
9Trusses

A truss is by definition a structure assembled with straight bars (members),
which are connected by hinged joints, and loaded by forces which have
their point of application at these joints.

In comparison to heavily-built structures, trusses need little material, and
therefore have a relatively small dead weight. If we consider the use of little
material, and the reduced costs for foundation because of the small dead
weight, they can be cost saving. On the other hand, constructing trusses is
often labour-intensive due to the complexity of the joints, and labour costs
can be higher. Nevertheless, the total costs may be lower, and trusses can
be an interesting type of structure from an economic perspective.

Trusses are often used in roof structures, bridges, cranes, and so forth.
Scaffoldings are also often trusses.

Section 9.1 addresses the difference between a space truss and a plane truss.
The rest of this chapter only looks at plane trusses. For this type of truss,
all the members are located in the same plane, and the load acts in the plane
of the truss. Section 9.1 also looks at the modelling of a structure as a truss,
the nomenclature for the members in a truss, and the conventions used to
label the joints and members.

Section 9.2 explains the relationship between the number of members and
joints in a simple or self-contained truss and a compound truss respectively.
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Next, the kinematic/static (in)determinacy of a truss is investigated and the
relationship between the number of support reactions, members and joints
is considered.

Calculating the member forces in a truss is addressed in Section 9.3. There
are several methods for this, two of which are discussed:
• the method of sections;
• the method of joints.

In the method of sections, we make a suitable section in the truss, and
calculate the member forces from the equilibrium of one of the bisected
(isolated) parts. In the method of joints, we calculate the member forces
from the equilibrium of the joints.

The methods mentioned are manual calculation methods and are applicable
only to statically determinate trusses; they demand the necessary insight if
they are to be used effectively. Sometimes it is useful to use both methods
in combination.

Nowadays, we generally use computer programs to calculate trusses. Many
of these programs use the so-called displacement method, which can be
used for both statically determinate and statically indeterminate trusses.1

Even though increasing numbers of calculations are performed using com-
puter programs, the manual calculation methods remain valuable, even if
only because they can be used as a relatively simple check. This is true par-
ticularly for the method of sections, which offers a superb way of checking
computer-based results. It allows us to check for errors that may be, for
example, the result of incorrect data entry by the user.

1 The displacement method not only uses the equilibrium relationships, but also
the behaviour of the material (the constitutive relationships) and the compatibil-
ity of the structure (the kinematic relationships). The constitutive and kinematic
relationships are covered in Volume 2: Stresses, Deformations, Displacements.
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Figure 9.1 Space trusses. (a) Side view and top view of a truncated
truss dome. (b) A space truss constructed from plane trusses.

9.1 Plane trusses

This section addresses the difference between a space truss and a plane
truss. From here on, we will look only at plane trusses, with all members
in the same plane, and the load acting in the plane of the truss. We will
also look at the way in which a structure is modelled as a truss, the
nomenclature for the members in a truss, the various types of trusses, and
the conventions for labelling the joints and members.

9.1.1 Plane and space trusses

A truss is defined as a structure constructed with straight bars (members),
which are connected by hinges at so-called joints, and loaded by forces
which have their point of application at these joints.

There are plane trusses and space trusses. In plane trusses, all the members
are in the same plane, and forces only act in the plane of the structure. In
space trusses, the members are not all in the same plane (see Figure 9.1).

Many space trusses in fact consist of plane trusses, such as the structure
in Figure 9.1b. The load shown is transferred to the supports via the plane
trusses ABCD and ABEG.

From here on, we will look only at plane trusses. The open circles, which
indicate the hinged joints, will be omitted since in a truss all joints are
hinged by definition.

9.1.2 Modelling a structure as a truss

Calculating a plane truss, hereafter referred to as truss, is based on the
following assumptions:
• all members are straight;
• all members are connected at hinged joints;
• the load consists of forces that act in the plane of the structure and apply

at the joints.
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Figure 9.2 A hinged joint.

Figure 9.3 In trusses, the member axes intersect at one point. The
members are usually rigidly connected to one another by a gusset
plate. The joints (a) in a steel truss and (b) in a wooden truss are
examples of this.

This implies that all the members in the truss behave as two-force members
and can only transfer tensile and compressive forces between the joints (see
also Sections 3.2.2 and Figure 3.35).

In the past, one tried to realise the connections in the joints as real hinges
(see Figure 9.2). These days, all the members are rigidly connected, either
directly or via a so-called gusset plate. Figure 9.3 shows two examples of a
joint with a gusset plate: one made of steel (a) and the other made of wood
(b). It is clear that these joints are not hinged. One can show, however, that
whether or not the joints are hinged, this in fact has little impact on the
force flow. A condition is, however, that the member axes intersect at the
joints – clearly the case in Figure 9.3 – and that the load is applied at the
joints.1 This must be taken into account seriously when designing a truss.

Figures 9.4a to 9.4d show four structures with rigid joints, for which the
load consists of forces that act at the joints. These structures behave as
trusses, and can be calculated as such only if the structure remains kine-
matically determinate when all the rigid joints are replaced by hinged
joints.

Figures 9.4e to 9.4h show the same structures as in (a) to (d), but now with
hinged joints. After applying hinges, structures (a) and (b) are kinematically
determinate and can therefore be considered trusses. With structures (c) and
(d), a mechanism is formed after introducing hinged joints. They are now
kinematically indeterminate and cannot be calculated as trusses. The force
flow in these structures occurs mainly by bending.

The simple truss bridge in Figure 9.5 shows how to ensure that the load on
the bridge ends up at the joints of the truss. The bridge consists of two main
beams constructed as plane trusses. Cross beams have been introduced

1 The proof for this cannot be given at this stage, but is based on the characteristic
that the members in a truss are relatively weak with respect to bending, and
relatively stiff with respect to extension (changing length).
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between the main beams, which are supported at the joints of the truss.
Between the cross beams, stringers carry the deck (not shown). In this way,
the traffic loading is directed via deck, stringers and cross beams as joint
loads onto the trusses.

Figure 9.5 The structure of a simple truss bridge.

Figure 9.4 (a) to (d) Four structures with rigid joints and loaded
by forces at the joints. (e) to (h) The same structures, but now all
the rigid joints are replaced by hinged joints. With hinged joints
(a) ad (b) are kinematically determinate and can be considered to
be trusses. For (c) and (d), the use of hinged joints generates a
mechanism; they cannot be considered trusses. The force flow in
(c) and (d) occurs mainly by bending.

Figure 9.4
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Figure 9.6 We assume that the dead weight of a truss applies in
the joints. The total dead weight Fdw of a truss member is equally
distributed over both adjacent joints.

Figure 9.7 The members along the chord or circumference of the
truss are chord members (ch), the others are known as bracing mem-
bers (br). Chord members can be divided into top chord members
(t) and bottom chord members (b), while for bracing members we
distinguish between verticals (v) and diagonals (d). A vertical chord
member is also referred to as a vertical.

One also often assumes that the dead weight of a truss applies at the joints.
The total dead weight Fdw of a truss member is split up into two equal
forces in both adjacent joints (see Figure 9.6). This is a rough model of
reality, but since the dead weight is generally small with respect to the other
loads that the truss has to bear, the deviations that occur are relatively small.

9.1.3 Nomenclature members and truss types

Figure 9.7 shows part of a truss. The letters show the names of the mem-
bers in the truss. The members along the chord or perimeter of the truss
are called chord members (ch), the others are referred to as bracing mem-
bers (br). Chord members can be divided into top chord members (t) and
bottom chord members (b). For bracing members, we distinguish between
verticals (v) and diagonals (d), depending on whether the members are
positioned vertically or obliquely. Vertical chord members are also referred
to as verticals. In certain cases, one distinguishes between rising diagonals
(rd) and falling diagonals (fd), depending on their position, seen from the
perspective of the nearest support, towards the centre (see Figure 9.8).

Figure 9.8 Trusses with (a) rising diagonals (rd), (b) falling diag-
onals (fd) and (c) alternating falling and rising diagonals.
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Figure 9.9 Trusses applied in roofs.

In the following you will find a number of types of trusses. Several trusses
have been named after their designer or after the region where they were
developed. We will not discuss this nomenclature further, which differs per
language area. We will also not address the benefits and disadvantage of the
various trusses. We will briefly discuss only the motive for choosing rising
or falling diagonals.

Figure 9.9 shows a number of trusses that are commonly used in roofs.

In a Belgian truss (a) the bracing consists of members at right angles to the
top chord, and diagonals. In an English truss (Howe truss) (b) the bracing
consists of verticals and diagonals. Trusses (c) and (d) have gently sloping
top chords and alternating rising and falling diagonals. Truss (c) is suitable
for a transom window. In a Polonceau truss (Fink truss) (e) one can recog-
nise a three-hinged truss with a tie rod. Truss (f) is used in saw tooth roofs;
glass is placed in the sheer sloping roof planes.

The truss in Figure 9.10 can be used in canopies and is therefore also
referred to as a canopy truss.

Figure 9.10 A canopy truss.
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Figure 9.11 Trusses applied in bridges. The bridge deck is shown
by means of a double line.

Figure 9.12 From the expected deformation due to a full load, we
can deduce that (a) falling diagonals will extend and be subject to
tension, and that (b) rising diagonals will shorten and be subject to
compression.

You will find the trusses in Figure 9.11 in bridges. The deck is shown by
means of a double line. Bridges (a), (b), (c) and (f) have a lower deck. The
other bridges have an upper deck.

Since these trusses have the same function as a beam, they are often called
truss beams. Trusses (a), (b), (c) and (g) are known as parallel truss beams,
as a result of their parallel top and bottom chords. If the end verticals are
omitted from a parallel beam, as in truss (d), the truss is referred to as a
trapezoidal truss beam.

