
7Gas Pressure and
Hydrostatic Pressure

Sometimes, an important part of the loading on a structure consists of gas
pressure (such as with an air-supported hall or pneumatic structure) or hy-
drostatic pressure (such as with lock-gates, barrages or reservoirs). We look
at this type of loading more closely in this chapter.

Because of the loose structure of material particles in stationary gases and
fluids, there are no shear stresses. As a result, the stresses in stationary
gases and fluids always act normal to any bounding plane.

In Section 7.1, we will show that, if there are no shear stresses, the stress
at a particular point is independent of the orientation of the plane on which
the stress is acting. This property is known as Pascal’s Law. Such a stress
situation is known as an isotropic or spherical state of stress.

Sections 7.2 and 7.3 provide examples of structures on which the loading
is caused by gas and hydrostatic pressures respectively. The difference be-
tween the two is that the pressure in a gas is constant within the closed space
in question.1 In a fluid, the pressure increases linearly with depth due to its
dead weight. The latter is referred to as a hydrostatic pressure distribution.

1 Other conditions apply when looking at the air pressure within the earth’s at-
mosphere, for example; it depends on the distance to the surface of the earth,
and is influenced by currents (wind).
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Figure 7.1 Because of the loose structure of the material particles
in stationary gases and fluids, there are no shear stresses.

Figure 7.2 A small, rectangular volume element isolated from a
gas or fluid, with compressive forces p1; p2; p3
Since there are no shear stresses, the stresses are normal to the sides
in question. Here, the arrows should not be interpreted as forces.

7.1 Pascal’s law – All-round pressure

Gases and fluids are distinct from solids in that they lack a solid shape. They
can flow and adapt their shape to the environment. As such, gases do not
have their own volume: all gas quantities distribute themselves through-
out the available space. One of the reasons for this is their loose particle
structure (see Figure 7.1).

Because of the weak bonding, gas and fluid particles can easily move with
respect to one another. As a result, we could (rather boldly) state that no
shear stresses can be transmitted in gases and fluids. This is, however, not
the case with flowing gases and fluids; because of the differences in speed
between adjacent layers, shear stresses can occur, although they are far
weaker than in solids.

Below, it is assumed that no shear stresses occur in gases and fluids at
rest. This means that the stresses in stationary gases and fluids always act
normal to any bounding plane.

In Figure 7.2, a rectangular volume element has been isolated from a gas or
fluid. Compressive stresses p1; p2; p3 act on the boundary of the element.
The volume element is so small that, for all the stresses on the boundary,
it can be assumed that they are uniformly distributed. In that case, one
does not have to draw the entire stress distribution, but a single arrow1 is
sufficient.

The condition that no shear stresses can act in the material implies that the
stresses on the boundary of the volume element have to be of the same
magnitude:

p1 = p2 = p3.

1 Note: the arrows here cannot be interpreted as forces.

on its boundaries.
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Figure 7.3 Stresses normal to the sides of a triangular volume
element.

Figure 7.4 Forces on the sides of the triangular volume element.

To demonstrate this, a small triangular part has been isolated from the
material parallel to the xy plane in Figure 7.3. The oblique side has an
area �A. The area of the vertical side is therefore �A cos α, while that
of the horizontal side is �A sin α. The triangular part is so small that, for
all the stresses on the boundary, it can be assumed that they are uniformly
distributed. Assume that a compressive stress p is acting on the oblique
side. This stress acts normal to the side as there is no shear stress.

In Figure 7.4, the forces (force = stress × area) on the edges of the tri-
angular part are shown. The lines of action of the forces pass through a
single point. This means that there is moment equilibrium in the xy plane.
Here it is assumed that the element is so small that its dead weight can be
neglected.

The equations for the force equilibrium in respectively the x and y direction
are

∑
Fx = p1�A cos α − p�A cos α = 0,∑
Fy = p2�A sin α − p�A sin α = 0,

so that

p1 = p2 = p3.

The result is independent of angle α.

In the same way, using the equilibrium of a triangular section parallel to the
xz plane, we derive

p1 = p3 = p.

This means that the stress at a particular point is independent of the orien-
tation of the plane that the stress acts on. This characteristic is known as
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Figure 7.5 (a) A pneumatic structure consists of a membrane that
maintains its shape through internal overpressure. (b) A strip with
width b from the circular cylindrical midsection in more detail.

Figure 7.6 A membrane can transfer forces only in the direction
of its curved plane.

Pascal’s Law.1 This state of stress is known as isotropic or spherical. With
gases and fluids, in which only compressive stresses occur, we also speak
of all-round pressure.

7.2 Working with gas pressures

The type of structure in Figure 7.5a which is sometimes used as a tennis
hall, is an air-supported hall or pneu. Pneu is an abbreviation of pneumatic
structure. This type of structure consists of a thin, flaccid skin (membrane),
which can transfer tensile forces only in its curved plane (see Figure 7.6).
The structure maintains its shape through internal overpressure.2 The same
holds, for example, for an inflated balloon, or the inner tube of a bike.
We will look at three examples for this type of structure. In the first two
examples the load is a gas pressure (the overpressure in the pneu). The
third example concerns a body subjected to an all-round pressure.

Example 1
The pneu in Figure 7.5a consists of a circular cylindrical midsection that is
closed by means of spherical ends. The diameter of the circular cylinder is
r , the aperture angle is α, and the internal overpressure is p.

Question:
Determine the distributed support reactions (forces per length) for the
circular cylindrical midsection of the pneu.

Solution:
In Figure 7.5b, a strip of width b has been isolated. This strip is modelled in
Figure 7.7a as a curved line element with a distributed load pb. In addition

1 Blaise Pascal (1623–1662), French mathematician, physicist and writer. With
Fermat, he was one of the founders of the theory of probability. As a writer he is
known for his Pensées, a collection of loose notes published posthumously.

2 This is the difference between the pressure inside and outside the structure.
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Figure 7.7 (a) A strip with width b from the cylindrical midsection
of the pneu, modelled as a line element. (b) The support reactions
at A and B. (c) The vertical component of the support reactions at
A and B are found from the vertical equilibrium of the “strip with
content”.

to the support reactions at A and B, no forces other than those shown in the
figure act in the plane of the drawing.

