Distributed Loads

Distributed loads don’t have to be difficult, as long as you know how to deal with them. It’s all about
replacing them by normal forces, so you can use the normal statics rules on them. There are multiple
kinds of distributed loads. We’ll handle the simple ones first.

1 Constant distributed loads

Constant lineair loads are quite easy to handle. You can simply replace them by a normal force. As you
probably should know, the resultant force caused by a distributed load is equal to the area under the
distributed load. If the size of the load is ¢ (N/m) and the length is a (m), then the size of the load is a g
(N). Interesting here, is to note the units of the values. The position of the resultant force of the load is
simple too: right in the middle of the distributed load.

However, when there are hinges in the field of a distributed load, you may not always replace the entire
distributed load by a resultant force, but have to split the distributed load up in two parts, and find a
resultant force for every separate part. This is only necessary when you make a cut through the hinge
though, but there may be a very few small exceptions to this rule.

2 Lineair distributed loads

Sometimes distributed loads are lineair, and usually they have the shape of a triangle. It is a bit more
difficult to replace them by a resultant force, but it’s nevertheless possible. The size of a distributed load,
which ranges from 0 to ¢ (N/m) and has length a, is simply %a ¢, which is the area of the triangle. The
resultant force isn’t in the middle of the load, but it’s on % of it, or of course at % if you turn the triangle
around, and have a value of ¢ on the left and 0 on the right of the distributed load.

3 Combined lineair and constant loads

Sometimes lineair distributed loads don’t have the shape of a triangle, but go from ¢; to go. If this is the
case, you can simply cut the distributed load up in 2 parts, of which one has the shape of a rectangle (and
thus is a constant distributed load with size ¢; (assuming g1 < g2, otherwise it’s ¢2)) and the other one
has the shape of a triangle, which we also have previously discussed. You only have to find the resultant
force of each of the 2 distributed loads. After that you may simplify it as mush as you wish.

4 Other distributed loads

There are also other distributed loads. These are quite difficult to handle. If there is no data about the
shape/size of the distributed load, you can’t calculate with it, of course. But sometimes there is a formula
which gives the size of the distributed load on a point x, or sometimes you have to find that formula
yourself. Let’s do an example. Suppose D(z) = —z% + 62, where D(x) is the size of the distributed load,
and x ranges from 0 to 6.

Since the resultant force of a distributed load is equal to the area under the distributed load, the resultant
force can be calculated using an integral. So:
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Now we have found the resultant force, so we need to know where it applies. For that, we take the torque
about point 0. Since T' = F'd where F' is the force and d is the arm, we know that the torque caused by



the distributed load at point x is x D(z). So we can calculate T of the entire distributed load, around
point 0:
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So the torque around point 0 is 108, while the resultant force itself is 36. The resultant force must
therefore apply at a distance % = % = 3 from point 0. In this case it is in the middle of the distributed
load, which is quite logical because the shape of it was a symmetric parabola. Of course this isn’t always

the case. But this example does show how to calculate the resultant force of a strange distributed load.



