
6Loads

All influences acting on a structure can be considered as loads. In me-
chanics, we generally restrict ourselves to loads that occur as a result
of forces and prescribed deformations or displacements. In doing so, we
make a distinction between static and dynamic loads. This is covered in
Section 6.1.

In vibration-sensitive structures, dynamic loads can generate far greater
forces and deformations than one would find from a static calculation.
Dynamic calculations are more complex than static calculations and are
beyond the scope of this book.

For traditional structures, regulations or codes are prescribed with re-
spect to loads and loading combinations. These are based on experience,
measurements and common sense. Section 6.2 briefly describes the loads
mentioned in the regulations. For special structures, the regulations are
often not sufficient, and loading analyses may demand extensive study.

Whereas up until now a load has consisted of one or more concentrated
forces, this chapter addresses distributed loads; we distinguish between
volume loads, surface loads, and line loads.

A system of forces on a structure (which is considered a rigid body) can,
for equilibrium purposes, be replaced by its resultant. The same applies for
a distributed load. Section 6.3 addresses how to calculate the resultant of a
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Figure 6.1 (a) A load that does not change with time is called
a static load. Dynamic loads are loads that change in time, such
as (b) periodic loads, (c) suddenly applied loads, (d) loads of short
duration and collision phenomena (impact loads), and (e) stochastic
loads.

distributed load. Line loads on a member will be treated more extensively.

How the load is determined depends to a great extent on the manner in
which a structure or structural element is modelled. For example, the dead
weight of a bar depicted as a line element is not treated as a volume load but
rather as a line load. In the same way, the dead weight of a slab (plane ele-
ment) is considered as surface load. This issue is illustrated in Section 6.4
using a simple building.

Section 6.5 addresses the concept of stress. The transfer of forces in and
between materials is the result of extremely small interactions between
adjacent particles. Spreading all the forces evenly over a section leads to
the concept of stress.

6.1 Loads in mechanics

6.1.1 Influences on structures

All influences that can act on a structure can be considered as loads. In
general, we distinguish between the following:
• Loads due to forces

This could for example be the weight of traffic on a bridge. In addition
to the traffic, the bridge must also be able to carry its dead weight.

• Loads due to prescribed deformations or displacements
The settlement of a support is an example of a prescribed displacement.
Other examples are the influences of temperature changes, shrinkage
and creep.

• Loads due to other influences
If the structure is located in an aggressive environment in which the
material is affected, this effect on the material can be seen as a load.
Fire is also seen as a load.

Structures have to be designed and constructed in such a way that they
offer sufficient resistance to all these influences so that the function of the
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Figure 6.2 (a) When a block is suspended by three wires, and one
of the wires suddenly breaks, there is a sudden change in the loading
on the remaining wires. (b) Model of the cableway used to close the
Haringvliet. Discarding a concrete block causes a sudden change in
the loading on the cable gondola.

structure is not endangered in any way.

In mechanics, we generally restrict ourselves to loading by forces, and pre-
scribed deformations and displacements. A further distinction here is that
between static and dynamic loads.

6.1.2 Static and dynamic loads

If a load due to forces or prescribed displacements does not change (or
changes very little) in time, as in Figure 6.1a, it is called a static load. In
contrast, dynamic loads do change with time, as in Figures 6.1b to 1e.

The wave action on a structure at sea and the forces exerted by a machine
on its foundations are examples of dynamic loading by forces. Another
example of a dynamic load is an earthquake. In an earthquake, one refers
to a prescribed displacement: the earth starts to move and the structure is
forced to follow the movement of the earth via its foundations.

In general, one can distinguish between four different types of dynamic
loading:
• Periodic loads (Figure 6.1b)

This type of load is caused, for example, by rotating machines, ringing
bells, eddies in a stream, or people jumping on a floor.

• Suddenly-applied loads (Figure 6.1c)
This could include a load resulting from a snapping wire (see Fig-
ure 6.2a). Another example is the cableway in Figure 6.2b, which was
used at the Haringvliet1 dam to unload concrete blocks.

• Loads of short duration and collision phenomena (impact loads) (Fig-
ure 6.1d)

1 A see arm. The enclosure of the Haringvliet is one of the Delta Works in the
Netherlands.
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Examples include explosions, wave impact, gusts of wind, or a falling
pile hammer on a pile.

• Stochastic loads (Figure 6.1e)
This includes loads of a variable and unpredictable character, such as
those resulting from wind, waves, traffic or earthquakes.

In vibration-sensitive structures, dynamic loads can generate much larger
forces and deformations than one would find from a static calculation. This
will be illustrated using the simply supported beam in Figure 6.3a, which
in the middle of the span has to carry a block with mass m and weight
G = mg. To simplify matters, the mass of the beam will be disregarded.

The block is suspended from the cable, and touches the beam without rest-
ing on it. If the block is carefully placed on the beam by letting out the
cable very slowly, both the vertical support reactions will slowly increase
to 1

2G, after which they do not change in time (see Figure 6.3b). The load is
static.

It would also be possible to have the weight of the block act on the beam
suddenly, not by slowly letting out the cable, but by cutting it. The beam
with the block will then start to vibrate around the static equilibrium posi-
tion (see Figure 6.3c). The vertical support reactions are now twice as large
(albeit of short duration) as in the case with the static loading.1 As a result
of the ever-present damping, the amplitude of the vibration will decrease
in time, and the block will finally come to rest in the static equilibrium
position, as indicated in Figure 6.3d.

Due to a suddenly applied load, the forces in the structure are twice as large
as would be determined by means of a static calculation. If the block is
dropped from a certain height, the acting forces are even larger.