Since a membrane can transfer forces only in its (curved) plane, the support
reactions at A and B act along the tangents of the circular cross-section (see
Figure 7.7b). Because of mirror symmetry, the support reactions at A and B
are of equal magnitude. Assume these are tensile forces N . With an aperture
angle α, the horizontal and vertical components of N are:

Nh = N cos α,

Nv = N sin α.

The vertical component Nv can be derived from the vertical force equilib-
rium. In doing so, a tricky point is that the distributed load pb changes
direction. The calculation can, however, be considerably simplified by iso-
lating the structure from its surroundings, not “by itself ”, but “with content”
(see Figure 7.7c). The overpressure on plane AB (with width b) is equal to
pb. If the dead weight of the gas and the membrane can be ignored, the
equation for the vertical force equilibrium is

2Nv − pb · 2r sin α = 0

so that

Nv = pbr sin α.

The horizontal component of N is then

Nh = pbr cos α
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Figure 7.8 (a) The membrane force n = pr in the circumfer-
ential direction is independent of the aperture angle α. (b) The
formula n = pr is also referred to as the boiler formula as calcu-
lating the force in the walls of a steam boiler was an important field
of application.

Figure 7.9 A spherical pneu designed by Frei Otto to cover a
settlement in Antarctica.

and the resulting support reaction is

N = pbr.

The calculation relates to a strip with width b. The requested support
reactions per length are:1

n = N

b
= pr.

Note that the magnitude of the force n = pr is independent of the aperture
angle α (see Figure 7.8a). Obviously, in the circular cylinder pneu, the
(distributed) circumferential tensile forces have the same magnitude every-
where. The formula is also applicable for a closed ring (see Figure 7.8b,
where α = 180◦) and is known as the boiler formula, as calculating forces
in the walls of a steam boiler was an important field of application.

Example 2
The second example relates to a pneu designed by architect Frei Otto2 to
cover a settlement in Antarctica (see Figure 7.9). This design is discussed
in his book “Zugbeanspruchte Konstruktionen”.

The pneu is shaped like a segment of a sphere and rests on a concrete ring
beam. The diameter of the sphere is r = 2200 m. The diameter of the ring
beam is rbeam = 1000 m. The segment of the sphere is 240 m high (see
Figure 7.10). The weight of the roof is 82 N/m2. The pneu maintains its
shape through an internal overpressure of 350 N/m2.

1 It is the convention to use a lower case letter for distributed forces.
2 Frei Otto (1925), German architect. Renowned designer of pneumatic structures

and cable networks. One of his most famous designs was the roof of the Olympic
Stadium in Munich (1972). Also see Chapter 14, Section 14.3, Example 4.
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Figure 7.10 Dimensions of the spherical pneu.

Figure 7.11 The vertical component of the membrane force is
found from the vertical equilibrium of the sphere segment with
content. The membrane force acts on the circumference of the ring
beam. The overpressure p acts on the area within the ring beam.

Questions:
a. Determine the weight of the ring beam so that the foundation is not

subjected to tension.
b. Determine the compressive force in the ring beam.

Solution:
a. To calculate the forces in the pneu, it is assumed that the dead weight of
the roof acts in the direction of the centre of the sphere instead of the centre
of the earth. This assumption introduces only a minor discrepancy. In this
case, the resulting overpressure in the pneu is

p = 350 − 82 = 268 N/m2.

This overpressure generates tensile forces n (forces per length) in the mem-
brane. The vertical component nv can be deduced from the vertical force
equilibrium of the segment of the sphere “with content” (see Figure 7.11).
Here, nv acts on the circumference of the ring beam and the overpressure p

acts on the area within the ring beam. The equilibrium equation is

nv · 2πrbeam − p · πr2
beam = 0

so that

nv = p · πr2
beam

2πrbeam
= 1

2prbeam.

With nv = n sin α and rbeam = r sin α, the (distributed) tensile forces are

n = 1
2pr.

Here too, the (distributed) tensile forces are independent of the aperture
angle α. They are, however, half as large as the circumferential tensile
forces in the circular cylindrical pneu from the previous example.
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Figure 7.12 The forces acting on the ring beam.

Figure 7.13 (a) Due to the horizontal component of the membrane
force, the ring beam is pulled inwards on all sides. Here we can
recognise the analogy of a closed ring with underpressure. (b) Com-
pressive forces are generated in the ring. They can be determined
using the boiler formula, or directly from the equilibrium of half a
ring beam.

In this example

n = 1
2pr = 1

2 × (268 N/m2)(2200 m) = 295 kN/m.

The aperture angle α is (see Figure 7.11)

α = arccos

(
1960 m

2200 m

)
= 27◦.

At the ring beam, the horizontal and vertical components of n are

nh = n cos α = (295 kN/m) × cos 27◦ = 263 kN/m,

nv = n sin α = (295 kN/m) × sin 27◦ = 134 kN/m.

Figure 7.12 shows all the forces acting on the ring beam. These are the
distributed force n, which the pneu exerts on the ring beam, and the dead
weight qdw of the ring beam (also a force per length).

The vertical component nv tries to lift the ring beam. In order to prevent
this, the dead weight qdw has to be larger than nv = 134 kN/m. If the ring
beam is made of concrete, with a specific weight of 24 kN/m3, then the
cross-section A of the beam has to obey

qdw = A × (24 kN/m3) ≥ nv = 134 kN/m ⇒ A ≥ 134 kN/m

24 kN/m3
= 5.6 m2.

The cross-section of the ring beam has to be at least 5.6 m2.

b. Due to the horizontal forces nh, the ring beam is pulled inwards from all
sides (see Figure 7.13a). Here, you will recognise the loading case of the
closed ring from Figure 7.8b, but now with an underpressure instead of an
overpressure.
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Figure 7.14 A plane body loaded over its entire outline by a
uniformly distributed load normal to the body.

Figure 7.15 (a) As a result of the distributed load q, a small force
�F = q�s is acting on a small boundary element with length �s.
(b) The horizontal components of the load on the boundary elements
of a horizontal strip are equal and opposite. Together they form an
equilibrium system with zero resultant.

A compressive force N ′1 is formed in the ring. This can be calculated
using the boiler formula from the previous example, or directly from the
equilibrium of the half ring beam in Figure 7.13b:

N ′ = 2rbeamnh

2
= rbeamnh = (1000 m)(263 kN/m) = 263 MN.