Truss beam (e) has a curved bottom chord. Truss beam (f) has a curved top
chord. In a curved chord, the joints of the chord are located on a curve. The
chord members are straight. The curve is often a parabola. This is known as
a parabolic truss beam if the points of support are also part of the parabola,
as in truss (f). If this is not the case, as in truss (e), it is called a half-
parabolic truss beam.

Truss (g) is found in large spans. By creating an auxiliary truss within the
main truss, additional points of support are created for the bridge deck,
allowing the structure to be lighter.

Trusses (a) and (d) to (g) have falling diagonals, truss (b) has rising diag-
onals, and in truss (c) the diagonals alternate between falling and rising.

Due to the dead load, falling diagonals are loaded by tensile forces, and
rising diagonals are loaded by compressive forces. This is shown in Fig-
ure 9.12 in a general sketch of the expected deformation of the truss beam
subject to full loading. The falling diagonals in case (a) extend and are
loaded by tensile forces. The rising diagonals in case (b) shorten and are
loaded by compressive forces.
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Figure 9.13 Model of (a) a steel garden gate with falling diag-
onal (tension diagonal) and (b) a wooden garden gate with rising
diagonal (compression diagonal).

Figure 9.14
closed position. (b) Interior view of the left-hand lock door, as found
in older wooden mitre gates, with a diagonal strutt (compression
diagonal) and a steel tension bar (tension diagonal).

In steel trusses, falling diagonals (tension diagonals) are used most fre-
quently, as (usually slender) steel members subject to compression run the
risk of buckling. Preferably apply them as tension members.

In contrast, rising diagonals (compression diagonals) are most often used
in wooden trusses, as in general a wooden joint is more suitable to transfer
compressive forces rather than tensile forces.

An example close to home is the simple garden gate in Figure 9.13, with
(a) a steel version (falling diagonal) and (b) a wooden version (rising
diagonal). The wooden lock-gate in Figure 9.14 is another example. The
wooden diagonal strut is a rising diagonal and acts as a compression
member under influence of the dead weight of the gate. The wooden
planking is facing the same way as the diagonal strut. The steel falling
diagonal is a tension bar.

9.1.4 Labelling joints and members

The joints in a truss are numbered or lettered (see Figure 9.15). The num-
bers or letters used to indicate the joints can be used as an index. For
example, x4; y4 gives the x and y coordinates of joint 4, and Fx;C is the
x component of force F on joint C. It is customary to use the joint label as
sub-index.

Members are always numbered. The member numbers are often placed
between brackets. For quantities that relate to a particular member, the
member number is used as an upper index. The length � of member (2)
is recorded as �(2), and N(1) is the normal force in member (1).

(a) The mitre gates of a simple navigation lock in
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Figure 9.15 Joint and member numbering in (a) computer calcu-
lations and (b) manual calculations.

Figure 9.16 A triangle is the basic form of a simple or self-
contained truss, defined as a truss that can retain its shape.

In computer calculations, it is customary to use the labelling in Fig-
ure 9.15a; computer programs can deal better with numbers than with
letters. In manual calculations, the labelling in Figure 9.15b is used most.
Occasionally, the brackets about the member numbers are omitted. Their
context must then show whether �2 means “the square of �”, or “the length
of member 2”. If there is a chance of confusion, the member number has to
remain between brackets.

9.2 Kinematically/statically (in)determinate trusses

In this section, we discuss the relationship between the number of members
and joints in a simple or self-contained truss and a compound truss respec-
tively. Subsequently a systematic procedure will be introduced to calculate
the degree of kinematic/static (in)determinacy of a truss and the relationship
between the number of support reactions, members, and joints.

9.2.1 Simple and compound trusses

A simple or self-contained1 truss is defined as a truss that retains its shape.
The basic element of a simple truss is the triangle with s = 3 members and
k = 3 joints, like triangle ABC in Figure 9.16.

Unlike a triangle, a (hinged) quadrangle cannot retain its shape.2 Figure
9.17 shows the displacements with respect to AG for quadrangle ABEG.
One can imagine that BE is connected with AG via the two-force members
AB and EG. The displacement of BE with respect to AG consists of a
rotation about RC(BE), the centre of rotation of BE, that coincides with

1 The concept self-contained was covered earlier in Section 4.5.1.
2 The open circles for hinged joints are consistently omitted (see Section 9.1.1).
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Figure 9.18 Based on a simple triangle, we can repeatedly create
a new joint by adding two members.

Figure 9.19 Simple trusses constructed in the way shown in Fig-
ure 9.18. In (c) and (d) we can start with the dark triangle in the
middle. For all these trusses it holds that s = 2k − 3.

Figure 9.17 A hinged quadrangle cannot retain its shape.

the intersection of two-force members AB and EG. See also Section 4.5.1
and Figure 4.38c. When looking at the deformed quadrangle once more, it
is important to note that the displacements are depicted large in the figure
as compared to the length of the members.

The simplest way of constructing self-contained trusses is to start with a
triangle, and, as in Figure 9.18, repeatedly create a new joint with two
members. To retain its shape the truss does not have to consist only of
triangles. For example, the quadrangle ABEG from Figure 9.17 is found
again in the self-contained truss in Figure 9.18c.

Figure 9.19 shows a number of trusses that were constructed using this
method. Trusses (a) and (b) consist entirely of triangles and are clearly self-
contained. This is harder to determine for trusses (c) and (d) as they do not
consist entirely of triangles.1 They retain their shape however as they can
be constructed from the dark triangle in the middle by repeatedly creating
a new joint by adding two members to two existing joints.

1 The eight triangles in truss (c) are not “real” triangles but quadrangles.
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Figure 9.20 Simple trusses with a more complicated structure.
The two dark self-contained parts are connected by three members.
The formula s = 2k − 3 is also applicable to these trusses.

Figure 9.21 Simple trusses that contain more members than
needed for being self-contained. For these trusses, it holds that
s > 2k − 3.

The following relationship holds between the number of members s and the
number of joints k for a truss created in the way described above:

s = 2k − 3.

This can be derived as follows. Three members are needed for the first three
joints in the truss, which forms the first triangle. For the remaining (k − 3)

joints 2(k − 3) members are needed. The total number of members s is
therefore:

s = 3 + 2(k − 3) = 2k − 3.

Figure 9.20 shows two examples of simple trusses that cannot be con-
structed as shown in Figure 9.18. They clearly have a more complicated
structure. If we look more closely, we notice that the structures consist
of two dark coloured simple trusses of the type described earlier, which
are connected to one another by three members. The structures retain their
shape only when the three members do not intersect at one point, and nei-
ther are parallel. In the figure, a section s has been introduced across the
three members. The same formula s = 2k − 3 also applies to these more
complicated trusses.

The formula s = 2k − 3 is a minimum condition for a truss that will retain
its shape. By adding additional members to a simple truss, without creating
new joints, the structure remains self-contained. In this way, the trusses in
Figure 9.21 were created by adding additional members to trusses (c) and
(d) in Figure 9.19. The trusses are still self-contained, but now the number
of members is

s > 2k − 3

One would imagine that a truss is always self-contained if the number
of members s is at least equal to 2k − 3. This is a misconception, how-
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Figure 9.22 A truss that cannot retain its shape is called a com-
pound truss.

ever, as is shown for the truss in Figure 9.22 with s = 16 and k = 9. This
truss consists of two self-contained parts, which could both lose a member
without losing their shape. Both parts are connected by means of a hinge,
and can move with respect to one another. The structure is therefore not
self-contained, although the number of members s = 16 is greater than
2k − 3 = 15.

Hereafter, a truss that cannot retain its shape is referred to as a compound
truss.1

The formula s = 2k − 3 is clearly not a good criterion for a truss that will
retain its shape. One can say that for each self-contained truss, the following
relationship must hold:

s ≥ 2k − 3.

The reverse is not true, however. Not every truss with s ≥ 2k − 3 is self-
contained. This is demonstrated by the counterexample in Figure 9.22. The
formula does not indicate the functionalism for which the various mem-
bers were introduced. The formula s ≥ 2k − 3 is a necessary although
insufficient condition for a truss that will retain its shape.

To summarise:
s < 2k − 3 The truss is a compound truss (the truss cannot retain its form).

s ≥ 2k − 3 Necessary condition for a self-contained truss, but not a suf-
ficient condition. As a result of the application of inefficient
members, the truss may still not be capable of retaining
its shape. One can be sure only when the truss has been
investigated from joint to joint.

1 The literature often defines compound trusses as those of the type in Figure 9.20,
but sometimes also those in Figure 9.22. Here, as in Section 4.5.3, a compound
truss is defined as one that, when isolated from its supports, is not capable of
retaining its shape.
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Figure 9.23 (At least) three support reactions are needed for an
immovable support of a simple truss. Here they are provided by (a) a
hinged and roller support and (b) a hinged and bar support.

Figure 9.24 More than three support reactions are needed for an
immovable support of a compound truss, as the internal degrees
of freedom also have to be eliminated. In this case, four support
reactions are required, provided by two hinged supports.

If the truss retains its shape, the following cases can be distinguished:
s = 2k − 3 The truss needs all the members to retain its shape.

s > 2k − 3 The truss can miss s − (2k − 3) members without losing its
capability to retain its shape. These members cannot be se-
lected arbitrarily; they are determined by the way the truss is
assembled.

9.2.2 Determining kinematic/static (in)determinacy

If a truss is supported so that is has no possibility of moving, the truss is
defined as immovable or as kinematically determinate. This type of truss
can resist all types of load. If a truss is to be kinematically determinate, it
needs at least as many support reactions as degrees of freedom; one degree
of freedom is removed for each support reaction (interaction force between
truss and the immovable environment).

A simple truss may be considered as a rigid body. Since (in a plane) it
has three degrees of freedom (one rotation and the two components of
a translation), at least three independent support reactions are needed for
immovability. For example by means of a hinged support together with a
roller support or bar support, as shown in Figure 9.23.