In the case of a periodic load (soldiers walking in step across a bridge,
people jumping up and down on a floor, bells ringing in towers, foundations

1 The evidence cannot be given at this stage and is beyond the scope of this book.

Figure 6.1 (a) A load that does not change with time is called
a static load. Dynamic loads are loads that change in time, such
as (b) periodic loads, (c) suddenly applied loads, (d) loads of short
duration and collision phenomena (impact loads), and (e) stochastic
loads.
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(a) (b)

(c) (d)

Figure 6.3 (a) A simply supported beam has to carry a block with
weight G in the middle of the span. Initially the block is hanging
from a cable and touches the beam without resting on it. (b) The
vertical support reactions under static conditions after gently letting
out the cable. (c) If the cable is not let out slowly, but is cut, the
beam with the block starts to vibrate and the vertical support reac-
tions (albeit of short duration) are twice as large as they are under
static conditions. (d) As a result of the ever-present damping, the
amplitude of the vibration decreases in time, and the block finally
ends up at rest in the static equilibrium position.

for machines, turbines, engines, and so forth) the structure must be designed
in such a way that the natural frequencies1 of the structure clearly differ
from the frequency of the loading. If this is not the case, there is the danger
of resonance, in which the forces and deformations in the structure can
become extremely large.

Dynamic calculations are more complex than static calculations. In regula-
tions and codes, the dynamic influences have often been taken into account
by increasing the load so that a static calculation is enough. For example,
the static load of people on floors is approximately 3 kN/m2. Due to the
movement of the people, the load changes by frequencies of 1 to 2.5 Hz.2

The resulting forces are approximately twice the static value. Regulations
therefore prescribe that a static equivalent of about 6 kN/m2 has to be taken
into account.3

6.1.3 Volume loads, surface loads, line loads, and point loads

So far, we have always imagined that loads are concentrated forces that
have their points of application on the structure. In reality, a force never
acts on a single point, but acts across a particular area. The follow-
ing distinctions are made, depending on the dimension of the area of
application:
• Volume loads (forces per volume; N/m3)

For example: a material’s dead weight.
• Surface loads p (forces per surface area; N/m2)

1 A natural frequency is a frequency with which (part of) a structure can vibrate
freely.

2 The unit of frequency (Hz = hertz = s−1) is named after Heinrich Rudolf Hertz
(1857–1894), German physicist.

3 In the regulations, the value for the load is found from the characteristic load
by multiplying this by a load factor (see Section 6.2.5).
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Example: wind and snow loading, gas, liquid, and earth pressures.
• Line loads q (forces per length; N/m)

Example: the weight of a dividing wall on a floor.
• Point loads, or concentrated forces F (N)

Volume loads, surface loads, and line loads are referred to as distributed
loads. In equilibrium analysis, distributed loads may be replaced by their
resultant. Section 6.3 addresses the calculation of the magnitude and line
of action of this resultant.

6.2 Loads in regulations

For traditional structures, regulations or codes are prescribed with respect
to loads and loading combinations. These have been created on the basis
of experience, measurements and common sense. For special structures,
the regulations are generally insufficient and the load analysis may demand
extensive study.

In the regulations, two important main groups are generally distinguished:
• dead loads
• live loads

The live load due to the (vertical) traffic load on bridges is known as a
moving load.

6.2.1 Dead loads

Dead loads are loads that are always present for the entire lifecycle of
the structure. The dead load can often be determined quite easily and
accurately.

Examples of dead loads include:
• Dead weight

This is the weight of the (bearing) structural element under considera-
tion.
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Figure 6.4 Since it is unlikely that the floors in a building are
all maximally loaded at the same time, the live load may in certain
cases be reduced.

• Permanent loads
This is the weight of non-bearing elements that rest permanently on
the structural element under consideration, either directly or indirectly.
Examples include the weight of the insulation plates and waterproof
roofing material for a roof or the weight of the topping of a bridge
deck.

• Loads due to prestressing

The effect of the dead load can sometimes be most unfavourable during
construction, when the structure has not yet been completed and the dead
load is not yet present everywhere. A similar situation can occur when the
structure is being converted or demolished.

6.2.2 Live loads (buildings)

Live loads are loads that do not act permanently on the structural element
in question. At times, they are present, while at other times they are absent.
It is often not as easy to determine the magnitude of live loads as it is to
determine dead loads. The values prescribed in the regulations are the result
of many years of experience and research.

Live loads include snow on a roof, people on a dance floor, goods in a
warehouse or traffic on a bridge. Traffic loads are referred to as moving
loads (see Section 6.2.3).

In calculations, one has to assume the most unfavourable situation.

In order to simplify calculations, regulations often prescribe the live load
on floors, balconies, stairs, roofs, porches, and so forth, in three different
guises:
• A uniformly distributed surface load p;
• A uniformly distributed line load q;
• A concentrated load F (a force acting on a small area).

For the live load prescribed for floors, the weight of a standard inventory
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Figure 6.5 Wind loads are distributed loads. The direction of
the load is shown by means of an open arrow: (a) wind pres-
sure and wind suction, (b) wind friction, and (c) overpressure and
underpressure.

Figure 6.6 For flat roofs, one has to take the risk of water accumu-
lation into account: the deflection of the roof due to the rain water
allows the storage of an increasing amount of water. If the roof is
not sufficiently rigid, it may eventually collapse.

is included in addition to the weight of people. Furthermore, the dynamic
effects of walking, jumping, dancing, stamping, and so forth, are taken into
account as well. The line loads and concentrated loads are introduced as
they may occur during removals.

The live load has to be calculated separately for machines, archives, and so
forth.

