus on the asymmetric response. This is a bit more difficult than the symmetric response. Why
this is the case will be examined first. After that, the asymmetric force and moment coefficients will be
derived. At the end, the asymmetric PSD functions and the equations of motion will be examined.

1 The covariance and PSD function in two-dimensional space

1.1 Deriving the covariance matrix

Previously, we have assumed that the turbulence only varies in a longitudinal direction. This works when
we’re examining longitudinal motions. But when examining lateral motions, the lateral distance y also
needs to be taken into account. So, in this chapter, the turbulence parameters ug4, vy and wy depend on
z and y. The turbulence covariance matrix is thus given by

Cugu, (2,9) 0 0
Caa(z,y) = 0 Coyv, (,Y) 0 . (1.1)
0 0 O'wgwg (CC,y)

Note that, due to the isotropic assumption, the parameters uy, v4 and w, are mutually independent. We
also have Cy,y, (z,y) = E {uy4(0,0),uy(z,y)} and the same for v, and w,.

Let’s denote the distance to the point P = (x,y) by r = y/22 + y2. When the functions f(r) and g(r)
are known, the terms Cy, .y, (z,y) and Cy,., (2,y) of the covariance matrix can be found using

2 2 y\?2 2 y\?2 z\?2
Cuyuy @) =02, (F0) (5) +90) (£)7) and Cupo, (@y) =02, (£0) (2) +90) (5))- (12)
Also, we have Cy,w, (z,y) = Uﬁ,g g(r). However, often the covariance matrices are expressed, not in z
and y, but in the dimensionless parameters x /L, and y/L,. It could be worthwhile to keep this in mind
when reading other texts on atmospheric flight dynamics.

1.2 Deriving the power spectral density function

To derive the PSD function, we simply take the Fourier transform of the covariance matrix. This time,
the covariance matrix is a function of two variables. The Fourier transform thus becomes
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Note that, for the PSD matrix, we have also used dimensionless parameters. This time they are Q,L,
and QL.
For the Dryden spectral form, the above integral can be solved. The obtained results are
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There is a relation with the one-dimensional variant S, ,, (€2zL,) of the PSD function which we’ve used
in earlier chapters. To find it from the above equation, we apply the inverse Fourier transform for the
parameter (2,Lg). We thus have

1 [t
S (L) = — / Suvur (QuLy, QL) d(QyLy). (17)
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The turbulence field resulting from the PSD function can be seen as a superpositioning of multiple
turbulence fields. Each turbulence field has spatial frequencies €2, and €2, and corresponding wavelengths
Az =27 /Q, and Ay = 27/Q,,. The turbulence velocity is now given by

with the same for v, and w,. The above function can be seen as a sinusoid wave in two-dimensional
space. The direction in which the waves ‘run’ is then given by arctan(, /).

2 Finding the asymmetric forces and moments

2.1 Asymmetric forces and moments caused by longitudinal gusts u,

To investigate the aircraft response to turbulence, we need to look at the forces and moments caused by
turbulence. We’ll do that now. First, we will examine the asymmetric forces and moments caused by
longitudinal gusts ug. For this, we use equation (1.8). In fact, we rewrite it to

ug (aj7 y) = u!hnaz COS(Qﬁx) COS(ny) + ugwuzz Sin(le) Sin(ny) = U’gl (x7 y) + ug? (x7 y)' (21)

The first part ug, (z,y) of the above equation is symmetric. It will thus not cause any asymmetric forces
and moments. So, we will only examine the asymmetric function w4, (x,y). To do this, we look at a small
strip of the wing. For this small strip, we calculate the change in lift dL. We can then integrate ydL
over the entire wing to calculate the rolling moment caused by the gust. This gives us the coefficient of
rolling motion due to gust

b
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a,=0aq,, (ng> Ug, where Cu,, (ng> = _ﬁ/ ciesin(Qyy)y dy. (2.2)
0

(Keep in mind that ¢; and ¢ also still depend on y.) The rolling moment due to turbulence Cj, is similar
to the rolling moment due to a yawing motion Cj, = caused by the wing. In fact, we can relate the two
parameters through Clug (ng) according to

3 cesin(Qyy)y d
C, (be> =-C;. h (be> , where h <be) = éfo clcbsm( W)Y Y. (2.3)
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Determining the yawing coefficient due to longitudinal gust C),, goes in a similar way. We now find that

b b b
Cuy = Cn, <Qy2) iy, where <Qy2> ——Cp h (QyQ) . (2.4)

The function h (ng) is exactly the same as earlier. Finally, the lateral forces due to longitudinal gusts
Cy,, are assumed to be negligible. So, Cy, = 0.



2.2 Asymmetric forces and moments caused by lateral gusts v,

Let’s examine the asymmetric forces and moments caused by lateral gusts v,. We can split up v, in a
similar way as uy. However, v, is an asymmetric velocity. So this time we need to use the symmetric
part vy, (Z,y) = g,,.. c0s(Q2zx) cos(,y) in our calculations. Also, we assume that v, is approximately
constant along the wing. Thus, cos(€2,y) ~ 1. We now define the gust angle of sideslip §, as

Vg _ Vgmas COS(2a)
Bo =+, v (2.5)

We would like to find the coefficients Cy,, C;, and Cy,,. Using a derivation similar to the one used in the
previous chapter, we can find that

Cy, = (Cvy, + Cv, Do) By Ci, = (Cuy, +Ciy D) By and Co, = (Cuy, +Cny Dy) By (26)
Also, like in the previous chapter, we have
Cyﬁg = Cyﬁ, Clﬂg = Clﬁ and Cnﬂg = Cnﬁ. (27)
The other three coefficients can, also analagous to the previous chapter, be approximated using