Compound trusses can be seen as systems of rigid bodies that have a certain
degree of freedom with respect to one another. The possible movements
with respect to one another are known as the internal degrees of freedom.
The immovability of a compound truss always needs more than three sup-
port reactions, as the internal degrees of freedom also have to be eliminated.
In this way, the truss in Figure 9.24 is not shape-retaining in itself, as the
two constituent parts can rotate with respect to one another. The two hinged
supports ensure the kinematic determinacy of the truss.

In the examples, bar supports, roller supports, and hinged supports have
been used. It should be clear that fixed supports are not used in trusses.
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Figure 9.25 (a) A truss for which in (b) all the joints have been iso-
lated. It has been assumed that the normal force N in each member
is a tensile force. If so, all members pull at the joints.

Instead of looking at the degrees of freedom for simple or compound
trusses, we can also determine how many support reactions are needed to
keep the truss in equilibrium under every imaginable load. This procedure
was explained in Section 4.5.3 for an arbitrary structure. The answers are
somewhat easier to determine for trusses as here the members can transfer
only tensile and compressive forces between the joints. These forces are
called normal forces. Normal forces are represented by means of a capital
letter N . According to the sign convention N is positive for a tensile force,
and negative for a compressive force.

The truss in Figure 9.25a is supported at A on a hinge and at B on a roller,
and is loaded by the forces F1; F2; F3. In Figure 9.25b, all the joints in the
truss have been isolated. It has been assumed that all the member forces N

are positive (all the members transfer tensile forces, and therefore pull at
the joints).

An arbitrary truss has k joints, s members and r support reactions. The
unknown force quantities in the truss are then the r support reactions and
the s member forces. In total, there are therefore (r + s) unknowns in the
truss.

The equilibrium can be investigated for each joint. The conditions for mo-
ment equilibrium are automatically met as all the forces intersect at the
joint. All that remains is the force equilibrium. Two equations can be cre-
ated per joint. These contain both known forces (the loads) and unknown
forces (member forces and support reactions). With k joints, there are
therefore 2k equilibrium equations.

Let n be the difference between the number of unknown forces and the
number of available equilibrium equations:

n = r + s − 2k.

If n < 0, there are more equations than unknowns. It is always possible to
choose the (arbitrary) load in such a way that a number of the (redundant)
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Figure 9.26 Kinematically indeterminate trusses or mechanisms.
(a) n = −1; a diagonal member is missing in the middle.
(b) n = −1; the hinged and roller support are insufficient to elimi-
nate all possible movement of the compound truss.

Figure 9.27 Kinematically indeterminate trusses or mechanisms
with n ≥ 0: (a) n = 0 and (b) n = 1.

equations become inconsistent. This means that, with that load, the equi-
librium conditions cannot be met at all the joints. The truss is a mechanism
and is kinematically indeterminate (not immovable). Examples are shown
in Figure 9.26.

In Figure 9.26a (with r = 3, s = 8 and k = 6, and therefore n = −1) the
kinematic indeterminacy results from the missing diagonal member in the
centre field. In Figure 9.26b (with r = 3, s = 14 and k = 9, and therefore
n = −1), the method of support is inadequate to remove all the degrees of
freedom of the compound truss.

From the above, we can conclude that n ≥ 0 is a necessary condition
for kinematic determinacy. Since the value of n is the result of a calcu-
lation in which the functionalism of the members and supports present is
not taken into account, this necessary condition is an insufficient condi-
tion. Even when n ≥ 0, there is always the possibility that the structure is
kinematically indeterminate. Examples of this are shown in Figure 9.27.

The structure in Figure 9.27a (with r = 4, s = 8, k = 6, and therefore
n = 0) is the same as the structure in Figure 9.26a, except that the roller
support is replaced by a hinged support. Since, for motion as a mechanism,
the roller in Figure 9.26a remains in place, this change makes no difference
whatsoever – the truss remains kinematically indeterminate.

In Figure 9.27b (with r = 3, s = 16, k = 9, and therefore n = 1) the
support of the compound truss is equally inadequate as in Figure 9.26b. The
only difference is that the two constituent parts now contain more members
than required for retaining their shape.

The kinematic determinacy of a truss cannot be assessed based on a cal-
culation alone; one always has to take the construction of the truss into
account.

With n = r + s − 2k the following is true for a truss:
n < 0 The truss is kinematically indeterminate. This is also known as a

mechanism.
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Figure 9.28 Statically determinate trusses.

n ≥ 0 Necessary but insufficient condition for a kinematically determinate
truss. As a result of non-effective members and/or supports, the
truss can still be kinematically indeterminate and a mechanism.

In kinematically determinate trusses, n ≥ 0, and as in Section 4.5.3 we can
distinguish the following cases:
n = 0 The truss is statically determinate.

The number of unknowns is equal to the number of available
equilibrium equations. All unknowns (member forces and support
reactions) can be derived directly from the equilibrium.

n > 0 The truss is statically indeterminate.
There are more unknowns than equilibrium equations. One or more
of the member forces and/or support reactions cannot be deter-
mined directly from the equilibrium. In principle, there is an infinite
number of solutions that satisfy the equilibrium conditions (the so-
lution is undetermined). The correct solution can be found by taking
into account the deformation behaviour of the structure. The surplus
of unknowns, n, is known as the degree of static indeterminacy.

Figure 9.28 provides examples of statically determinate trusses.

The shape-retaining truss ABCD in Figure 9.28a is immovable supported
by a hinge at A and a bar at B. The hinged support provides two support
reactions, and the bar support provides one, so that r = 3. With s = 25
and k = 14, n = 0. The truss is therefore statically determinate. If the bar
support is considered as one of the truss members, B′ has to be seen as a
hinged support. In that case, r = 4, s = 26 and k = 15, and again n = 0.

In the simple truss in Figure 9.28b, the diagonal members cross one an-
other. The truss is immovable, supported on a roller and by a hinge. Here
r = 3, s = 13 and k = 8, so that n = 0. The truss is therefore statically
determinate.

The compound truss in Figure 9.28c is also immovable supported. With
r = 4, s = 14 and k = 9, n = 0. The truss is statically determinate.
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Figure 9.29abc Statically indeterminate trusses. Trusses (a) to
(c) are supported with static determinacy. These trusses are also
said to be externally statically determinate and internally statically
indeterminate.

Figure 9.29 provides examples of statically indeterminate trusses. All the
trusses are kinematically determinate. The degree of static indeterminacy
can be determined with

n = r + s − 2k.

The truss in Figure 9.29a, in which the diagonal members cross one another,
has a hinged support and a bar support. With r = 3, s = 31, k = 14, one
finds n = 6. The truss is six-fold statically indeterminate. If we compare
the truss with the statically determinate structure in Figure 9.28a, we see
that the truss has 6 redundant diagonal members.

For the truss in Figure 9.29b, with crossing diagonals, r = 3, s = 26,
k = 14 and so n = 1. The truss is therefore statically indeterminate to
the first degree.

For the compound truss in Figure 9.29c, r = 4, s = 16 and k = 9, so that
n = 2. A member could be omitted in each of two self-contained parts (see
also Figure 9.28c).

The truss in Figure 9.29d is statically indeterminate to the first degree, with
r = 4, s = 19, k = 11 and so n = 1. The structure can be made statically
determinate by, for example, removing one of the roller supports. You could
also remove an arbitrary top or bottom chord member.

For the truss in Figure 9.29e, r = 6, s = 13 and k = 8, so that n = 3. The
truss is statically indeterminate to the third degree. The simple truss has
three redundant support reactions and/or members.

In statically determinate trusses, all the force members and support reac-
tions can be determined directly from the equilibrium. This is not possible
for statically indeterminate trusses. Sometimes, for statically indeterminate
trusses, it is possible to find all the support reactions from the equilibrium
equations, but not all the member forces. Examples of this type of truss
are shown in (a) to (c) in Figure 9.29. The support of these trusses is
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Figure 9.29de Statically indeterminate trusses.

Figure 9.30 Truss, with parallel top and bottom chord, for which
the forces in members 6 to 9 and in member 13 have to be calculated
using the method of sections.

statically determinate. Their static indeterminacy is caused by redundant
members in their self-contained parts. These types of trusses are also known
as externally statically determinate and internally statically indeterminate.

9.3 Determining member forces

There are various methods for calculating member forces in statically de-
terminate trusses. We will look at two:
• the method of sections;
• the method of joints.

In the method of sections, one introduces a suitable section across the truss
and calculates the member forces from the equilibrium of one of the iso-
lated parts. In the method of joints, we consistently determine the member
forces from the equilibrium of the joints.

9.3.1 Method of sections

In the method of sections, the member forces in a (statically determinate)
truss are determined by introducing a section and investigating at the equi-
librium of one of the isolated parts. Since there are only three equilibrium
equations available, you have to select a section such that there are no
more than three unknowns. In general, the support reactions have to be
determined previously. The method is demonstrated using a number of
examples.

Example 1
The first example relates to the truss beam in Figure 9.30, with parallel top
chord and bottom chord. The load consists of the two vertical forces shown
in the figure of respectively 120 kN and 40 kN.

Question:
Determine the forces in the members 6 to 9 and in member 13, with
the correct signs for tension and compression. In the calculation, use the
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Figure 9.31 The isolated truss with support reactions. To calculate
the forces in members 6, 7 and 8, a section is introduced across these
members in the truss.

Figure 9.32 The isolated parts to the left and right of the sec-
tion across members 6, 7 and 8. The interaction forces, the normal
forces N , are shown as tensile forces because tensile forces are by
definition positive.

coordinate system shown.

Solution:
In Figure 9.31, the truss has been isolated and the support reactions are
shown. For calculating the forces in members 6, 7 and 8, we introduce a
section across these members.

In Figure 9.32, the parts to the left and to the right of the section have been
isolated. The as yet unknown member forces N6, N7 and N8 are introduced
as tensile forces. Here we use the sign convention that the normal force in a
member is positive when it is a tensile force. If the member has to transfer
a compressive force, this will become clear later through a negative value
for the normal force N .