Since it is unlikely that in a building all the floors are maximally loaded
at the same time, as in Figure 6.4, the live load can be reduced in certain
cases.

For roofs where local snow accumulation is possible, the associated
load concentration has to be taken into account. If the wind loading is
predominant, the snow as well as people or tools on the roof can be ignored.

Wind loading is also a live load, but is generally defined separately. A
distinction is made between:
• Wind pressure and wind suction (Figure 6.5a);
• Wind friction (Figure 6.5b);
• Overpressure and underpressure (Figure 6.5c).

For rainwater, the load of gutters and rainwater pipes filled with water as a
result of blockages have to be taken into account.

For flat roofs, the possibility that the water cannot drain away has to be
considered. This incurs the risk of water accumulation: the deflection of
the roof due to the water allows for the storage of an increasing amount of
water (see Figure 6.6). If the roof is not sufficiently rigid, this can result in
its collapse at times of continuing rainfall.

6.2.3 Live loads (bridges)

Vertical live loads on bridges due to traffic are referred to as moving loads.
In regulations, this load is a uniformly distributed surface load together with
a limited number of concentrated loads (see Figure 6.7).
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Figure 6.7 In regulations, the mobile load is seen as a uni-
formly distributed surface load together with a limited number of
concentrated loads.

Figure 6.8 For bridges, one has to take into account that certain
structural elements are loaded less favourably if the load is omitted
over a certain length. (a) The vertical support reaction at A as a
compressive force is a maximum when field AB is loaded and field
BC is unloaded. (b) Due to a full load, the support reaction at A
is half as large. (c) The largest tensile force that support A has to
transfer occurs when only field BC is loaded.

The uniformly distributed load is a representation of the actual load that
can occur over large lengths. This load becomes more important for longer
spans.

The system of point loads, with the underlying part of the uniformly dis-
tributed load, represents the load caused by a few very heavy trucks or
locomotives. This load is important for bridge elements of limited length.

It may occur that certain structural elements are loaded more unfavourably
if the load is omitted over a certain length. For this reason, the fact that
the traffic load on bridges may be missing along that length has to be
considered.

In the hinged beam in Figure 6.8, for example, the vertical support reaction
at A as a compression force has its maximum when field AB is loaded and
field BC is unloaded. In this case, the support reaction is qa. In the event of
full loading, the support reaction in A is half the magnitude. The maximum
tensile force that support A has to transfer is 1

2qa, and occurs when only
field BC is loaded.

For railway bridges, the train is always a continuous load, even though it
can consist partially of empty carriages. A lower load is prescribed for the
empty carriages.

The influence of impacts and vibrations are taken into account by multiply-
ing the moving loads by an impact factor S (S > 1).

In longer traffic bridges, it is increasingly less likely that the maximum
moving load occurs, unless there is a traffic jam. In that case, the impact
factor will lead to a too heavy load, and a reduction is justified. This re-
duction is achieved by multiplying the traffic loading by a load factor B

(B < 1).

For railway bridges, there is no load factor.
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In addition to the vertical traffic loads, horizontal loads such as brake forces
and wind loads have to be taken into account.

6.2.4 Limit states

For each structure, it has to be shown that it is reliable (safe), and will not
collapse prematurely, and that the structure meets the requirements related
to serviceability.

In order to be able to check a structure on these various aspects, the concept
of limit state was introduced. A limit state is a state in which the structure
just meets (or just does not meet) certain demands regarding the structure.
A distinction is made between two groups of limit states, which are directly
related to the concepts reliability and serviceability:
• ultimate limit states
• serviceability limit states

Ultimate limit states
If a load is gradually increased, a moment arises at which the structure will
collapse, for example because its strength limit is reached (exceeded), or
because its equilibrium is no longer reliable (instability). Limit states used
to test a structure for its reliability (or more generally speaking, structural
safety) are referred to as ultimate limit states, or also as failure states.

Serviceability limit states
If a structure is insufficiently rigid, this can negatively influence its ser-
viceability. Examples include doors that start to jam if the deformations
become too large, and windows that may shatter. Another example is a
floor that sags too much. This sort of floor elicits feelings of insecurity
and is unusable, even if there is no risk of failure. Annoying cracking
can also lead to a situation in which a structure is no longer serviceable
(leakage through the cracks or corrosion of the reinforcement in reinforced
concrete). Limit states used to check a structure for its serviceability are
referred to as serviceability limit states.
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Figure 6.9 The normal distribution or Gauss curve is characterised
by the mean value μ and standard deviation σ .

When checking ultimate limit states, the structure is subjected to an over-
load. When checking serviceability limit state, the load at serviceability
level is used.

The following section provides a brief summary of how, with design
codes, the loads (and strength) that have to be used in the calculations are
determined.

6.2.5 Characteristic values and design values

With loads and (material) strengths, it is not possible to indicate their pre-
cise values beforehand. In practice, they are subject to dispersion. One can
only indicate with what probability certain values will occur. Loads and
strengths are therefore stochastic quantities.1

Stochastic quantities can be defined by means of a probability density func-
tion, of which the normal distribution is the best-known. Most stochastic
quantities that play a part in the assessment of the behaviour of a structure
follow the normal distribution. Figure 6.9 shows the curve for the normal
distribution of a quantity x. This curve, also known as the Gauss curve,2 is
given by

f (x) = 1

σ
√

2π
e−(x−μ)2/2σ 2

.