Comment: This force is relatively large for a concrete cross-section of
5.6 m2. The compressive force in the ring may therefore call for a larger
cross-section.

Example 3
A uniformly distributed load q is acting on the plane body in Figure 7.14.
The load acts in the plane of the body along the entire outline and normal
to the body.

Questions:
a. Show that the resultant of the distributed load on the body is zero,

regardless of the shape of the body.
b. Determine the resultant of the load above section AB.

Solution:
a. In Figure 7.15a, a minor force �F is acting perpendicular to the given
boundary element with small length �s:

�F = q�s.

The horizontal and vertical components of �F are respectively

�Fx = q�s cos ϕ,

1 The convention is that N as tensile force is positive. The prime for a switch in
sign indicates that compressive forces are now positive (see Section 6.5).
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�Fy = q�s sin ϕ.

Since �s cos ϕ = �y and �s sin ϕ = �x, we can also write

�Fx = q�y,

�Fy = q�x.

The components �Fx and �Fy of force �F on boundary element �s are
equal to the product of the distributed load q and the projection of �s on
the y axis and the x axis respectively.

Figure 7.15b shows a horizontal strip from the body with a small width �y.
The horizontal components of the load on the boundary elements are equal
and opposite. They form an equilibrium system with resultant zero. Since
this applies to all the horizontal strips of which the body is composed, the
resulting horizontal load on the body is zero.

By dividing the body into vertical strips, and looking at the vertical com-
ponent of the load on the boundary elements, we can similarly deduce that
the resulting vertical load on the body is zero.

Conclusion: If a uniformly distributed load acts on a plane body in the
plane of the body along its entire outline, and everywhere normal to the
body, the load forms an equilibrium system with resultant zero.

One can show that this is also true in three-dimensional cases: If a uni-
formly distributed load acts on a body in space on its entire surface, and
everywhere normal to the body, the load forms an equilibrium system with
resultant zero.

b. In Figure 7.16a, the part of the body above section AB has been isolated.
Assume the resultant of the distributed load on the outside between A and
B is R.

Figure 7.15 (a) As a result of the distributed load q, a small force
�F = q�s is acting on a small boundary element with length �s.
(b) The horizontal components of the load on the boundary elements
of a horizontal strip are equal and opposite. Together they form an
equilibrium system with zero resultant.
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Figure 7.16 (a) The resultant R of the uniformly distributed load
on the outside AB is equal and opposite to (b) the resultant Rsection
of an equally large uniformly distributed load on section AB.

Figure 7.17 In a fluid at rest, the (all-round) pressure increases
linearly with depth as a result of its dead weight. This is derived
from the vertical force equilibrium of the fluid column.

If a uniformly distributed load q is also applied to section AB, as in
Figure 7.16b, the total load on the isolated part of the body forms an equilib-
rium system: the resultant R of the load on the outside of the body is equal
and opposite to the resultant Rsection of the load on the section. Therefore
R = Rsection = qa, in which a is the length of the section. The line of
action of R coincides with the perpendicular bisector of AB.

7.3 Working with hydrostatic pressures

In a fluid at rest, the (all-round or isotropic) pressure increases linearly with
depth. This can be derived from the vertical force equilibrium of the fluid
column in Figure 7.17. Using density ρ of the fluid and the gravitational
field intensity g = 10 N/kg the specific weight γ is

γ = ρg.

The weight �G of the fluid column, with height z and cross-section �A is

�G = γ z�A.

At the base of the fluid column, there is a compressive force p�A, the
resultant of the compressive stresses p on the area �A. The vertical force
equilibrium of the column (there are no shear stresses) now gives

p�A = �G

or

p = �G

�A
= γ z�A

�A
= γ z.
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Figure 7.18 Longitudinal section of a channel with the 4-metre
wide flap AB. The distribution of the water pressure is shown on
both sides of the flap.

The isotropic compressive stress p increases linearly with depth z. This is
referred to as a hydrostatic pressure distribution.

Below you will find a number of examples covering loads due to a hydro-
static pressure. We assume that in all cases the fluid is at rest and that the
pressure distribution is hydrostatic. At any point the hydrostatic pressure
is equally large in all directions (isotropic state of stress) and always acts
normal to the plane in question (as there are no shear stresses).

Example 1
Figure 7.18 shows the longitudinal section of a channel with a 4-metre wide
flap AB. The flap is supported at A by a hinge and is resting at B on a sill.
The support in B can be seen as a roller support. The water level on both
sides of the flap is shown in the figure. The density of water is 1000 kg/m3.
The gravitational field intensity is 10 N/kg.

Question:
Determine the support reactions at A and B due to the total water pressure.
The dead weight of the flap should be ignored.

Solution:
The linear distribution of the water pressure on both sides of the flap is
shown in Figure 7.18.

To the left of the flap, the water pressure at A is

(1000 kg/m3)(10 N/kg)(1 m) = 10 kN/m2

and at B it is

(1000 kg/m3)(10 N/kg)(4 m) = 40 kN/m2.

To the right of the flap, the water pressure at B is

(1000 kg/m3)(10 N/kg)(2 m) = 20 kN/m2.
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Figure 7.19 The 4-metre wide flap modelled as a line element
with (a) the water pressure normal to the flap and (b) the resulting
load diagram.

Figure 7.20 The load diagram split up into three areas for which
the resultants are easy to find with respect to their magnitudes and
lines of action.

In Figure 7.19a, the 4-metre wide flap is modelled as a line element, with
line loads due to the water pressures normal to it.

To the left of the flap, the distributed load varies linearly from

(4 m)(10 kN/m2) = 40 kN/m at A,

to

(4 m)(40 kN/m2) = 160 kN/m at B.

To the right of the flap, the load increases linearly from 0 at C to

(4 m)(20 kN/m2) = 80 kN/m at B.

Figure 7.19b represents the load diagram for the resulting water pressure.

The length of flap AB is (see Figure 7.18)

√
(3 m)2 + (0.96 m)2 = 3.15 m.

The distances BC and CA are respectively 2.10 m and 1.05 m.