The normal force N6 in member 6 is most easily determined by looking
at the moment equilibrium of the left-hand part about intersection A of
members 7 and 8:∑

Tz|A = −(100 kN)(2 m) − N6 × (2 m) = 0 ⇒ N6 = −100 kN.

The minus sign shows that member 6 is a compression member. The 100 kN
force is therefore acting opposite to the direction shown in Figure 9.32.

Instead of the left-hand part, we can also look at the right-hand part. From
the moment equilibrium about A of the right-hand part, it follows that∑

Tz|A = −(120 kN)(2 m) − (40 kN)(4 m) + (60 kN)(10 m) +
+ N6 × (2 m) = 0.

Of course, N6 = −100 kN also here, except that it took a little more work
to find the answer as more forces are acting on the right-hand part than on
the left-hand part.

When calculating the member forces, it does not make a difference whether
you look at the equilibrium on the left-hand side or the right-hand side
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Figure 9.33 The section for calculating the forces in members 8,
9 and 10.

of the section. It is sensible to choose the part that offers the simplest
calculation.

The force in member 7 is most easily determined from the vertical force
equilibrium for the part to the left of the section:

∑
Fy = (100 kN) + 1

2N7
√

2 = 0 ⇒ N7 = −100
√

2 kN.

Diagonal member 7 is also a compression member. Calculating this mem-
ber force is easy as the parallel top and bottom chords members do not have
a vertical component.

Member force N8 is most easily determined from the moment equilibrium
of the left-hand part about the intersection of members 6 and 7:

∑
Tz|B = −(100 kN)(4 m) + N8 × (2 m) = 0 ⇒ N8 = +200 kN.

Bottom chord member 8 is a tension member.

To check the above, we calculate whether there is horizontal force equilib-
rium in the left-hand part:

∑
Fx = N6 + 1

2

√
2 × N7 + N8

= (−100 kN) + 1
2

√
2 × (−100

√
2 kN) + (200 kN) = 0.

With the values found for N6, N7 and N8, the conditions for horizontal
force equilibrium are indeed satisfied.

Please note the parallel with calculating the support reaction for a structure
on three bar supports, as in Examples 2 and 3 in Section 5.1.

The forces in the other members of the truss can be determined in the same
way. For example, we find the force in member 9 by introducing a section
across members 8, 9 and 10, as shown in Figure 9.33. From the vertical
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Figure 9.34 The section across member 13 cuts four members,
one too many to be able to determine all the member forces from
the equilibrium. With this section, we can only find N14 from the
moment equilibrium about E.

force equilibrium for the left-hand part it follows that

∑
Fy = (100 kN) − (120 kN) − N9 = 0 ⇒ N9 = −20 kN.

Member 9 is a compression member.

When determining the force in member 13, the problem arises that a section
across member 13 cuts more than three members. The section in Fig-
ure 9.34. for example, cuts through members 10, 11, 13 and 14, which is
one too many to be able to determine all the forces from the equilibrium.
If one of the member forces N10 of N11 is known, then it is possible to
determine the other three. We therefore look at a second section to first
determine one of the forces N10 or N11.

From the moment equilibrium about C of one of the isolated parts in
Figure 9.33 we find

N10 = −200 kN.

Using this information, we find from the moment equilibrium about C of
one of the isolated parts in Figure 9.34 (here we select the right-hand part)
the force in member 13 is

∑
Tz|C = −N10 × (2 m) + (60 kN)(8 m) − N13 × (2 m) = 0

⇒ N13 = +40 kN.

By chance, we can also find the force in member 13 using an easier method,
namely by using the section in Figure 9.35 across the members 12, 13 and
14. N13 is found from the vertical force equilibrium of one of the parts.
Here, we actually determine the force N13 from the force equilibrium of
joint D, where three members come together, of which two in a direct line.

Note that it is not possible to determine the section forces N12 and N14 from

Figure 9.33 The section for calculating the forces in members 8,
9 and 10.
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Figure 9.35 With this section across three members, we actually
isolate joint D. N3 follows directly from the vertical force equi-
librium of the joint. We do not need to know N12 and N14 to do
so.

Figure 9.36 Truss with non-parallel top and bottom chord.

the equilibrium of one of the parts isolated in Figure 9.35. It is possible to
determine only that N12 = N14 from the horizontal force equilibrium, but
we cannot determine their magnitude.

Table 9.1 provides a summary of all the member forces in the truss.

Example 2
The second example relates to the truss in Figure 9.36, with non-parallel top
and bottom chords. The load consists of a single vertical force of 120 kN.

Table 9.1 Member forces Example 1.

Mem. no. i Ni (kN)

1 0

2 0

3 −100
√

2

4 +100

5 +100

6 −100

7 −100
√

2

8 +200

9 −20

10 −200

11 +20
√

2

12 +180

13 +40

Mem. no. i Ni (kN)

14 +180

15 −60
√

2

16 −120

17 +60

18 +120

19 −60
√

2

20 −60

21 +60

22 +60

23 −60
√

2

24 0

25 0
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Figure 9.37 Section for calculating the forces in members 6, 7
and 8.

Question:
Determine the forces in members 6 to 9 and in member 13, with the correct
sign for tension and compression. Use the coordinate system given.

Solution:
We first determine the support reactions. For the left-hand and right-hand
support reactions, we find 80 and 40 kN respectively, both vertically and
directed upwards.

For determining the three unknown member forces N6, N7 and N8, a sec-
tion has been introduced across members 6, 7, and 8 in Figure 9.37, and the
parts on both sides of the section have been isolated. The member forces
N6, N7 and N8 follow from the equilibrium of one of the parts to the left or
right of the section. The force N6 is most easily determined. This follows
directly from the moment equilibrium about intersection A of members 7
and 8. For the left-hand part, we find

∑
Tz|A = −(80 kN)(3 m) + N6 × (3 m) = 0 ⇒ N6 = +80 kN.

Member 6 is a tension member.

If we use the right-hand section, the equation for the moment equilibrium
about A demands a little more effort:

∑
Tz|A = (40 kN)(15 m) − (120 kN)(3 m) − N6 × (3 m) = 0.

Of course, this way round we also find a tensile force of 80 kN in member
6.

The force in member 7 is found from the moment equilibrium about in-
tersection B of the members 6 and 8 (see Figure 9.38a), where only the
left-hand part is shown:

Figure 9.36 Truss with non-parallel top and bottom chord.
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Figure 9.38 N7 is found from the moment equilibrium about B.
(a) Here we have to determine the distance from B to the line of
action of N7. (b) We can also shift N7 to C and there resolve it into
a horizontal and vertical component.

∑
Tz|B = (80 kN)(6 m) − N7 × (6

√
2 m) = 0 ⇒ N7 = +40

√
2 kN.

Member 7 is a tension member.

If the distance of point B to the line of action of N7 is difficult to find
(not the case here), force N7 can be shifted along its line of action to a
more suitable position.1 In Figure 9.38b, N7 has been shifted to point C,
where it has been resolved into components. The equation for the moment
equilibrium about B now only contains the vertical component of N7:

∑
Tz|B = (80 kN)(6 m) −

(
1
2N7

√
2
)

(12 m) = 0.

As found earlier, this gives N7 = +40
√

2 kN. If N6 is known, N7 can also
be determined from the moment equilibrium about a point other than B on
the line of action of N8, such as about point D.

For the left-hand part we find (see Figure 9.38b)

∑
Tz|D = −(80 kN)(6 m) + N6 × (4 m) +

(
1
2N7

√
2
)

(4 m) = 0.

With N6 = +80 kN, we find N7 = +40
√

2 kN, as expected. This sort of
approach can offer benefits if the intersection B of the members 6 and 8 is
far away or is difficult to find.

The force in member 8 is found from the moment equilibrium about inter-
section C of the members 6 and 7. Here, it is useful that force N8 can be
shifted along its line of action to point D (see Figure 9.39). For the left-hand
part we find

1 See also Section 3.1.5 with Figure 3.17.
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Figure 9.39 N8 is found from the moment equilibrium about C.

Figure 9.40 Section for calculating the force in member 9. N9

follows from the moment equilibrium about B. As an interim step,
we can also first determine N10 from the moment equilibrium about
D, and then determine N9 from the moment equilibrium about A.

Figure 9.41 This section across member 13 intersects four members.
We can only determine N14 from the moment equilibrium about G.

∑
Tz|C = −(80 kN)(6 m) −

(
3
10N8

√
10
)

(4 m) = 0

⇒ N8 = −40
√

10 kN.

N8 is a compressive force.

To verify the three values we have determined for N6, N7 and N8, we
can check whether the conditions for force equilibrium are satisfied for the
left-hand part. This leads to the following two equations:

∑
Fx = 3

10N8
√

10 + 1
2N7

√
2 + N6 = 0,∑

Fy = 1
10N8

√
10 − 1

2N7
√

2 + (80 kN) = 0.

The values we found indeed meet these equilibrium conditions.

To determine the force in member 9, a section has been introduced in Fig-
ure 9.40 across the members 8, 9 and 10. The force N9 follows directly
from the moment equilibrium about the intersection B of the members 8
and 10. Written out in full, the left-hand part gives

∑
Tz|B = (80 kN)(6 m) − (120 kN)(12 m) + N9 × (12 m) = 0

⇒ N9 = +80 kN.

Member 9 is a tension member.

If determining the location of point B is complicated (not the case here)
you could also first determine N10 from the moment equilibrium about D
and then derive N9 from the moment equilibrium about A, for example:

∑
Tz|D = −(80 kN)(6 m) + N10 × (4 m) = 0 ⇒ N10 = +120 kN,
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Figure 9.42 Once N14 is known we can find N13 from the equi-
librium of joint E.

Table 9.2 Member forces Example 2.