The normal distribution is characterised by two parameters: the mean value
μ and the standard deviation σ . The curve is in the shape of a bell, with
a vertical symmetry axis and two points of inflection, and approaches zero
for x →−∞ and x →+∞. The mean value μ coincides with the symmetry

1 From the Greek στoχαξoμαι (to guess, to suspect).
2 Carl Friedrich Gauss (1777–1855), German mathematician and astronomer.
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Figure 6.10 The probability that the value of x is smaller than x1
is equal to the area under the curve for x < x1; the probability of a
value of x between x2 and x3 is equal to the area under the curve
between x2 and x3.

axis. The standard deviation σ is the distance from the symmetry axis to the
points of inflection.

The probability P(x < x1) that the value of x is smaller than x1 is equal to
the surface area under the Gauss curve for x < x1 (see Figure 6.10):

P(x < x1) =
∫ x1

−∞
f (x) dx.

There are tables available for this integral.

The probability of a value of x between x2 and x3 is equal to the area under
the Gauss curve between x2 and x3.

The total area under the curve is equal to 1: there is a probability of 100%
that the value of x lies between −∞ and +∞.

The probability P(x < x1) can be shown in various ways. The area under
the curve gives a value (smaller or equal to 1), such as

P(x < x1) = 0.0025 = 2.5 × 10−3.

This value can also be written as a ratio:

P(x < x1) = 1 : 400.

The probability is also often shown as the percentage of the total area under
the probability density curve (which is equal to 1). In this example, the
probability is

0.0025 × 100% = 0.25%.

The ultimate limit state is a check for strength. This means that, on the
one hand, the strength R of the structure has to be determined, and that on

Figure 6.9 The normal distribution or Gauss curve is characterised
by the mean value μ and standard deviation σ .
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Figure 6.11 (a) The characteristic strength Rk is the strength that
is exceeded with a 95% probability; in only 5% of all cases, the
strength is therefore less than the characteristic strength. (b) The
characteristic load Sk is the load that is not exceeded throughout
the lifecycle of the structure with 95% probability; only 5% of all
occurring loads are larger than the characteristic load.

the other, we have to determine the load S. In the building regulations, the
procedure used is based on the so-called characteristic values for strength
and load.

The characteristic strength Rk is defined as the strength that is exceeded
with a probability of 95%; in other words, the strength is therefore less than
the characteristic strength in 5% of all cases (see Figure 6.11a).

The characteristic load Sk is defined as the load that with a probability of
95% is not exceeded throughout the lifetime of the structure; only 5% of all
occurring loads are larger than the characteristic load (see Figure 6.11b).

The symbols R for strength and S for load are used internationally.1 They
have a broad meaning. Strength R (generally) relates to the largest forces
and stresses that can be transferred by a structure, such as the admissible
tensile force in a tie-rod, or the compressive strength of the material. Load
S (generally) relates to the force or stress exerted on the structure (or part
of a structure), or in other words, the acting tensile force in the tie-rod or
the acting compressive stress in the material.

The strength R must not be smaller than the load S. With respect to the
characteristic values, this means:

Rk ≥ Sk.

In this situation, however, the probability of failure is considered too great.
In order to reduce this probability, the calculation is not carried out with
the characteristic values, but with a lesser strength Rd and a larger load Sd,
known as the design values.2

1 From French: R of Résistance (resistance, stamina) and S from Sollicitation
(load).

2 The index d is derived from design.
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Figure 6.12 Distributed loads normal to the member axis: (a)
a distributed load q(x) as a function of x; (b) a distributed load
that changes direction at A; (c) a uniformly distributed load; (d) a
linearly distributed load.

The design value for strength is derived from the characteristic strength by
dividing it by a material factor γR:

Rd = Rk

γR
.

has a lower material factor than, for example, cast in situ concrete.

The design value of the load is derived from the characteristic load by
multiplying it by a load factor γS:

Sd = γSSk.

Amongst other things, the magnitude of the load factor depends on the type
of load (dead or live, and whether its effect is favourable or unfavourable),
the safety class (office building or shed), and the limit state in question.
To check an ultimate limit state, the structure is subjected to an overload,
and the design value of the load is larger than the characteristic value. To
check a serviceability limit state, the load at serviceability level is used:
in this case, the design value of the load is equal to the characteristic
value.

Structures are considered sufficiently strong if the design value of the
strength is not smaller than the design value of the load:

Rd ≥ Sd

or

Rk

γR
≥ γSSk.

Each limit state has its own load factor. For information concerning load

The material factor accounts for insecurities in construction. As such, steel
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Figure 6.13 A uniformly distributed load in the direction of the
member axis.

Figure 6.14 (a) A distributed load, at an angle to a member, can be
resolved into components (b) parallel, and (c) normal to the member
axis.

factors and material factors, please refer to the regulations, building codes
and relevant books.

In this book, all the examples use only design values.

6.3 Working with distributed loads

When working with a distributed load, it can sometimes be useful to replace
it (temporarily) by its resultant. This section addresses the calculation of the
resultant of a distributed load. Most attention is devoted to line loads on a
member.

6.3.1 Resultant of a line load on a member

Figure 6.12a provides a schematic representation of a line load q on (a part
of) a member. The direction of the distributed load is shown by means of
arrows. The load in Figure 6.12a is acting normal to the member axis and
is a function of x. Other examples of distributed loads acting normal to the
member axis are shown in Figures 6.12b to 6.12d.

In the special case that the distributed load is constant, we refer to a
uniformly distributed load (see Figure 6.12c).

The distributed load in Figure 6.12d is known as a linearly distributed load;
it varies linearly from q(x1) = 3 kN/m to q(x2) = 5 kN/m.

A distributed load can also act in the direction of the member axis. Fig-
ure 6.13, for example, shows the uniformly distributed load q on a column
as a result of its dead weight.