To work quickly, the load diagram in Figure 7.20 has been placed horizon-
tally and is split up into a number of areas for which the resultants can be
easily calculated:

R1 = (2.10 m(80 kN/m) = 168 kN,

R2 = 1
2 × (1.05 m)(80 kN/m) = 42 kN,

R3 = 1
2 × (1.05 m)(40 kN/m) = 21 kN.
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Figure 7.21 A moveable dam consisting of a circular cylindrical
slide AB hinged at C and joined to an rigid vertical partition wall at
A. There is no water to the right of the dam.

The support reaction Ar at A is found from the moment equilibrium of the
flap about B:

Ar = (1.05 m) × R1 + (2.45 m) × R2 + (2.80 m) × R3

3.15 m
= 107.3 kN.

The support reaction Br in B is found from the force equilibrium:

Br = R1 + R2 + R3 − Ar = 123.7 kN.

Example 2
The moveable dam in Figure 7.21 consists of a circular cylindrical slide AB
hinged at C and joining a rigid vertical partition wall at A. There is no water
to the right of the dam. The specific weight of water is γw = 10 kN/m3. All
other information required can be found in the figure.

Question:
Find the magnitude and direction of the resultant water pressure on a 1-
metre strip from the circular cylindrical slide.

Solution:
In Figure 7.22, the 1-metre wide strip from the slide is modelled as a line
element. The figure also shows the water pressure, increasing from 14 kN/m
at top A of the slide to 40 kN/m near base B.

The water pressure is acting normal to the slide everywhere. In other words,
all the forces on the slide pass through C, the centre of arc AB. Therefore,
the resultant R of the total water pressure on the slide also passes through
C.

Figure 7.20 The load diagram split up into three areas for which
the resultants are easy to find with respect to their magnitudes and
lines of action.
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Figure 7.22 The distribution of the water pressure on a 1-metre
wide strip from the slide.

Figure 7.23 To calculate the resulting water pressure, all the data
has been shown as symbols.

To determine the resultant water pressure, please refer to Figure 7.23, which
shows all symbols used. The water pressure as a function of ϕ is

q(ϕ) = 1 + r sin ϕ

d
· q̂.

The resultant of the water pressure on a small part of the slide with length
r dϕ is a small force dF :

dF = q(ϕ) · r dϕ

with components

dFx = dF cos ϕ = q(ϕ)r cos ϕ dϕ,

dFy = dF sin ϕ = q(ϕ)r sin ϕ dϕ.

The components Rx and Ry of the resulting water pressure are found by
summing up all the contributions dFx , respectively dFy , over the length of
slide AB. This summation is done by integrating between the limits ϕ = 0
and ϕ = 60◦ = π/3 rad:

Rx =
∫ π/3

0
q(ϕ)r cos ϕ dϕ,

Ry =
∫ π/3

0
q(ϕ)r sin ϕ dϕ.

Using the previously deduced expression for q(ϕ) and the formulas in
Table 7.1, the integrals are elaborated:
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Table 7.1

∫
sin ϕ cos ϕ dϕ = 1

2 sin2 ϕ

∫
sin2 ϕ dϕ = − 1

4 sin 2ϕ + 1
2ϕ

Figure 7.24 The resultant of the water pressure on the circular
cylindrical slide passes through C, the centre of arc AB.

Rx = q̂r

d

∫ π/3

0
(a + r sin ϕ) cos ϕ dϕ = q̂r

d

[
a sin ϕ + 1

2r sin2 ϕ
]ϕ=π/3

ϕ=0

= q̂r

d
(a × 0.86 + r × 0.375),

Ry = q̂r

d

∫ π/3

0
(a + r sin ϕ) sin ϕ dϕ

= q̂r

d

[
−a cos ϕ + r

(
− 1

4 sin 2ϕ + 1
2ϕ

)]ϕ=π/3

ϕ=0

= q̂r

d
(a × 0.5 + r × 0.307).

By substituting q̂ = 40 kN/m, r = 3.0 m, d = 4.0 m and a = 1.4 m, we
find

Rx = 70.1 kN,

Ry = 48.6 kN.

The vertical component of the water pressure generates an upward force on
the slide.

The resulting water pressure R on the 1-metre strip from the slide is shown
in Figure 7.24:

R =
√

(70.1 kN)2 + (48.6 kN)2 = 85.3 kN.

The line of action, as shown earlier, passes through C and is at an angle of
α to the horizontal:

α = arctan

(
48.6 kN

70.1 kN

)
= 34.7◦.
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Figure 7.25 The resultant of the water pressure on the slide can
also be found by looking at the forces acting on the isolated slide
together with water mass ADB.

Alternative solution:
Since the shape of the slide is actually rather simple, the question can also
be answered without integrals. To do so, Figure 7.25 shows the isolated
slide including water mass ADB. Assume that Rh;w is the resultant of the
horizontal water pressure on AD and Rv;w is the resultant of the vertical
water pressure on BD:

Rh;w = 1
2 × (2.6 m){(14 kN/m) + (40 kN/m)} = 70.2 kN,

Rv;w = (1.5 m)(40 kN/m) = 60 kN.

Assume that Gw is the weight of the volume of water enclosed by ADB.
We are looking at a 1-metre wide strip from the slide:

Gw = γwA(ADB)(1 m).

Here A(ADB) is the area of ADB. This is equal to the area of trapezium
ADBC, reduced by the area of circle sector ABC. The area of trapezium
ADBC is

A(ADBC) = 1
2 × (2.6 m){(3.0 m) + (1.5 m)} = 5.85 m2.

The area of circle sector ABC, with an aperture angle of 60◦, is equal to
one sixth of the area of the entire circle:

A(ABC) = 60◦

360◦ × π(3.0 m)2 = 4.71 m2.

With

A(ADB) = A(ADBC) − A(ABC) = (5.85 m2) − (4.71 m2) = 1.14 m2
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Figure 7.26 The lines of action of the horizontal and vertical com-
ponent of the resulting water pressure on the slide. The horizontal
component Rx is independent of the shape of the slide and can
be directly found from the trapezoidal load diagram for the water
pressure on the vertical AD.

Figure 7.27 A storm barrier consisting of two sector doors with a
radius r = 250 m.

one finds

Gw = γwA(ADB)(1 m) = (10 kN/m3)(1.14 m2)(1 m) = 11.4 kN.

The resulting water pressure on the slide is

Rx = Rh;w = 70.2 kN,

Ry = Rv;w − Gw = (60 kN) − (11.4 kN) = 48.6 kN.