Mem. no. i Ni (kN)

1 −80

2 0

3 +96.15

4 −84.33

5 −53.33

6 +80

7 +56.57

8 −126.49

9 +80

10 +120

11 −80

12 −75.89

13 +48

Mem. no. i Ni (kN)

14 075.89

15 +20

16 +60

17 −20

18 −63.25

19 +28.28

20 +40

21 −26.67

22 −42.16

23 +48.07

24 0

25 40

∑
Tz|A = −(80 kN)(3 m) − (120 kN)(3 m)

+ N10 × (3 m) + N9 × (3 m) = 0 ⇒ N9 = +80 kN.

When determining the force in member 13, we again encounter the problem
that a section across member 13 cuts four members (see Figure 9.41). In this
case, the problem cannot be easily solved from the equilibrium of joint E
isolated in Figure 9.42. In order to find member force N13 from the force
equilibrium of joint E, we first have to know one of the member forces N12

or N14.

Here there is a special case, in which we can determine the force in member
14 by means of the section in Figure 9.41, even though it passes over four
members. Since, in this section, three of the four unknown member forces
intersect at point G, the fourth force, in this case N14, can be derived di-
rectly from the moment equilibrium about G. This gives (for the part shown
to the left of the section, with force N14 moved to point E)

∑
Tz|G = −(80 kN)(9 m) + (120 kN)(3 m) − 3

10N14
√

10 × (5 m) = 0

so that N14 = −24
√

10 kN. The horizontal force equilibrium of joint E
(Figure 9.42) now gives

N12 = N14 = −24
√

10 kN.

The vertical force equilibrium gives

N13 = − 1
10

√
10 × (N12 + N14) = +48 kN.

Member 13 is therefore a tension member.

Table 9.2 provides a summary of all the member forces in the truss.
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Figure 9.43 A K-truss.

Figure 9.44 The isolated K-truss with support reactions.

Example 3
The third example relates to the somewhat more complicated truss in Fig-
ure 9.43, a so-called K-truss. This type of truss is sometimes used as wind
bracing in bridges. Here, the K-truss has four fields and is loaded by two
vertical forces of 120 kN and a horizontal force of 240 kN.

Question:
Determine the forces in members 7 to 13, with the correct sign for tension
and compression. In the calculations, use the coordinate system given.

Solution:
In Figure 9.44, the truss has been isolated and the support reactions have
been shown. Using the method of sections, we now encounter the difficulty
that, for most of the members, no section can be found that intersects only
three members. Sometimes it is possible to determine a member force if
the section passes through more than three members, but in most cases,
additional information is required that has to be obtained by selecting a
section in a clever way, or by considering a combination of sections. Since
the top chord and bottom chord members are easiest to determine, we will
start with them.

To determine the normal force N9 in top chord member 9, we introduce
a section across members 5, 6, 7 and 9. Figure 9.45 shows only the part
to the left of the section. Four unknown member forces are acting in the
section. Since the lines of action of the forces N5, N6 and N7 intersect
one another at point A, only one force is unknown in the equation for the
moment equilibrium about A, which can be determined directly. This gives

∑
Tz|A = −(60 kN)(2 m) − N9 × (3 m) = 0 → N9 = −40 kN.
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Figure 9.45 Section for determining the force in member 9. The
force is found from the moment equilibrium about A.

Figure 9.46 Section for determining the forces in members 9 and
12. They are found from the moment equilibrium about respectively
A and B.

Member 9 is a compression member.

The same equation is found from the moment equilibrium about A of the
part to the left of the section over members 7, 8, 9 and 12 (see Figure 9.46).
This section offers the advantage that the forces in the members of both
the top chord and the bottom chord can be found. In this way, force N12 in
member 12 follows directly from the moment equilibrium about B:

∑
Tz|B = −(240 kN)(3 m) − (60 kN)(2 m) + N12 × (3 m) = 0

⇒ N12 = +280 kN.

A tensile force is acting in member 12.

The section in Figure 9.46 has the additional benefit that the values found
for N9 and N12 can be checked using the horizontal force equilibrium of the
isolated part, without having to know the forces in the diagonal members
or verticals:

∑
Fx = −(240 kN) + N9 + N12

= − (240 kN) + (−40 kN) + (280 kN) = 0.

The isolated section in Figure 9.46 therefore meets the conditions for
horizontal force equilibrium.

With the section in Figure 9.46, we can quickly determine the forces in
the top chord member 9 and bottom chord member 12, but not the forces
in the verticals 7 and 8. The forces in these verticals are found from the
equilibrium of joints A and B, but we do not have enough information to
do so yet.
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Figure 9.47 Section for determining the force in member 10. This
force follows from the moment equilibrium about C. However, we
do have to know N9 first.

Figure 9.48 N7 and N8, the forces in the verticals, are found from
the equilibrium of joints B and A, although we must first know the
forces in members 3 or 4, respectively 5 or 6.

The forces in the diagonal members 10 and 11 are found using the section
in Figure 9.47 over members 9, 10, 11 and 12. Since we already know
N9, we can find N10 from the moment equilibrium about C. This gives the
following (with force N10 shifted along its line of action to point D, only
the horizontal component of N10 is left in the equation for the moment
equilibrium)

∑
Tz|C = −(60 kN)(4 m) + (120 kN)(2 m) − N9 × (3 m) +

− 0.8N10 × (3 m) = 0.

With N9 = −40 kN this gives

N10 = +50 kN.

In the same way, from the moment equilibrium about D we find

N11 = −50 kN.

Since we know both N9 and N12, we can find N10 and N11 from the two
equations for the force equilibrium of the isolated part in Figure 9.47:

∑
Fx = N9 + 0.8N10 + 0.8N11 + N12 − (240 kN) = 0,∑
Fy = 0.6N10 − 0.6N11 + (60 kN) − (120 kN) = 0.

With N9 = −40 kN and N12 = +280 kN these equations are now

0.8N10 + 0.8N11 = 0,

0.6N10 − 0.6N11 = +60 kN.
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Figure 9.49 N3 and N6 follow from the force equilibrium of
respectively joint E and G.

Figure 9.50 If N3 = 0 and N6 = 240 kN, then N7 and N8 are
found from the force equilibrium of respectively joint B and A.

The solution is

N10 = +50 kN,

N11 = −50 kN.

This is in agreement with earlier results.

The forces in the verticals 7 and 8 follow from the (force) equilibrium of
joints B and A respectively, although we do first have to know the forces in
one of members 3 and 4 and one of members 5 or 6 (see Figure 9.48).

The forces N3 and N6 can be found in the section in Figure 9.49 from the
moment equilibrium about G and E respectively. In fact, with this section
on the end of the truss, we isolate joints E and G. N3 and N6 can therefore
also be found directly from the horizontal force equilibrium of joints E and
G:

N3 = 0,

N6 = +240 kN.

In Figure 9.50, joints A and B have been isolated, and all the known forces
N3, N6, N9 and N12 are shown as they act in reality on the joints.

At joint B, two forces are still unknown: N4 and N7. From the equilibrium
for this joint we find

∑
Fx = −(40 kN) − 0.8N4 = 0,∑
Fy = −(120 kN) − 0.6N4 − N7 = 0
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Figure 9.51 The force in member 13 is found from the force
equilibrium of joint D or C, although we must first determine one
of the member forces N14 and N15, or one of N16 and N17.

with the solution

N4 = −50 kN,

N7 = −90 kN.

In the same way, we can determine N5 and N8 from the equilibrium of
joint A:

∑
Fx = −(240 kN) + (280 kN) − 0.8N5 = 0,∑
Fy = 0.6N5 + N8 = 0

such that

N5 = +50 kN,

N8 = −30 kN.

The force in member 13 is the most complicated one to determine. This
force is found from the equilibrium of joint D or C. However, we first have
to determine one of the member forces N14 and N15, or one of N16 and
N17 (see Figure 9.51).

With the section in Figure 9.52, N14 is found from the moment equilibrium
about H:

∑
Tz|H = (180 kN)(2 m) − (240 kN)(3 m) + N14 × (3 m) = 0

⇒ N14 = +120 kN.

At joint D, N13 and N14 are now the only unknowns (see Figure 9.51). The

Figure 9.50 If N3 = 0 and N6 = 240 kN, then N7 and N8 are
found from the force equilibrium of respectively joint B and A.
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Figure 9.52 In this section, N14 is found from the moment equi-
librium about H.

Table 9.3 Member forces Example 3.

Mem. no. i Ni (kN)

1 0

2 −60

3 0

4 −50

5 +50

6 +240

7 −90

8 −30

9 −40

10 +50

11 −50

12 +280

13 −60

Mem. no. i Ni (kN)

14 +120

15 −150

16 +150

17 +120

18 +90

19 −90

20 +240

21 −150

22 +150

23 0

24 0

25 −180

two equations for the force equilibrium of the joint are:

∑
Fx = (40 kN) + N14 − 0.8 × (50 kN) + 0.8 × N15 = 0,∑
Fy = −(120 kN) − N13 − 0.6 × (50 kN) − 0.6 × N15 = 0.

Here substitute N14 = +120 kN to find the solution:

N15 = −150 kN,

N13 = −60 kN.

Table 9.3 provides a summary of all the member forces.

In the method of sections, member forces are determined from the equi-
librium of a sectioned part of the truss. In the examples, the sectioned
part sometimes degenerates into a joint. The following section looks at the
method of joints. With this method, all the member forces are consistently
derived from the equilibrium of the joints.

9.3.2 The method of joints

In the method of joints, all the joints are isolated, and we investigate the
force equilibrium of the individual joints.

For the truss in Figure 9.53a, all the joints have been isolated in Fig-
ure 9.53b. On the isolated joints are acting
• loads (joints C and D);
• support reactions (joints A and B);
• member forces.
Here, the support reactions and member forces are the unknown forces.