A distributed load q , acting at an angle to a member, can be resolved into
directions parallel to and normal to the member axis (see Figure 6.14). In
the xz coordinate system shown, qx = q cos α and qz = q sin α are called
the components of q .



220 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 6.15 (a) An arbitrarily distributed load q(x) normal to the
member axis. A small force �R = q(x)�x acts on a small element
at length �x. The magnitude of the resultant R of the distributed
load is equal to the sum of all parallel forces �R. (b) The magnitude
of the resultant R is equal to the area of the load diagram; its line of
action passes through the centroid of the load diagram.

Figure 6.16 Magnitude and line of action of resultant R with (a) a
rectangular, and (b) a triangular load diagram.

Note: the distributed load has the dimension of force per length. So far, the
length was always measured along the member axis. With inclined mem-
bers, the distributed load is also sometimes expressed per length projected
on the (horizontal) ground surface, for example in the case of a snow load.
See Example 3 in this section.

When considering the equilibrium of a system of forces on a structure,
considered as a rigid body, we can replace the system of forces by its
resultant.

In Figure 6.15, an arbitrarily distributed force q(x) is acting normal to the
axis of member AB between x = x1 and x = x2. A small force �R is acting
on a small element at length �x:

�R = q(x)�x.

The magnitude of the resultant R of the distributed force is equal to the sum
of all small parallel forces �R:

R = ∑
�R = ∑

q(x)�x =
∫ x2

x1

q(x) dx.

Conclusion: The magnitude of R is equal to the area enclosed by the load
diagram.

The line of action of R is found using Varignon’s Moment Theorem: the
resultant R and the distributed load q(x) have to produce the same moment
about an arbitrary point. The moment about point A, for example, gives

aR = ∑
(x�R) =

∫ x2

x1

xq(x) dx

so that
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Figure 6.17 (a) A simply supported beam with a linearly dis-
tributed load. (b) The support reactions due to resultant R. (c) The
magnitude and line of action of resultant R of the distributed load
and the associated support reactions.

a =

∫ x2

x1

xq(x) dx

R
=

∫ x2

x1

xq(x) dx∫ x2

x1

q(x) dx

.

By definition, a is the x coordinate of the centroid of the load diagram.1

Conclusion: The line of action of R passes through the centroid of the load
diagram.

Figures 6.16a and 6.16b give the magnitude and location of the resultant
for a rectangular and triangular load diagram respectively.

Example 1
Determine the vertical support reactions at A and B of the simply supported
beam AB in Figure 6.17a, with a distributed load that increases linearly
from 4 kN/m at A to 12 kN/m at B.

Solution (units kN and m):
For the distributed load, with � = 6 m, applies

q(x) = 4 + 8
x

�
kN/m.

The resultant R of the distributed load is

R =
∫ �

0
q(x) dx =

∫ 6

0

(
4 + 8

x

6

)
dx =

(
4x + 4

x2

6

)∣∣∣∣∣
x=6

x=0

= 48 kN.

1 Volume 2, Stresses, Deformations, Displacements, addresses the calculation of
centroids. Here it is assumed that the reader is aware of the location of centroids
in simple figures.
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One can also determine R directly from the area of the trapezoidal load
diagram:

R = 1
2 × 6 × (4 + 12) = 48 kN.

In Figure 6.17b, the distributed load has been replaced by the resultant R.
The line of action of R is determined by:

aR =
∫ x2

x1

xq(x) dx =
∫ 6

0

(
4x + 8

x2

6

)
dx

=
(

2x2 + 8
x3

18

)∣∣∣∣
x=6

x=0
= 168 kNm

so that

a = 168

R
= 168

48 = 3.5 m.

The magnitude and location of the resultant R of the distributed load are
shown in Figure 6.17c.

The vertical support reactions at A and B are now found from the moment
equilibrium about B and A respectively:

∑
T |B = 0 ⇒ Av = 2.5

6 × 48 = 20 kN,∑
T |A = 0 ⇒ Bv = 3.5

6 × 48 = 28 kN.

A distributed load q may also be split up into loads q1 and q2, as in Fig-
ure 6.18, where the individual influences may be added. It always holds
that

Figure 6.17 (a) A simply supported beam with a linearly dis-
tributed load. (b) The support reactions due to resultant R. (c) The
magnitude and line of action of resultant R of the distributed load
and the associated support reactions.
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R =
∫ x2

x1

q(x) dx =
∫ x2

x1

q1(x) dx +
∫ x2

x1

q2(x) dx = R1 + R2

and

aR =
∫ x2

x1

xq(x) dx =
∫ x2

x1

xq1(x) dx +
∫ x2

x1

xq2(x) dx = a1R1 + a2R2.

The fact that the influences of the individual loads can be added is referred
to as the principle of superposition. This principle is based on the fact that
the relationships between the various quantities are linear.

If a load diagram can be split into a number of simpler diagrams, such as
a number of rectangles and triangles, the abovementioned approach often
leads to a result more quickly. This is illustrated in the next example.

Example 2
For the simply supported beam in Figure 6.19, the trapezoidal load diagram
has been split into triangles and/or rectangles in four different ways.

Question:
Show that the same support reactions at A and B are found in all four cases.

Solution (units in kN and m):
In Figure 6.19a, the trapezoidal load has been split up into two triangular
loads. The determination of the support reactions is shown below:

R1 = 1
2 × 6 × 4 = 12 kN,

R2 = 1
2 × 6 × 12 = 36 kN,

∑
T |B = 0 ⇒ Av = 4

6R1 + 2
6R2 = 8 + 12 = 20 kN,

∑
T |A = 0 ⇒ Bv = 2

6R1 + 4
6R2 = 4 + 24 = 28 kN.