Oyﬁg = CYQ + OYM Cl = Clg + Olr and C

nt

. = Cy + Ca,. (2.8)

For aircraft with straight wings and a relatively small tailplane, these three derivatives are often negligible.
So, for the sake of simplicity, we often simply use Cyﬁ = Cl[.j = Cn[; =0.
g g g

2.3 Asymmetric forces and moments caused by vertical gusts w,

When examining vertical gusts, we use the symmetric part w,(z,y) = wy,,,, sin(Q,x)sin(,y) of the
vertical gust wy(x,y). The gust angle of attack is still defined as oy(z,y) = wy(x,y)/V. The coefficients
Ci,,, and Cy,, =~ are now very similar to the coefficients €, and Cy, . In fact, we have

>g

G, =0a,, (ng> Oy and Cn, = Ch,, (ng> Oy. (2.9)

Here, the functions Cj (Qy 2) and Cna (Qy g) are similar to the functions Cj, (Qy 2) and Cn“ (ng)
respectively. The above coefficients can also be related to the coefficients for a rolhng motion, accordmg

Czag <ng> =0, h <ng) and Cnag (Qy2> =Cp, h (ng> ) (2.10)

Finally, we assume that the side force due to oy is negligible. So, Oyag =0.

2.4 Alternative derivation of v, coefficients

There is an alternative way to derive the coefficients Oyﬁ , C’lﬁ , C’nﬁ , C’y 0 C’l and C’ . In this
method, we make use of the gust penetration effect, just like we did in the prev1ous chapter Flrst a gust
By hits the wing and the fuselage. (We assume that the aircraft CG and the wing aerodynamic center
coincide.) A time 7 = [,/V later, the gust hits the vertical tailplane. (I, ~ z, — x4 is the distance
between the wing and the aircraft CG.) However, the gust at the vertical tailplane has a magnitude

Bo, = ( ﬂ> By (2.11)



with o the sidewash caused by the wing/fuselage. We can now approximate
Cy, =Cy, By + Cyﬁg Dyf,. (2.12)

Based on the above data, the coefficients Cygg and Cyg can be determined. They are
g

v, \? S, )
Oyﬁg = CYfﬁ B CYua (V) ? <1 - a;) ) (213)

V,\? S, do
Cy, = Cv, (V) 5 (1 - 85)' (2.14)

By the way, Cny is the contribution of the fuselage to Cy,. It is used because the wing hardly effects
the coefficient Cy,. A similar expression as the one above can be derived for Cj, and Cy,,. However, for
these two parameters, the coefficients are given by

Cy, = G, —Cy, (‘(;’)2 % <Z“bz~" cos @ — x”smxga) (1 = g;) : (2.15)
CYBQ = Cy,, (‘3)2 % (zv —chg cosa — l’vs—inﬂ@cga> (1 — g;) , (2.16)
O, = o0, () (B a2z (12 20)
Cy, = O, <“//)2 % (mbzg cosa — 22 S*in’z“g a) <1 - g;) . (2.18)

3 The PSD function and the asymmetric equations of motion

3.1 The PSD function of force and moment coeflicients

We now know how to find the force and moment coefficients that are acting on the aircraft. The next
step is to find the PSD functions of them. The method for this is mostly the same for all coeflicients.
But we're going to demonstrate it on Cj,. Equation (2.2) now implies that

Sngng (QrLg7 Qngv B) = 012“,9 (QngB) Sﬁgﬁg(QILm Qng)~ (3-1)

In the above equation, we have defined another dimensionless coefficient: B = %. Usually, the coefficient
B is known. So then the above equation is two-dimensional. It would, however, be preferable for the

equation to be one-dimensional. We can make it one-dimensional using
o
Sey,,(Qaly, B) = CF. / h? (QyLyB) Sa,a,(QuLly, QLg) d(QyLy) = C7 Ii,a,(QLg, B), (3.2)
¢ < v Jo ! T glg

where the effective one-dimensional PSD function I 4, (QzLgy, B) is defined as the integral in the
above equation. The variance of the force coefficient €, can now be found using

2 1 oo 1 2 e
E {C } Ser,cr, (QuLy, B)d(QuLy) = --CF Taya, (Quly, B)d(QuL,).  (3.3)
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3.2 Approximating the one-dimensional PSD function

The above method can be simplified. It can be assumed that the product ¢;c has a negligible influence
on the value of h (2, L,B). In this case, h (Q,LyB) can be solved analytically. We then have

b
éfo2 sin(Qyy)y dy _ Ssin(QngB) — (Qy Ly B) cos(2y Ly B)

Q,L,B) =
h( ylyg ) 9 f%dey (QngB)2
0

. (3.4)

Based on this, the function I4,4,(2 Ly, B), and similarly the function In,a,(Q2:Ly, B) as well, can be
approximated. This is done using the equations

1+ 7502102
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Iﬁgﬁg (QILWB) = Iﬁgﬁg (OvB) (35)

Iagag (Qnga B) = Iagag (O’ B)

(3.6)

It is important to remember that the above equations are approximations. But they do prove to be quite
acceptable approximations. The constants 71 to 7g in the above equation depend on B. Their values can
be found in tables.

3.3 The asymmetric equations of motion for an aircraft in turbulence

Let’s derive the asymmetric equations of motion of an aircraft, when turbulence is involved. Based on
the assumptions that have been made, the relations that have been found and the coefficients that have
been calculated, we can find that
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Just like in the previous chapter, the above equations of motion can be put in state space form. For that,

you would have to use the definition D, = %%. Also, the equations can be combined with a state space
form of the gust filters. But again, we won’t discuss that here.