Since only two equations for the force equilibrium are available per joint,
we have to start the calculation at a joint where no more than two forces
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Figure 9.53 (a) Truss with support reactions and (b) all isolated
joints of the truss with all the forces acting on them.

are unknown. These forces are determined from the joint equilibrium, after
which we move to the next joint where, again, no more than two forces are
unknown. In this way, we pass along each of the joints in the truss.

If there are k joints, it is not the intention to first generate all 2k equations
for the force equilibrium, and then to solve them together as a system of
equations. We will often encounter the problem in which we cannot start
with a joint with only two unknowns, as in Figure 9.53. This can be avoided
by previously determining the support reactions from the truss as a whole.
In Figure 9.53b, we can now start the procedure at one of the joints A or B.

The method of joints is mostly used if one wants to find all the member
forces in a truss. If you want only to calculate the member force somewhere
in the middle of the truss, you will often have to work out the equilibrium
for several joints. In that case, the method of sections is faster.

Calculating the two unknown forces per joint can be done either analyt-
ically or graphically. The graphical approach is preferable; it is not only
faster but also gives a better insight in the force flow. The method of joints
is illustrated using a number of examples.

Example 1
The truss crane in Figure 9.54 is loaded at A by means of a vertical force
4F .

Question:
Determine all the member forces, with the correct sign for tension and
compression.

Solution:
In this case, we do not have to determine the support reactions as we can
start directly at joint A. Here, two forces are unknown: N1 and N2. These
forces can be determined both analytically and graphically.
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Figure 9.54 A truss crane. We can start the method of joints in A
without having to first determine the support reactions.

Figure 9.55 (a) The isolated joint A. The unknown forces N1 and
N2 exerted by the members 1 and 2 on joint A are shown as tensile
forces. (b) The interaction forces between joint A and members 1
and 2 as they really act. Member 1 is a compression member and
member 2 is a tension member.

Analytical solution for the equilibrium of joint A:
In Figure 9.55a, all the forces acting on joint A are shown. In this figure,
the member forces are again shown as tensile forces. For a tensile force, N

is by convention positive.

For the angles α1 and α2 shown in the figure, the equilibrium equations are

∑
Fx = −N1 cos α1 − N2 cos α2 = 0,∑
Fy = −N1 sin α1 − N2 sin α2 − 4F = 0.

From the slopes of the members 1 and 2 we find

sin α1 = cos α1 = 1
2

√
2,

sin α2 = 1
5

√
5 and cos α2 = 2

5

√
5.

Both equations in N1 and N2 now become

−N1 × 1
2

√
2 − N2 × 2

5

√
5 = 0,

−N1 × 1
2

√
2 − N2 × 1

5

√
5 = 4F

with solution:

N1 = −8F
√

2,

N2 = +4F
√

5.

Member 1 is a compression member and exerts a compressive force on joint
A. Member 2 is a tension member. Figure 9.55b shows the forces as they
really act on both the joint and on the two members.
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Figure 9.56 (a) The forces in members 1 and 2 follow from the
equilibrium of joint A. (b) The closed force polygon for the equilib-
rium of joint A. FA;1 and FA;2 are the forces that members 1 and
2 exert on joint A. (c) Joint A with all the forces acting on it. From
this figure we can see that N1 is a compressive force and N2 is a
tensile force.

Graphical solution for the equilibrium of joint A:
FA;1 and FA;2 are the forces that members 1 and 2 exert on joint A. The
forces FA;1 and FA;2 have their line of action along the members 1 and
2, but we do not know their magnitudes, nor their directions (see Fig-
ure 9.56a). Joint A is in equilibrium if all forces acting on joint A form
a closed force polygon. Figure 9.56b shows the closed force polygon for
the equilibrium of joint A. From here, we can read off the magnitude of
FA;1 and FA;2 (or calculate it):

FA;1 = 8F
√

2,

FA;2 = 4F
√

5.

From the force polygon, we can also find the directions of FA;1 and FA;2,
but we cannot see whether they are tensile or compressive forces. To do
so, we first have to draw the forces found as they act on joint A, see Fig-
ure 9.56c. Only then we can see that FA;1 is a compressive force, and FA;2
is a tensile force, so that

N(1) = −FA;1 = −8F
√

2,

N(2) = +FA;2 = +4F
√

5.

Note that the forces in the force polygon have not been denoted as N . The
force polygon provides information only on the magnitude of the member
forces, and not on the sign for tension or compression.

The order in which one writes down the forces in a force polygon does
not influence the result (vector addition is associative and commutative).
Figure 9.57 shows two equivalent force polygons. The first force polygon is
created by ranking the various forces acting on joint A in an order that is as-
sociated with an anti-clockwise rotation about joint A: 4F ⇒FA;2 ⇒FA;1.
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Figure 9.58 The order (a) to (h) shows how we can repeatedly
determine two member forces per joint (and finally the support re-
actions at G and H). The members for which the normal force is
known are shown in bold.

Figure 9.57 The order in which the forces in a force polygon are
plotted does not influence the result (vector addition is associative
and commutative).

The second force polygon arises from ranking the forces in a clockwise
order, so that 4F ⇒ FA;1 ⇒ FA;2.

In Figure 9.58, the order (a) to (h) shows how, per joint, we can consecu-
tively calculate two member forces (and then the support reactions in G and
H). The members for which the forces are known are shown in bold.

Figure 9.58a shows the initial situation. A is the only joint with two un-
known member forces. Once we have calculated these, we get the situation
shown in Figure 9.58b. Now B is the only joint with only two unknown
member forces. Once these have been determined, we get the situation
in Figure 9.58c, and so forth. The order in which the joint equilibrium is
determined, with no more than two unknowns per joint, is

A ⇒ B ⇒ C ⇒ D ⇒ E ⇒ G ⇒ H.
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Figure 9.59 (a) The forces in members 3 and 4 follow from the
equilibrium of joint B. (b) The closed force polygon for the equilib-
rium of joint B. FB;1 is known. (c) Joint B with all the forces acting
on it. From this figure we can see that N3 and N4 are compressive
forces.

For calculating the still unknown member forces, we now use the graphical
method. After A, the next joint is B, where we can calculate the member
forces. Joint B is subject to the forces FB;1, FB;3 and FB;4, of which FB;1
is known.

Earlier, we found that the force in member 1 is a compressive force:
N1 = −8F

√
2. Member 1 therefore exerts a compressive force on joint

B of 8F
√

2, so that FB;1 = 8F
√

2 (see Figure 9.59a).

The two unknowns FB;3 and FB;4 can be determined from the closed force
polygon for the equilibrium of joint B (see Figure 9.59b):

FB;3 = 4F,

FB;4 = 4F
√

5.

In Figure 9.59c, the forces from the force polygon are shown as they act
on joint B in reality. Here we see that FB;3 and FB;4 are both compressive
forces. Converted into the normal forces in the members 3 and 4, with the
correct sign for tension and compression, we therefore get

N3 = −FB;3 = −4F,

N4 = −FB;4 = −4F
√

5.

The following joint with only two unknowns is C. The forces that the
members 2 and 3 exert on the joint are known (see Figure 9.60a):

FC;2 = 4F
√

5,

FC;3 = 4F.

The unknown forces FC;5 and FC;6 follow from the force polygon in
Figure 9.60b:



9 Trusses 357

Figure 9.60 (a) The forces in members 5 and 6 follow from the
equilibrium of joint C. (b) The closed force polygon for the equi-
librium of joint C. FC;2 and FC;3 are known forces. (c) Joint C
with all the forces acting on it. From this figure we can see that
N5 is compressive and N6 is tensile.

FC;5 = F
√

5,

FC;6 = 3F
√

5.

In Figure 9.60c, all the forces are shown as they act on joint C in reality.
Member 5 presses against the joint and is a compression member, member
6 pulls on the joint and is a tension member:

N5 = −F
√

5,

N6 = +3F
√

5.

In Figures 9.61 to 9.64, the other member forces are calculated using the
same method.

Table 9.4 provides a summary of all the member forces.

Table 9.4 Member forces Example 1.

Mem. no. i Ni (kN)

1 −8F
√

2

2 +4F
√

5

3 −4F

4 −4F
√

5

5 −F
√

5

6 +3F
√

5

7 −3F

8 −10F

9 0

10 +6F

11 0
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Figure 9.61 (a) The forces in members 7 and 8 follow from the
equilibrium of joint D. (b) The closed force polygon for the equi-
librium of joint D. FD;4 and FD;5 are known forces. (c) Joint D
with all the forces acting on it. From this figure we can see that
N7 and N8 are compressive.

Figure 9.62 (a) The forces in members 9 and 10 follow from the
equilibrium of joint E. (b) The closed force polygon for the equilib-
rium of joint E. FE;6 and FE;7 are known. (c) Joint E with all the
forces acting on it. From this figure we can see that N10 is tensile.
Member 9 is a zero-force member.
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Figure 9.64 (a) The horizontal and vertical support reaction at
H is found from the equilibrium of joint H. (b) The closed force
polygon for the equilibrium of joint H. Member 11 is a zero-force
member and does not participate. FH;10 is known. (c) Joint H with
all the forces acting on it. The horizontal support reaction at H is
zero. The vertical support reaction in H is a tensile force.

Figure 9.63 (a) The force in member 11 and the vertical sup-
port reaction at G is found from the equilibrium of joint G. (b)
The closed force polygon for the equilibrium of joint G. Member
9 is a zero-force member and does not participate. FG;8 is known.
(c) Joint G with all the forces acting on it. Member 11 is a zero-force
member. The vertical support reaction at G is a compressive force.



360 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 9.65 The truss crane with the support reactions as they are
acting in reality.

Figure 9.66 In this truss, we can apply the method of joints only
when we know the support reactions.

In Figures 9.63 and 9.64 the support reactions in G and H have also been
calculated:

Gv = 10F,

Hh = 0,

Hv = 6F.

In Figure 9.65, the support reactions are shown with the directions in which
they are acting.