Figure 6.18 Principle of superposition: One can (a) split a distrib-
uted load q into loads q1 and q2, with (b) resultants R1 and R2, and
(c) add their individual influences.

Figure 6.19 A simply supported beam with the trapezoidal load
diagram split up into two triangles.
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In Figure 6.19b, the trapezoidal load is divided into a rectangular and a
triangular load diagram:

R1 = 6 × 4 = 24 kN,

R2 = 1
2 × 6 × 8 = 24 kN,∑

T |B = 0 ⇒ Av = 3
6R1 + 2

6R2 = 12 + 8 = 20 kN,∑
T |A = 0 ⇒ Bv = 3

6R1 + 4
6R2 = 12 + 16 = 28 kN.

The trapezoidal load can be split into a uniformly distributed load and a
triangular load in many other ways, as for example in Figure 6.19c:

R1 = 1
2 × 6 × 8 = 24 kN,

R2 = 6 × 12 = 72 kN,∑
T |B = 0 ⇒ Av = − 4

6R1 + 3
6R2 = −16 + 36 = 20 kN,∑

T |A = 0 ⇒ Bv = − 2
6R1 + 3

6R2 = −8 + 36 = 28 kN.

If the trapezoidal load is split as shown in Figure 6.19d, it follows that

R1 = 1
3 × 3 × 4 = 6 kN,

R2 = 6 × 8 = 48 kN,∑
T |B = 0 ⇒ Av = − 5

6R1 + 3
6R2 + 1

6R1 = −5 + 24 + 1 = 20 kN,∑
T |A = 0 ⇒ Bv = − 1

6R1 + 3
6R2 + 5

6R1 = −1 + 24 + 5 = 28 kN.

Irrespective of how the load diagram is split, the support reactions are
always the same.

Figure 6.19 A simply supported beam with the trapezoidal load
split up in four different ways into triangles and/or rectangles to
determine the support reactions.
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Figure 6.20 (a) Part of a roof, modelled as a line element, is loaded
by (b) its dead weight, (c) snow, and (d) wind. The resultant and
support reactions due to (e) the dead weight, (f) snow load, and
(g) wind load.

Example 3
Part of a roof modelled as the line element in Figure 6.20a is supported by a
hinge at A, and a roller with vertical roller track at B. The member is loaded
by three uniformly distributed (line) loads, of which the load diagrams are
shown in Figures 6.20b to 6.20d:
• the dead weight qdw (vertical force per length measured along the

member axis);
• a snow load qsn (vertical force per horizontally measured length);
• a wind load qw normal to the member axis (force per length measured

along the member axis).

Unlike dead weight and wind load, the snow load is given as a load per
length projected on the horizontal ground plane. The load diagram for snow
in Figure 6.20c is drawn differently therefore.

Question:
Determine the support reactions at A and B for all three loads.

Solution:
When calculating the support reactions, we can replace the distributed loads
by their resultants. The dead weight and the wind load act over a length of
15a, while the snow load acts over a length of 12a, so that

Rdw = 15aqdw,

Rsn = 12aqsn,

Rw = 15aqw.

The resultants and their lines of action are shown in Figures 6.20e to 6.20g.
The same figures also show the associated support reactions.



226 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Table 6.1

R Av(↑) Ah(→) Bh(←)

dead weight Rdw = 15aqdw 15aqdw 10aqdw 10aqdw

snow Rsn = 12aqsn 12aqsn 8aqsn 8aqsn

wind Rw = 15aqw 12aqw 3.5aqw 12.5aqw

All the values are shown Table 6.1.

Example 4
The hinged beam in Figure 6.21a carries a uniformly distributed load of
6 kN/m over part CD.

Question:
Determine the support reactions.

Solution:
In an equilibrium system, a distributed load may be replaced by its resultant.
Therefore, when looking at the equilibrium of the hinged beam as a whole,
we can use the resultant of the entire distributed load (see Figure 6.21b).
For the directions assumed for the support reactions, this gives

∑
F (ASD)

x = −Ah = 0 ⇒ Ah = 0,∑
F (ASD)

z = −Av − Bv − Cv + (36 kN) = 0, (a)

∑
T ((ASD)

y |A = +Bv × (4 m) + Cv × (8 m) − (36 kN)(5 m) = 0. (b)

The two equations (a) and (b) are not sufficient to determine all vertical
support reactions. The additional equation required is found from the mo-

Figure 6.20 (a) Part of a roof, modelled as a line element, is loaded
by (b) its dead weight, (c) snow, and (d) wind. The resultant and
support reactions due to (e) the dead weight, (f) snow load, and
(g) wind load.

The reader is asked to verify the correctness of the support reactions.
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Figure 6.21 (a) Hinged beam with uniformly distributed load.
(b) For the equilibrium of the structure as a whole, the total distrib-
uted load can be replaced by its resultant. (c) For the equilibrium
of the separate parts, each part has its own resultant, and one may
no longer use the resultant of the total distributed load. (d) Support
reactions.

ment equilibrium of parts SA or SD about hinge S. In this case it is not
possible to work with the resultant in Figure 6.21b; this resultant has to be
replaced by the resultants of the distributed loads on the individual parts
(see Figure 6.21c).

With equations (a) and (b), an efficient way of obtaining results is to
consider the moment equilibrium of SD:

∑
T (SD)

y |S = +Cv × (2 m) − (12 kN)(1 m) = 0. (c)

From (c) we find

Cv = +6 kN

which then gives the following from (b) and (a)

Bv = +33 kN,

Av = −3 kN.