The results agree with those of the first calculation, with the exception of a
minor difference in the magnitude of Rx . This is because in the alternative
solution, the height of the slide (= r sin 60◦) was rounded off to 2.6 m.

From the alternative approach, one can conclude the following: The resul-
tant of the horizontal water pressure on the slide is independent of the shape
of the slide and is exclusively determined by the height of the slide and the
depth at which it is located under the water surface.

Figure 7.26 shows the lines of action of Rx and Ry . The line of action of
Rx can be found directly from the trapezoidal load diagram on AD.1

Example 3
At Hoek van Holland, near Rotterdam in the Netherlands, the Maeslant-
kering became operational in 1997. This storm barrier in the Nieuwe
Waterweg consists of two sector doors with a radius r = 250 m (see Fig-
ure 7.27). The arc length of AB is 209.5 m. The door is 22.5 m in height.
Figure 7.28 is a sketch of the longitudinal section of the door, with the water
levels on both sides. The specific weight of water is γw = 10.25 kN/m3.
To simplify the question, the part of the door within the parking dock is
ignored.

1 The calculation is left to the reader. See Section 6.3.1, Example 1.
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Figure 7.28 A sketch of the cross-section of the door, with the
water levels on both sides.

Figure 7.29 The distribution of the horizontal water pressure on
a 1-metre wide vertical strip from the door. The horizontal water
pressure is independent of the shape of the door.

In addition, it is assumed that the water levels in front and behind the dam
are present over the entire length of arc AB and that the pressure distribution
on both sides is hydrostatic.

Question:
Determine the resulting horizontal water pressure on part AB of the right-
hand sector door.

Solution:
With a specific weight of γw = 10.25 kN/m3, the water pressure increases
for each metre of depth by 10.25 kN/m2. At the base of the door, the water
pressure on the sea-side is

22 × (10.25 kN/m2) = 225.5 kN/m2,

while on the river-side it is

14 × (10.25 kN/m2) = 143.5 kN/m2.

Figure 7.29 shows the distribution of the horizontal water pressure on a 1-
metre wide vertical strip of the door. The horizontal water pressure on the
door is independent of the shape of the door.1 The resultant of the horizontal
water pressure on the 1-metre wide vertical strip is

1
2 × (22 m)(225.5 kN/m) − 1

2 × (14 m)(143.5 kN/m) = 1476 kN.

We have shown, therefore, that per metre in the circumferential direction,
the door is subject to a force of 1476 kN. In other words, the horizontal
water pressure on the door consists of a uniformly distributed load

1 See the previous example.
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Figure 7.30 A horizontal force of 1476 kN is acting on the door
per metre in the circumferential direction. In other words, the hori-
zontal water pressure on the door consists of a uniformly distributed
load qw = 1476 kN/m in radial direction.

Figure 7.31 A floating element of a two-track metro tunnel, ready
to be transported to the sinking site.

qw = 1476 kN/m in radial direction (see Figure 7.30).

With an arc length of 209.5 m for AB and a radius of r = 250 m, the
aperture angle α is

α = arc length AB

2πr
· 360◦ = 209.5 m

2π × (250 m)
× 360◦ = 48◦.

The resultant R of the horizontal water pressure on arc AB is equal to the
resultant of the horizontal water pressure on chord AB (see Section 7.2,
Example 2). This gives:

R = qwa = qw2r sin(α/2)

= (1476 kN/m) × 2 × (250 m) × sin 24◦ = 300 MN.

Example 4
Figure 7.31 represents an element of a floating two-track metro tunnel,
ready to be transported to its sinking site. The tunnel element is considered
a rigid body.

Dimensions: length � = 60 m, width b = 9 m and height h = 6 m.
Dead weight of the tunnel element: qdw = 524 kN/m.
Weight of each of the temporary bulkheads: Fhead = 235 kN.
Specific weight of water: γw = 10 kN/m3.

Questions:
a. Determine the water pressure at the base of the tunnel element.
b. Determine the resultant of the horizontal water pressure on a bulk-

head.
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Figure 7.32 The distribution of the water pressures on the tunnel
element.

Solution:
a. The total dead weight Rdw of the tunnel element is

Rdw = qdw� + 2Fhead

= (524 kN/m)(60 m) + 2 × (235 kN) = 31910 kN.

Figure 7.32 shows the distribution of the water pressures on the tunnel
element. With a specific weight γw, the water pressure pw at a depth d

is

pw = γwd.

The vertical water pressure on the base of the tunnel element gives an
upward force Rv;w:

Rv;w = pwb� = γwdb�.

The upward force is equal to the weight of the displaced water.

The tunnel element will sink in the water until the upward force is in equi-
librium with the total dead weight Rdw:

Rdw = Rv;w = γwdb�

so that

d = Rdw

γwb�
= 31910 kN

(10 kN/m3)(9 m)(60 m)
= 5.91 m.

The water pressure at the base of the tunnel element is therefore

pw = γwd = (10 kN/m3)(5.91 m) = 59.1 kN/m2.
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Figure 7.33 If the fluid is in equilibrium, the vertical component
of the hydrostatic pressures on the outside of a contained space has
to provide an upward force that equals the weight of the fluid within

b. The resultant Rh;w of the horizontal water pressure on a bulkhead is equal
to the volume of the load diagram (see Figure 7.32):

Rh;w = 1
2pwbd = 1

2 × (59.1 kN/m2)(9 m)(5.91 m) = 1572 kN.

In the calculation, it was noted that the vertical water pressure on the tunnel
element exerts an upward force that is equal in magnitude to the weight
of the displaced water. This is not a coincidence, but applies in general,
regardless of the shape of the body, and is known as Archimedes’ Law.1

The general proof can be found below.

Take a contained space of arbitrary shape within a fluid (see Figure 7.33). If
there is an equilibrium, the vertical component of the hydrostatic pressures
has to provide an upward force on the outside of the contained space that
equals the weight of the fluid within the contained space. The upward force
does not change if the contained space is taken up by a body.

Conclusion: A body in a fluid is exposed to an upward force that is equal to
the weight of the displaced volume of fluid.

Example 5
In the water-retaining wall in Figure 7.34 there is a circular partition of
radius r . The centroid C of the partition is at a depth zC.

Question:
Determine the resultant R of the water pressure on the partition.