To check the calculation, we can look at the equilibrium of the truss as a
whole:

∑
Fx = Hh = 0,∑
Fy = Gv − Hv − 4F = 10F − 6F − 4F = 0,∑
Tz|H = Gv × 2a − 4F × 5a = 10F × 2a − 4F × 5a = 0.

The truss as a whole meets the equilibrium conditions.

Example 2
The truss in Figure 9.66 is loaded at joint E by a vertical force of 120 kN.

Question:
Calculate the member forces, with the correct sign for tension and com-
pression.

Solution:
In this truss, we cannot find a joint with only two unknown forces. Before
we can start the procedure for the joint equilibrium, we first have to deter-
mine the support reactions from the truss as a whole. Then we can start the
calculation at joint A or B.
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Figure 9.67 The order (a) to (g) shows how, starting at A, we can
consecutively determine two member forces per joint. The members
for which we know the normal force are shown in bold.

In Figure 9.67, the order (a) to (g) shows how, starting at A, we can con-
secutively determine two member forces per joint. The members for which
we know the normal force are shown in bold. We will look at the joints in
the following order:

A ⇒ C ⇒ D ⇒ E ⇒ G ⇒ H ⇒ K or B.

The last two joints K and B both offer an opportunity to check the results:
both force polygons have to be closed and give the same force in member
13.

Table 9.5 provides a summary of all the member forces.

Table 9.5 Member forces Example 2.

Mem. no. i Ni (kN)

1 +60

2 −60
√

2

3 0

4 +60

5 +20
√

2

6 −40
√

5

7 +100

8 +80

9 −25
√

13

10 −15
√

5

11 +75

12 +30

13 −30
√

5
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Figure 9.68 Truss with support reactions.

Figure 9.69 The members for which we know the normal force
are shown in bold. (a) The method of joints gets stuck at joints E and
D, as more than two member forces are unknown. (b) The force in
member 11 follows from the vertical equilibrium of joint H, (c) after
which we can find the force in member 9 from the force equilibrium
of joint G. The method of joints can now continue at D. (d) We
could also switch to the method of sections to calculate the force in
member 14. The method of joints can then be resumed at E.

Example 3
You are given the (Baltimore) truss beam in Figure 9.68.

Question:
Determine the member forces N1 to N15 using the method of joints. In
which order should we handle the joint equilibrium?

Solution:
After first determining the support reactions from the equilibrium of the
truss as a whole, we can determine the forces in members 1 to 6 from the
equilibrium of joints A, B and C respectively. In the situation shown in
Figure 9.69a we get stuck, as more than two member forces are unknown
in both D and E.

Since members 8 and 12, and 10 and 13 are in a direct line with one another,
we can determine the forces in the members 11 and 9 from the equilibrium
of joints H and G.

The vertical equilibrium of joint H in Figure 9.70 gives

N11 = 2F.

We now have the situation as shown in Figure 9.69b. From the equilib-
rium in G in the direction normal to members 10 and 13 we find next (see
Figure 9.70):

N9 + 1
2N11

√
2 = N9 + 1

2 × 2F × √
2 = 0 ⇒ N9 = −F

√
2.

Now that N9 is known (see Figure 9.69c), we can find the remaining mem-
ber forces by consecutively elaborating the equilibrium of joints D, E, G, H
and L. The order in which we handle the joints is therefore

A ⇒ B ⇒ C ⇒ H ⇒ G ⇒ D ⇒ E ⇒ G ⇒ H ⇒ L.
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Figure 9.70 The isolated joints G and H.

Instead of determining N9 and N11 from the equilibrium of joints H and G,
it is far easier to revert to the method of sections. With the section shown
in Figure 9.69d across members 12, 13 and 14, we can determine the force
in member 14 from

∑
Tz|K = 0. The other member forces are then found

from the equilibrium for the successive joints E, D, G, H and L.

In certain cases, it can be useful to switch from one method to the other at
the right moment.

Table 9.6 provides a summary of member forces N1 to N15.

Table 9.6 Member forces Example 3.

Mem. no. i Ni (kN)

1 +4F

2 −4F
√

2

3 +2F

4 +4F

5 −F
√

2

6 −3F
√

2

7 +2F

8 +4F

Mem. no. i Ni (kN)

9 −F
√

2

10 +F
√

2

11 +2F

12 +4F

13 0

14 −4F

15 0

9.3.3 Zero-force members and continuous members;
simplifying the calculation

We can often shorten the calculation that needs to be done by first looking
for zero-force members in a truss. Zero-force members are members in
which no forces are acting (N = 0) due to the present loading.
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Figure 9.71 (a) If two members meet in an unloaded joint, both
members are zero-force members. (b) The forces acting on isolated
joint A.

There are three situations of frequent occurrence in which zero-force
members can be easily recognised:

1. If only two members meet in an unloaded joint, both are zero-force
members (see Figure 9.71).

2. If three members meet in an unloaded joint of which two are in a di-
rect line with one another, then the third is a zero-force member (see
Figure 9.72).

3. If two members meet in an unloaded joint and the line of action of
the load coincides with one of the members, the other member is a
zero-force member (see Figure 9.73).

These three rules are the direct consequence of the joint equilibrium, as
shown below for each of the cases.

Rule 1. Two members meet in unloaded joint A in Figure 9.71. The force
in one of the members has a component normal to the direction of the other
member. If we write down the equilibrium of joint A in the given (local) xy

coordinate system, we find

∑
Fx = N1 + N2 cos α = 0,∑
Fy = N2 sin α = 0

with the solution (because sin α �= 0):1

N1 = N2 = 0.

Equilibrium is possible only if both member forces are zero.

1 In a kinematically determinate truss, members 1 and 2 cannot be an extension of
one another, so that α �= 0 and α �= 180◦.
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Figure 9.72 (a) If three members meet in an unloaded joint of
which two are in a direct line with one another, the third member is
a zero-force member. The normal forces in continuous members 1
and 3 are equal. (b) The forces acting on isolated joint B.

Figure 9.73 (a) If two members meet in an unloaded joint and the
line of action of the load is in a direct line with one of the members,
the other member is a zero-force member. (b) The forces acting on
isolated joint C.

Rule 2. In Figure 9.72, three members meet in joint B, of which members
1 and 3 are in a direct line with one another. The force in member 2 has a
component normal to members 1 and 3. There can be equilibrium only if
this component is zero, or in other words, if N2 = 0. If we write down the
equilibrium of joint B in the given (local) xy coordinate system, we find

∑
Fx = N1 + N2 cos α − N3 = 0,∑
Fy = N2 sin α = 0

so that

N2 = 0 and N1 = N3.

In addition to the fact that member 2 is a zero-force member, the normal
forces in the continuous members 1 and 3, which are in a direct line with
one another, are equal.

Rule 3. The situation in Figure 9.73 is clearly similar to that in Figure 9.71.
The equations for the equilibrium of joint C are

∑
Fx = N1 + N2 cos α − F = 0,∑
Fy = N2 sin α = 0

so that

N2 = 0 and N2 = F.

By using rules 1 to 3 to determine the zero-force members first, you can
often shorten the required calculation. A fourth rule with which we can
shorten the calculation relates to an unloaded joint, in which four members
meet and in pairs are in a direct line with one another. This situation is
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Figure 9.74 If four members meet in an unloaded joint that in
pairs are in a direct line with one another, these members can be
considered crossing members as far as the transfer of forces is
concerned. (b) The forces acting on isolated joint D.

Figure 9.75 A truss.

shown in Figure 9.74. For the given xy coordinate system, the equilibrium
of joint D gives

∑
Fx = N1 + N2 cos α − N3 − N4 cos α = 0,∑
Fy = N2 sin α − N4 sin α = 0

so that

N1 = N3 and N2 = N4.

Conclusion:

Rule 4. If four members meet in an unloaded joint that in pairs are in
a direct line with one another, these members can be considered crossing
members as far as the transfer of forces is concerned.

The three examples below show how it is possible to simplify the calcula-
tion with these four rules.

Example 1
You are given the truss in Figure 9.75.

Question:
Which members are zero-force members for the given load?

Solution:
A is an unloaded joint in which two members meet (see Figure 9.76). Both
members are zero-force members (rule 1), so that

N1 = 0 and N2 = 0.

B is an unloaded joint in which three members meet, and of which two are
in a direct line with one another. The third member is therefore a zero-force
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Figure 9.76 The zero-force members in the truss.

Figure 9.77 A truss.

member (rule 2), so that

N9 = 0.

C is a loaded joint where two members meet, and where the line of action
of the load coincides with member 17. Thus (rule 3)

N16 = 0.

The zero-force members are shown in Figure 9.76 with a “0” through the
member axis.

Zero-force members do not participate in the force flow for the present
load. When calculating the forces in the other members, you can leave out
the zero-force members from the truss. If you leave out zero-force member
9 from the truss, you immediately notice that

N8 = N10.

If you leave out zero-force member 16, you see that

N17 = −F.

That this (imaginary) omission of zero-force members can significantly
reduce the effort in calculating is further emphasised in the following two
examples.

Example 2
You are given the truss in Figure 9.77.

Question:
Determine all the zero-force members for the given load.
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Figure 9.78 A zero-force member does not participate in the trans-
fer of forces and can be omitted from the calculation. This is shown
here by depicting the member with a dashed line. (a) to (e) shows the
order in which one can find the zero-force members. (e) In the end,
all bracing members turn out to be zero-force members, and the top
and bottom chord members only transfer the load to the supports.

Solution:
From the equilibrium in joint B, it follows that member 3 is a zero-force
member (rule 2). With the given load, this member does not participate in
the transfer of forces, and could therefore be omitted. In Figure 9.78a, the
member is now shown by means of a dashed line. The equilibrium of joint
C means that member 5 is also a zero-force member (rule 2 again) (see
Figure 9.78b). If we continue, we notice that members 7 and 9 are also
zero-force members (see Figures 9.78c and 9.78d).