Figure 6.21d shows the support reactions in the directions in which they are
really acting. Only the direction of the vertical support reaction at A was
assumed falsely.

6.3.2 Resultant of a surface load on a plate

In Figure 6.22a, a plate in the xy plane is loaded normal to its plane by an
arbitrarily distributed load p(x, y).

The resultant of the distributed load on a small area �A is a small force
�R:

�R = p(x, y)�A.
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Figure 6.22 (a) A plate in the xy plane is loaded normal to
its plane by an arbitrarily distributed load p(x, y). A small force
�R = p(x, y)�A is acting on a small area �A. (b) The resultant
R of the distributed load and the location (xR, yR) where the line
of action of R intersects the xy plane. The magnitude of R is equal
to the volume of the load diagram. The line of action of R passes
through the centroid of the load diagram.

The magnitude of the resultant R of the distributed load is equal to the sum
of all parallel forces �R:

R = ∑
�R = ∑

p(x, y)�A =
∫

A

p(x, y) dA.

Conclusion: The magnitude of R is equal to the volume of the load diagram.

The location (xR, yR) of the line of action of R is found using Varignon’s
theorem1 (see Figure 6.22b):

∑
Ty = −xRR = −∑

(x�R) = −
∫

A

xp(x, y) dA,

∑
Tx = +yRR = +∑

(y�R) = +
∫

A

yp(x, y) dA

so that

xR =

∫
A

xp(x, y) dA

R
=

∫
A

xp(x, y) dA∫
A

p(x, y) dA

,

yR =

∫
A

yp(x, y) dA

R
=

∫
A

yp(x, y) dA∫
A

p(x, y) dA

.

By definition, xR and yR are the x and y coordinates of the centroid of the
load diagram.

1 See also Examples 1 and 2 in Section 3.3.4.
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Figure 6.23 (a) A rectangular plate in the xy plane is loaded
normal to its plane by a distributed load. (b) The resultant R of the
distributed load and the location (xR, yR) where the line of action
of R intersects the xy plane.

Conclusion: The line of action of R passes through the centroid of the load
diagram.

Example
In Figure 6.23a, a rectangular plate in the xy plane, with an area A = ab,
is loaded by a distributed load normal to its plane:

p(x, y) = p̂
x(b − y)

ab
.

Question:
Determine the magnitude of the resultant R and the coordinates (xR; yR)

where the line of action of R intersects the xy plane.

Solution:
The magnitude of the resultant R is equal to the volume of the load diagram:

R =
∫

A

p(x, y) dA =
∫ a

0

∫ b

0
p̂

x(b − y)

ab
dx dy

= p̂

ab

∫ a

0
x dx

∫ b

0
(b − y) dy

= p̂

ab

x2

2

∣∣∣∣
a

0

(
by − y2

2

) ∣∣∣∣∣
b

0

= p̂ab

4
.

The line of action of R passes through the centroid of the load diagram (see
Figure 6.23b). For the coordinates (xR, yR) of the centroid, the formulas
derived earlier can be used.
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It is also possible to start at once with Varignon’s theorem:

∑
Ty = −xRR = −

∫
A

xp(x, y) dA,

∑
Tx = +yRR = +

∫
A

yp(x, y) dA.

This gives

xR =

∫
A

xp(x, y) dA

R
=

p̂

ab

∫ a

0
x2 dx

∫ b

0
(b − y) dy

p̂ab

4

=
p̂

ab
× a3

3
× b2

2
p̂ab

4

= 2
3a,

yR =

∫
A

yp(x, y) dA

R
=

p̂

ab

∫ a

0
x dx

∫ b

0
(by − y2) dy

p̂ab

4

=
p̂

ab
× a2

2
× b3

6
p̂ab

4

= 1
3b.

Figure 6.23 (a) A rectangular plate in the xy plane is loaded
normal to its plane by a distributed load. (b) The resultant R of the
distributed load and the location (xR, yR) where the line of action
of R intersects the xy plane.
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Figure 6.24 (a) A simple concrete building consisting of two
frames, covered by roof slabs. (b) Each frame consists of an 8-metre
beam that at each end is simply supported on a column. The 5-metre
columns are rigidly joined to a square footing, which is located at a
certain depth below ground level.

Figure 6.25 (a) The total roof load is 2.8 kN/m2; (b) this generates
a uniformly distributed load on the beam equal to 5.6 kN/m.

6.4 Modelling load flow

How the load is taken into account depends greatly on the way in which a
structure or structural element is modelled. For example, the dead weight of
a member modelled as a line element is not considered as volume load, but
rather as a line load. In the same way, the dead weight of a plate (surface
element) will be taken into account as a surface load.

This will be demonstrated in an example using the simple concrete building
in Figure 6.24a. For this example we will investigate how the vertical loads
on the building are transferred to the foundation.

The building consists of two frames that, 4 metres apart, carry the roof
slabs. Figure 6.24b shows one of the frames. Each frame consists of an 8-
metre beam that is simply supported at both ends by a column. The 5-metre
columns are rigidly joined to a square footing, located at a certain depth
below ground level. The dead weight of the roof slabs is 2 kN/m2. The
weight of the waterproof roof covering and insulation is set at 0.3 kN/m2.
In addition, a live load of 0.5 kN/m2 is taken into account. The total load
on the roof slabs is therefore

p = (2 kN/m2) + 0.3 kN/m2) + (0.5 kN/m2) = 2.8 kN/m2.

Figure 6.25a shows a load of 2.8 kN acting on a square metre. If one takes
an arbitrary strip of the roof of 1-metre width, the total load on the strip
would be

(4 m)(1 m)(2.8 kN/m2) = 11.2 kN.