Solution:
The water pressure on the partition varies linearly. At a depth z the water
pressure is ρgz, whereby ρ is the density of water, and g is the gravitational

1 Archimedes (287–212 BC), Greek scientist from Syracuse. He addressed issues
relating to integral calculus and was one of the founders of statics (equilibrium
of solids) and hydrostatics (equilibrium of fluids).

Figure 7.32 The distribution of the water pressures on the tunnel
element.

the contained space.
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Figure 7.34 A circular partition in a water-retaining wall.

Figure 7.35 (a) The water pressure on the partition increases lin-
early with the depth. (b) The water pressure is constant on a small
horizontal strip and is equal to ρgz.

Table 7.2

∫
(sin ϕ)2 dϕ = − 1

4 sin 2ϕ + 1
2 ϕ

∫
cos ϕ(sin ϕ)2 dϕ = − 1

3 (sin ϕ)3

field intensity (see Figure 7.35a).

For the partition, take a very narrow horizontal strip dz at depth z (see
Figure 7.35b). The width of the strip is b(z). The water pressure on this
narrow strip is constant and equal to ρgz. This contribution dR of the strip
to the resulting water pressure R on the strip is

dR = ρgz · b(z) · dz, (1)

whereby

b(z) = 2r cos ϕ, (2)

z = zC − r cos ϕ, (3)

dz = dz

dϕ
dϕ = r sin ϕ dϕ. (4)

Substitute (2) to (4) into (1) and we find

dR = 2ρgr2(zC − r cos ϕ)(sin ϕ)2 dϕ.

To find the resulting water pressure R, one has to sum up the contributions
of all the strips. This is done by integrating between the limits ϕ = 0 and
ϕ = π :

R = 2ρgr2
∫ π

0
(zC − r cos ϕ)(sin ϕ)2 dϕ.

Using the formulas in Table 7.2 we find∫ π

0
zC(sin ϕ)2 dϕ = zC

[
− 1

4 sin 2ϕ + 1
2ϕ

]ϕ=π

ϕ=0
= π

2
zC
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and ∫ π

0
r cos ϕ(sin ϕ)2 dϕ = r

[
− 1

3 (sin ϕ)3
]ϕ=π

ϕ=0
= 0

so that

R = ρgzC · πr2.

Conclusion: The resulting water pressure on the partition is equal to the
water pressure at the centroid, multiplied by the area of the partition.

Although derived for a circular partition, this characteristic is generally ap-
plicable. The proof can be provided easily if one knows that the z coordinate
of the centroid C of a plane figure with area A is defined as:1

zC =

∫
A

z dA

A
. (5)

The resultant of the water pressure on a small area dA at depth z is

dR = ρgz · dA.

The resulting water pressure is found by summing up all the contributions
dR for the entire area A. This is performed by integrating with respect to
the area A:

R =
∫

A

ρgz dA = ρg

∫
A

z dA. (6)

1 Volume 2, Stresses, Deformations, Displacements, addresses the definition and
calculation of centroids in detail. Here, it is assumed that readers know the
location of the centroid for simple plane figures.

Table 7.2

∫
(sin ϕ)2 dϕ = − 1

4 sin 2ϕ + 1
2 ϕ

∫
cos ϕ(sin ϕ)2 dϕ = − 1

3 (sin ϕ)3



7 Gas Pressure and Hydrostatic Pressure 269

Definition (5) gives

∫
A

z dA = zCA. (7)

Substitute (7) in (6) and we find

R = ρgzC · A.

Conclusion: The resulting water pressure R on a plane figure is equal to
the water pressure ρgzC at the point of centroid C of the figure, multiplied
by the area A of the figure.

Note: This does not give the line of action of the resultant R which passes
through the centroid of the load diagram (see Section 6.3.2).

7.4 Summary

The various characteristics of gas pressures and hydrostatic pressures in
this chapter are summarised below.

1. Since there are no shear stresses, the compressive forces in a gas and
fluid always act normal to any bounding plane (see Section 7.1).

2. In a gas and fluid, the pressure at a particular point is independent of
the orientation of the plane on which the pressure acts. It is also said
that, in that point, the stress is of equal magnitude in all directions
(isotropic or spherical state of stress) (see Section 7.1).

3. Gas pressure is constant in a contained volume.

4. If a uniformly distributed force acts on the entire area of a body, and
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normal to that body, this load forms an equilibrium system, and the
resultant is zero (see Section 7.2, Example 3).

5. In a fluid, pressure increases linearly with depth (hydrostatic pressure
distribution) (see Section 7.3).

6. The resultant of the hydrostatic pressure on a flat plate is equal to the
pressure at the centroid of the plate, multiplied by the area of the plate
(see Section 7.3, Example 5).

7. The horizontal component of the resulting hydrostatic pressure on
a body is equal to the resultant of the hydrostatic pressure on the
horizontal projection of the body on a vertical plane (see Section 7.3,
Example 2).

8. The vertical component of the resulting hydrostatic pressure on a
body is an upward force that is equal to the weight of the volume
of water displaced by the body (Archimedes’ Law) (see Section 7.3,
Example 4).
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7.5 Problems

Remark: If necessary, assume that the gravitational field intensity is
g = 10 N/kg.

Working with gas pressures (Section 7.2)

7.1 A cylindrical pneu with a length of 40 m and a width of 16 m has a
semi-circular cross-section. The internal overpressure is 375 N/m2.

Questions:
a. Determine the support reactions

for the cylindrical part of the
pneu.

b. Determine the membrane force
in the circumferential direction
at the cylindrical pneu.

c. Determine the force in the lon-
gitudinal direction of the cylin-
drical pneu.

7.2 A spherical pneumatic hall is supported on a concrete ring beam. The
internal overpressure is 350 N/m2.

Questions:
a. Determine the membrane force in the pneu.
b. Determine the vertical forces that the pneu exerts on the ring beam.
c. Determine the horizontal forces that the pneu exerts on the ring beam.
d. Determine the (normal) force in the ring beam. Is it a tensile force or a

compressive force?

7.3 A pneumatic structure has the shape of a hemisphere with a radius of
15 m and an internal overpressure of 400 N/m2. The forces in the pneu are
transferred to a concrete ring beam. The weight of the ring beam ensures
that the pneu is not lifted. The specific weight of concrete is 24 kN/m3.

