Statics Formula Sheet

Statics of a Particle

$$\cos \alpha_x = \frac{R_x}{R}$$

$$\cos \alpha_y = \frac{R_y}{R}$$

$$\cos \alpha_z = \frac{R_z}{R}$$

$$\cos^2 \alpha_x + \cos^2 \alpha_y + \cos^2 \alpha_z = 1$$

Statics of a Rigid Body

$$\vec{T} = \vec{r} \times \vec{F}$$

$$|T| = rF \sin \theta$$

$$T_x = r_y F_z - r_z F_y$$

$$T_y = r_z F_x - r_x F_z$$

$$T_z = r_x F_y - r_y F_x$$

$$\vec{T} = \vec{r} \times \vec{F} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}$$

Compounding forces and couples

$$\sum F_{x} = \sum_{i=1}^{n} F_{x;i}$$

$$\sum T_{x} = \sum_{i=1}^{n} \left\{ \left(y_{i} F_{z;i} - z_{i} F_{y;i} \right) + T_{x;i} \right\}$$

$$\sum F_{y} = \sum_{i=1}^{n} F_{y;i}$$

$$\sum T_{y} = \sum_{i=1}^{n} \left\{ \left(z_{i} F_{x;i} - x_{i} F_{z;i} \right) + T_{y;i} \right\}$$

$$\sum F_{z} = \sum_{i=1}^{n} F_{z;i}$$

$$\sum T_{z} = \sum_{i=1}^{n} \left\{ \left(x_{i} F_{y;i} - y_{i} F_{x;i} \right) + T_{z;i} \right\}$$

Loads

$$R = \int_{x_1}^{x_2} q(x) dx$$

$$a = \frac{\int_{x_1}^{x_2} xq(x)dx}{\int_{x_1}^{x_2} q(x)dx}$$

$$R = R_1 + R_2$$

$$aR = a_1R_1 + a_2R_2$$

Trusses

Zero Force members:

- 1) If only two members meet at an unloaded joint, both are zero force members.
- 2) If 3 members meet at an unloaded joint of which two are in a direct line with one another, then the third is a zero-force member.
- If two members meet at a loaded joint and the line of action of the load coincides with one of the members, the other is a zero force member.

Bending Moment, Shear Force and Normal Force Diagrams

$$V = -\int q_z dx$$

$$M = \int V dx$$

$$\frac{dV}{dx} = -q_z$$

$$\frac{dM}{dx} = V$$

$$\frac{dN}{dx} = -q_x$$

Cables

$$H = A_h = B_h$$

$$N = H\sqrt{1 + (\tan \alpha)^2}$$

$$z_{k} = z - \frac{x}{l}h$$

$$Hz_{k} = M$$

$$\frac{dV}{dx} = -q_{z}$$

$$H \frac{dz}{dx} = V = -qx$$

$$H \frac{d^{2}z}{dx^{2}} = -q_{z}$$

$$H \frac{d^{2}z}{dx^{2}} = -q_{z}$$

$$H \frac{d^{2}z}{dx^{2}} = -q_{z}$$

$$H \frac{d^{2}z}{dx^{2}} = -q_{z}$$

Virtual Work

Horizontal displacement = rotation x vertical distance Vertical displacement = rotation x horizontal distance dA = F * dr