Since the support reaction in G is horizontal, member 11 is also a zero-force
member (rule 3) (see Figure 9.78e).

All the verticals and diagonals are zero-force members. The load is there-
fore fully transferred by the bottom and top chord members. For the
(continuous) top chord members we find

N1 = N4 = N8

For the (continuous) bottom chord members we find

N2 = N6 = N10.

When we talk about omitting zero-force members, this is done only to sim-
plify the calculation. If the zero-force members are removed from the truss
in reality, the truss becomes kinematically indeterminate.

Zero-force members therefore have a genuine function in the truss. On the
one hand they ensure the truss retains its shape, while on the other they
can prevent buckling (in the plane of the structure) of (long) compressed
members, such as the bottom chord in Figure 9.77, or the top chord in
Figure 9.79.

Figure 9.77 A truss.
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Figure 9.80 A truss in which the diagonals cross one another.

Figure 9.81 The zero-force members in the truss. (a) to (d) repre-
sent the order in which the zero-force members can be found.

Example 3
You are given the truss in Figure 9.80. The diagonals are crossing members.

Question:
Determine all the zero-force members for the given load.

Solution:
In this truss, it is not possible to find a section across three members (that do
not intersect in one point), nor is there a joint with less than two unknowns
(member forces or support reactions). We therefore cannot determine the
member forces with the method of sections, or with the method of joints,
unless we first determine the support reactions.

For determining the zero-force members in the truss, it is enough to know
that the support reaction at the point of the roller is vertical, so that N2 =
0. This means that N7 = 0, and so forth (see Figures 9.81a–9.81d). We
subsequently discover that members 10, 12 and 13 are zero-force members.

Determining the other member forces is now a relatively simple task. Note
that the force flow does not change when the crossing diagonals are joined
at the point where they cross (rule 4).

Figure 9.79 Zero-force members have a definite function in a
truss. On the one hand, they ensure the truss retains its shape. On the
other hand they can prevent buckling (in the plane of the structure)
of (long) compressed members, such as the top chord in this truss.
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9.4 Problems

Kinematically/statically (in)determinate trusses (Section 9.2)

9.1 Question: Which of these structures retains its shape?

9.2 Question: Which of these structures is kinematically indeterminate?

9.3 Question: Which structure is kinematically determinate?

9.4 Question: Which structure is kinematically determinate?

9.5: 1–4 You are given four simple or self-contained trusses that are sup-
ported in four different ways:

Questions:
a. What is the essential difference between a kinematically determinate

and a kinematically indeterminate structure?
b. What is the essential difference between a statically determinate and a

statically indeterminate structure?
c. Indicate whether the structure is

– kinematically determinate (kd) or kinematically indeterminate (ki),
and (if kinematically determinate) whether the structure is

– statically determinate (sd) or statically indeterminate (si).

9.6: 1–10 The given trusses are kinematically determinate.

Questions (for each truss):
a. Is the truss statically determinate or statically indeterminate?
b. What is the degree of static indeterminacy if the truss is statically

indeterminate?
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Method of sections (Section 9.3.1)

Note: Unless indicated otherwise, all structures in the problems are trusses.

9.7: 1–2 Two weightless blocks are connected by means of three bars.

Structure (1) is different to structure (2) owing to the different placement
of diagonal member 2.

Question: Determine the normal force in bars 1 to 3.

9.8 to 9.53 Question: Determine the normal force in the member(s) shown
in bold.
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9.54 Questions:
a. Using the method of sections, determine the forces in members 1 to 7.
b. Draw the force polygon for the equilibrium of joint G. Plot the forces

in the order 1, 2, 4, etc.

9.55 You are given a parabolic truss beam whose bottom chord is loaded
by a single force of 42 kN.

Question: Using the method of sections, determine the normal force in the
members 1 to 5.

9.56 The truss from the previous problem is now loaded at the joints on
the bottom chord by five equally large forces of 42 kN.

Question: Using the method of sections, determine the normal force in
members 1 to 5.

9.57 Use the method of sections to determine the normal force in members
1 to 7.
a. for F = 160 kN at joint C;
b. for F = 160 kN at joint D.

Method of joints (Section 9.3.2)

9.58 Question: Determine the normal force in member AB.

9.59 Question: Determine the normal force in the member shown in bold.
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9.60 Question:
Using the method of joints, determine all the member forces.

9.61 Question:
Using the method of joints, determine all the member forces due to
F = 6 kN.

9.62 You are given a truss in which members 1 and 4 cross one another.

Question:
Using the method of joints, deter-
mine the normal forces in members
1 to 6 due to the vertical force of
30 kN in the top of the truss.

9.63 You are given a truss in which
members 3 and 5 cross one another.

Question:
Using the method of joints, deter-
mine all the member forces. To do
so, draw the force polygon for all
the joints.

9.64 Question: Using the method
of joints, determine all the member
forces.
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9.65 In the truss shown, the
dashed line is a cable that is
connected to the truss at C
and runs over a pulley (with-
out friction) at D. A load of
3 kN hangs from the cable.

Question:
Using the method of joints, determine all the member forces.

9.66 Questions:
a. Using the method of joints, determine the forces in members 1 to 7.
b. Draw the force polygons for joints B and E.

9.67 Questions:
a. Determine and draw the

support reactions at A
and B.

b. Determine all the mem-
ber forces. To do so,
draw the force polygon
for the equilibrium for
all the joints. Choose a
scale of 5 mm ≡ 1 kN
for the forces.

9.68 In the truss shown, the dashed line k is a cable that is joined to the
truss at B and runs over a trolley (without friction) at C. The cable is loaded
with a weight of 45 kN.

Questions:
a. Draw the forces that the

cable exerts at B and C
on the truss.

b. Using the method of
joints, determine the for-
ces in members 3 and
8.

c. Draw the force polygon
for the equilibrium of
joint C.
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9.69 In the truss shown, there is a tensile force in member 4 of 20 kN:
N4 = +20 kN.

Questions:
a. Show that the truss is

statically indeterminate
to the first degree.

b. Using the method of
joints, determine all the
member forces.

c. Draw the support reactions in the direction in which they act, and give
their values.

d. Draw the force polygon for joint B. Plot the forces in the order 2, 3, 5
and 6. Use 10 mm ≡ 10 kN as force scale.

9.70 Questions:
a. Draw the support reactions as they act in reality on the structure and

give their values.
b. Using the method of joints, determine the forces in members 1 to 11.

9.71 Questions:
a. Using the method of joints, de-

termine all the member forces.
b. Draw the force polygon for the

equilibrium in joint S.

9.72 Questions:
a. Determine the support reactions at A, B and C.
b. Using the method of joints, determine the forces in members 1 to 16.
c. Check the force equilibrium of joint E graphically.
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9.73 Question: Using the method of joints, determine all the member
forces.

9.74 You are given a truss that is supported on a hinge at A and on rollers
at B and C. The truss is loaded by means of a horizontal force of 10 kN at
D. The members 6 and 9 cross one another.

Questions:
a. First determine (as far as possible) the support reactions.
b. Determine the force in member 6.
c. Also determine all the other member forces.

d. Draw all the support reactions as they act in reality on the structure and
give their values.

9.75 Question: How many tension members does this truss have due to the
given load?

9.76 Question: For each of the members in the truss, indicate whether it is
a zero-force member, a tension member, or a compression member. You do
not have to calculate the member forces.
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9.77 Question: In which figure are the correct signs for the member forces
given?

9.78 Question: In which figure are the correct signs for the member forces
given?

9.79 Question: In which figure are the correct signs for the member forces
given?

9.80 Question: In which figure are the correct signs for the member forces
given?

Zero-force members (Section 9.3.3)

9.81 to 9.92 Question: Which of the members are zero-force members?
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Mixed problems (Section 9.3)

9.93 Question: Determine the normal force in the vertical shown in bold.

9.94 Question: Determine the normal force in members 1 and 2 shown in
bold.

9.95 Questions:
a. Determine the member forces 1 to 10, with the correct sign for tension

and compression.
b. Draw the force polygon for joint C in the order 6, 7, 9 and 10.

9.96 Questions:
a. Determine all the member forces.
b. Draw the force polygon for joint C.
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9.97 Questions:
a. Using the method of sections, determine the forces in members 1 to 4.
b. Using a method of your own choice, determine the forces in members

5 to 8.
c. Draw the force polygon for joint C. Plot the forces in the order 3, 4, 6,

7 and 8. Use a force scale of 10 mm ≡ 10 kN.
d. How many zero-force members are there in the truss? Indicate them

(clearly) in the truss.

9.98 Questions:
a. The truss is kinematically determinate. What does that mean?
b. Show that the truss is statically determinate.
c. Determine all the member forces.
d. Draw the force polygon for the equilibrium of joint E, in the order 6,

7, 10 and 12. Use a scale of 5 mm ≡ 1 kN for the forces.

9.99 Questions:
a. Determine the forces in the members 9 to 17.
b. Draw the force polygon for the equilibrium at joint P.
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9.100 Questions:
a. Determine the forces in the members 1 to 9.
b. Draw the force polygon for the equilibrium at joint C. Plot the member

forces in the order 2, 3, 5, 6 and 10.

9.101: 1–2 Question: Determine the forces in the members 1 to 3.

9.102 Questions:
a. Determine the support reactions

at A, B and C. Draw them as
they act in reality on the struc-
ture and write down their values
alongside.

b. Determine the forces in the
members 1 to 14.

c. Draw the force polygon for the
equilibrium of joint D. Plot the
forces in the order 11, 9, 7 and
6.

9.103 You are given a truss in which the members 4 and 5 cross one
another.

Questions:
a. Determine the member forces.
b. Draw the support reactions as they are acting in reality.
c. Draw the force polygon for joint H. Plot the member forces in the order

6, 7, 9 and 10.