Questions:
a. Determine the membrane force in the pneu.
b. Determine the normal pressure in the ring beam.
c. Determine the required diameter of the ring beam to prevent the pneu

from lifting.
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7.4 In a spherical pneu with radius 16.5 m there is an overpressure of
350 N/m2. The horizontal support reactions are transferred by a ring belt
applied around the pneu.

Questions:
a. Determine the membrane force in the pneu.
b. Determine the vertical support reactions nv.
c. Determine the force in the ring belt.

7.5 A pneumatic structure, with a spherical shape, is connected to a
circular ring beam that rests freely on the ground. The overpressure in the
pneu is 400 N/m2. The dead weight of the pneu can be neglected.

Questions:
a. Determine the membrane force in the pneu.
b. How large must the weight per metre of the ring beam be to prevent

lifting?
c. Determine the normal force in the ring beam. Is this a tensile force or a

compressive force?

7.6 A (long) cylindrical pneu with an internal pressure of 400 N/m2 has
a circular cross-section as indicated in the figure with a radius of 12 m.
The weight of the concrete beams at A and B has to prevent the pneu
from lifting. Tie-rods have been applied between the beams A and B every
2.5 m. The specific weight of concrete is 24 kN/m3.

Questions:
a. Determine the membrane force (in the circumferential direction) in the

pneu.
b. Determine the required cross-section of the beams to prevent lifting.
c. Determine the force in a tie-rod between A and B.

7.7 Two spherical pneus with radius r = 11.55 m have been placed
adjacent to one another and joined. A cable has been placed over the pneus
at the connection. The overpressure in the pneu is 400 N/m2.
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Questions:
a. Determine the membrane forces in the pneu.
b. Determine the forces that the pneus exert on the cable.
c. Determine the tensile force in the cable.

7.8 Two spherical pneus with a radius of 14.20 m have been placed
adjacent to one another and joined. A cable has been laid over the pneus at
the line of joining. The overpressure in the pneu is 410 N/m2. The pneus
are attached to concrete foundation beams.

Questions:
a. Determine the membrane forces in the pneu.
b. Determine the vertical support reactions for the pneu.
c. Determine the (normal) force in the ring beams. Are they tensile forces

or compressive forces?
d. Determine the forces that the pneus exert on the cable.
e. Determine the tensile force in the cable.
f. Determine the (normal) force in beam CD. Is this a tensile force or a

compressive force?

Working with hydrostatic pressures (Section 7.3)

7.9 A steel sheet-pile wall is fixed in a concrete floor. There is 6 m of
water against one side of the wall, and 3 m on the other. Mass density of
water: 1000 kg/m3.

Questions:
a. Draw the distribution of the water pressure on the wall.
b. Determine the horizontal support reaction per metre wall.
c. Determine the fixed-end moment per metre wall.
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7.10 A steel sheet-pile wall is fixed in a concrete floor. There is 6 m of
water against one side of the wall with a mass density of 1000 kg/m3. On
the other side, there is 3 m of water with, due to a high silt content, a mass
density of 1400 kg/m3.

Questions:
a. Draw the distribution of the water pressure on the wall.
b. Determine the horizontal support reaction per metre wall.
c. Determine the fixed-end moment per metre wall.

7.11 Like the previous question, but now with the silty water to the left,
and the siltless water to the right of the wall. The mass density of the silty
water is 1200 kg/m3, and that without silt is 1000 kg/m3.

7.12 A steel sheet-piling is fixed in a concrete floor, and is retaining 6 m
of water. The mass density of the upper 3 metres is 1000 kg/m3. The lower
three metres have a mass density of 1400 kg/m3 as a result of the silt
present.

Questions:
a. Draw the distribution of the water pressure on the sheet-piling.

b. Determine the horizontal support reaction per metre of sheet-piling.
c. Determine the fixed-end moment per metre sheet-piling.

7.13 A water-retaining wall contains a square flap that is hinged at A, and
supported by a sill at B.

Questions:
a. Draw the distribution of the water pres-

sure against the wall.
b. Determine the resultant of the water

pressure on the flap.
c. Determine the line of action of this

resultant.
d. Determine the support reactions at A

and B.

7.14 What is the water depth h if the total water pressure on the square flap
from the previous question is 3.6 kN?

7.15 A connection between two reservoirs is sealed by means of a circular
valve.

Questions:
a. Draw the distribution of the water pressure on both sides of the wall.
b. Draw the resulting water pressure on the wall.
c. Determine the resulting water pressure on the sealing valve.
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7.16 A connection between two reservoirs is closed by means of a circular
valve.

Question:
Determine the resulting water pressure on the valve.

7.17 An opening in a water-retaining wall is closed by means of a slide.
The slide is 0.5 m high and 0.4 m wide.

Question:
Determine the resulting water pressures on the slide.

7.18 You are given a water-retaining wall with the triangular area ABC as
shown.

Questions:
a. Determine the resulting water pressure on triangle ABC
b. Determine the resulting water pressure on triangle ABC if base AB is

above top C.

7.19 You are given the longitudinal section and the cross-section of a
water trough.

Questions:
a. Determine the support reactions at A and B.
b. Determine the resultant of the water pressure on an end-partition.
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7.20 You are given a wooden mitre gate in a small lock. The depth of the
water outside the lock is 5 m and 3 m inside.

Questions:
a. Determine the resulting water pressures on door AC.
b. Determine the forces that the doors at A and B exert on the lock walls.
c. Determine the force that the doors at C exert on one another.

7.21 A barrage is made up of partitions that at base A are resting against
a groove and at top B against an I-section. The I-section beam is supported
in the walls of the barrage.

Questions:
a. Draw the distribution of the wa-

ter pressure on the walls.
b. Determine the support reactions

at A and B for a partition with a
width of 1.5 m.

7.22 A lock door is supported by a hinge at S and is pressed against sill C
by a force of 300 kN at A. There is only water to the right of the door. The
lock door has a width of 4 m. The weight of the door can be ignored.

Question:
At which water level will the door open?

7.23 A barrage contains a flap AB with a width of 1 m. The flap is resting
in a groove at A and is supported by a hinge at B.

Question:
Determine the vertical force F required to open flap AB.
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7.24 In a barrage, flap AS is resting at A on an entirely flat base and is
connected in a hinge at S with SB. The flap is 2.5 m wide. There is only
water to the left of the barrage.

Questions:
a. Determine the (total) support reaction at A.
b. Determine the horizontal and vertical component of the hinge force at

S. Also clearly indicate the directions.

7.25 A barrage with the shape shown is
located in a 1-m wide channel.

Questions:
a. Draw the distribution of the water pres-

sure on the barrage.
b. Determine the support reactions at A

and B.

7.26 A barrage contains a flap AB that can rotate about a hinge at S.

Question:
Determine the water level h at
which the flap will open.

7.27 A concrete sewer pipe with Ø400 mm and a wall thickness of 50 mm
is located in an area with sandy soil and a high water level. The pipe
is located below ground water level. The specific weight of concrete is
24 kN/m3.

Question:
Determine whether there is a danger of lifting if the weight of the soil above
the pipe is not taken into account as a load.
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7.28 A concrete tunnel element is afloat, waiting to be transported to the
sinking site. The element is 60 m long and has a cross-section of 25×9 m2.
The outer walls of the tunnel are 1.20 m thick, the inner walls are 0.75 m
thick. The two temporary bulkheads each have a weight of 1320 kN. The
specific weight of concrete is 25 kN/m3, while that of water is 10 kN/m3.

Questions:
a. How much is the tunnel above water level?
b. How many litres of water have to be used to fill the ballast tanks to sink

the tunnel element?

7.29 Once tunnel element IV has been sunk and placed at the correct level,
the space between the bulkheads A and B is pumped empty. The tunnel has
a rectangular cross-section of 25 × 9 m2. The specific weight of the water
is 10 kN/m3.

Question:
Determine the force that tunnel element IV exerts on element III?

7.30 At high tide, a barge with rectangular cross-section is 1.5 m above
the water and 3.0 m below the water. At low tide, the water level is 1.7 m
less, and the base of the barge ends up in a muddy layer of sediment. The
muddy layer has a mass density of 1400 kg/m3 and behaves like a liquid.
The water above the muddy layer has a mass density of 1050 kg/m3.

Question:
How much does the barge stick out of the water at low tide?

7.31 A 1-metre strip has been isolated from the length of a long barge and
is modelled as a line element. The dead weight of the isolated line element
(walls and base) is 10.5 kN/m.

Questions:
a. Determine depth h of the barge.
b. Draw the distribution of the water pressure on the walls and the base.
c. Isolate the base of the barge and draw all the forces acting on it.
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7.32 In the middle of the base of a long barge there is a continuous hinge.
There are bars between the walls of the barge three metres above its base.
The centre to centre distance of these bars is 2.5 m. The barge is filled with
petroleum up to 2 m. The dead weight of the petroleum is 7.5 kN/m3. A
1-metre strip has been isolated in the length of the barge and modelled as a
line element. The dead weight of the isolated line element (walls and base)
is 5 kN/m.

Questions:
a. Determine the depth h of the barge.
b. Draw the distribution of the hydrostatic pressures on walls and base.
c. Isolate a wall and draw all the forces acting on it.
d. Determine the force in a bar. Is it a tensile force or a compressive force?

7.33 A sketch is shown with a number of estimated thicknesses of a long
concrete channel for the transport of water. The water can rise to the upper
edge of the channel The specific weight of concrete is 24 kN/m3.

Questions:
a. Determine the centre to centre distance a of the cross-beams to an

accuracy of 0.1 m, such that the piles are not loaded by more than
600 kN.

b. Determine the section forces (interaction forces) per metre in cross-
section A–A of the channel.
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7.34: 1–3 A 1-metre strip has been isolated from a channel filled with
water and is modelled as a line element. There are three different shapes of
channel.

Questions:
a. Determine the support reactions.
b. Draw the distribution of the water pressure on the walls and the base.
c. Isolate the base and draw all the forces acting on it.

7.35 At a nursery, an open tank is being built to store water. The round tank
has a diameter of 12 m and a height of 2 m. The wall of the tank consists
of corrugated steel plates that are connected by means of bolts. The water
retention is achieved by means of a membrane.

Questions:
a. Determine the (normal) force in the circumferential direction if the tank

is three-quarters full. Is this a tensile force or a compressive force?
b. Determine the (normal) force in the circumferential direction if the

tank is filled to the top.
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7.36 You are given two curved weirs. The weirs are a semi-circle and have
a radius of 24 m. The bulging sides of the weirs are pointing downstream.
The water levels are shown in the figure.

Questions:
a. Determine the (normal) force in the circumferential direction of the

weir. Is this a compressive force or a tensile force?
b. Determine the total force that the weirs AB and BC exert on pier B.

7.37: 1–2 Sixty metres of water is standing against a circular storage dam
with a radius of 250 m and an aperture angle of 53.5◦. In case (1), the
transverse section of the closed valley is rectangular, while in case (2) it is
an isosceles triangle.

Question:
Determine the horizontal resultant of the water pressure on the dam.
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7.38: 1–4 A concrete wall is retaining 4.5 m of water. The support
reactions Fh and Fv exerted by the foundation provide equilibrium. The
specific weight of concrete is 24 kN/m3 and that of water is 10 kN/m3.

Questions (for 1 m retaining wall):
a. Determine support reaction Fh.
b. Determine support reaction Fv.
c. Determine the line of action of Fv.

7.39 The cross-section of a retaining wall is circular on the water-retaining
side.

Questions (for 1 m retaining wall):
a. Determine the vertical component of the water pressure.
b. Determine the horizontal component of the water pressure.
c. At which distance from A does the line of action of the resulting water

pressure intersect the base of the retaining wall?
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7.40: 1–4 A 5-metre wide dam is retaining a water level h. The dam
is composed of a flat vertical wall and a circular cylindrical wall. The
cross-section of the cylindrical wall is a quarter-circle with a radius of 3 m.

Question:
Determine the resultant of the water pressure on the 5-metre long circular
cylindrical wall, with its line of action, when:
a. h = 4.80 m.
b. h = 3.00 m.
c. h = 1.50 m.

7.41 A circular cylindrical slide with a length of 20 m, a radius of 7.5 m
and an aperture angle of 60◦, is retaining a water level h.

Question:
Determine the resultant of the water pressure on the slide, with its line of
action, if:
a. h = 8.0 m.
b. h = 6.5 m.
c. h = 4.0 m.