Each beam carries half of this, or in other words, 5.6 kN over a 1-metre
length, (see Figure 6.25b). Over the full length, the beam is therefore loaded
by a uniformly distributed load of 5.6 kN/m. We also have to include the
dead weight of the beam. If we assume a dead weight of 6 kN/m, the total
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Figure 6.26 All the forces acting on the isolated beam. The dis-
tributed load is composed of the roof load and a dead weight of
6 kN/m. The support reactions of 46.4 kN have to be provided by
the columns.

Figure 6.27 (a) The column dimensions and (b) all the forces
acting on the isolated column. The dead weight of the column is a
uniformly distributed load parallel to the column axis.

load on the beam is (see Figure 6.26)

q = (5.6 kN/m) + (6 kN/m) = 11.6 kN/m.

The beam is simply supported. The support reactions, which have to be
provided by the columns, amount to

1
2 × (11.6 kN/m)(8 m) = 46.4 kN.

Equal and opposite forces are acting on the columns.

Figure 6.27a shows the cross-sectional dimensions of the columns. With
mass density ρ = 2400 kg/m, the specific weight of concrete is

ρg = (2400 kg/m3) × (10 N/kg) = 24000 N/m3) = 24 kN/m3.

For the cross-sectional dimensions of the column in Figure 6.27a, the dead
weight per length is

(0.2 m)(0.4 m)(24 kN/m3) = 1.92 kN/m.

This is a uniformly distributed load acting in the direction of the column
axis (see Figure 6.27b).

The total dead weight of the column is

(5 m)(1.92 kN/m) = 9.6 kN.

At its base, the column has to be kept in equilibrium by a force of

(46.4 kN) + (5 m)(1.92 kN/m) = 56 kN.
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Figure 6.28 (a) The dimensions of the square footing. (b) On the
bottom of the footing, the earth pressure has to provide an equilib-
rium with the force of 56 kN from the column and the footing’s dead
weight of 4.6 kN. The resultant of the earth pressure is therefore
60.6 kN.

Figure 6.29 In reality, the earth pressure on the footing consists
of a very large number of small forces provided by the grains of
soil. Spreading all these forces evenly into a distributed surface load
implies an idealisation of reality.

An equally large, opposite force is acting on the footing of the column. If
the footing is square, and has the dimensions given in Figure 6.28a, the
dead weight of the footing is

(0.8 m)(0.8 m)(0.3 m)(24 kN/m3) = 4.6 kN.

The earth pressure on the bottom of the footing has to be in equilibrium
with the force of 56 kN from the column, and the footing’s dead weight of
4.6 kN (see Figure 6.28b)

(56 kN) + (4.6 kN) = 60.6 kN.

If the earth pressure is uniformly distributed, it equals

p = 60.6 × 103 N

(800 mm)(800 mm)
= 0.095 N/mm2.

In general, the earth pressure is not uniformly distributed. The value given
for p is then referred to as the average earth pressure.

How the load exerted by the footing is transferred further into the ground,
is a problem addressed by the special field of soil mechanics.

6.5 Stress concept; normal stress and shear stress

In reality, the earth pressure on the footing in Figure 6.29 consists of a very
large number of very small forces provided by the grains of soil. Spreading
all these forces evenly into a distributed surface load implies an idealisation
of reality: the soil as a discontinuous material is replaced by a continuous
material.
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Figure 6.30 (a) Force � �F is the resultant of all the forces acting
on a small yet finite area �A. (b) Stress vector �p with its com-
ponents. (c) Stress p (in visual notation) resolved into the normal
stress σ perpendicular to the section plane and the shear stress τ in
the section plane.

In fact, as a result of their atomic structure, all materials are discontinuous.
The force flow in and between materials is the result of a very large number
of small interactions between adjacent elementary particles.

Mathematically, the transfer of forces in and between materials is described
using the concept stress. This concept is explained using Figure 6.30, in
which a part of a body has been isolated from its environment.

Imagine that force � �F in Figure 6.30a is the resultant of all the small forces
acting on a small, but finite area �A. As �A is chosen to be smaller, � �F
is also smaller. The limit of the relationship between � �F and �A as �A

approaches zero is defined as the stress vector �p:

�p = lim
�A→0

� �F
�A

.

When introducing the stress concept, one uses an idealised model of reality
(a continuous material). The justification of this model is given post hoc
by the agreement between model and reality. This agreement only exists if
the stresses vary gradually. In areas with a major change in stresses (in the
surroundings of stress peaks), one has to take into account the differences
between model and reality.

The stress vector �p (in space) has three components: px , py and pz (see
Figure 6.30b).

The stress vector can also be resolved into a component σ normal to the
section plane and a component τ in the section plane. See Figure 6.30c,
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in which the visual notation is used. σ is known as normal stress and τ is
referred to as shear stress.1

In mechanics, it is common practice to define the normal stress σ in solids
as positive if it is a tensile stress. Sometimes, if dealing mainly with
compressive stresses, it can be useful to define compressive stresses as
positive. We often use a prime to indicate a change in sign. In such a case,
σ ′ = 300 N/m2 means the same as σ = −300 N/m2. However, be aware
that this notation is not always used, for instance in the cases of gas, liquid
and earth pressures.

1 The normal stress and shear stress are shown (for the present) as the compo-
nents of a stress vector. Using the normal stress and shear stress to describe
the interaction in the section plane, this presentation is not complete. In that
case the normal vector on the section plane has to be considered. The complete
definition is addressed in Chapter 10, where we look at the section forces in a
member. Here it becomes clear that also for the shear stress it is possible to have
an unequivocal sign convention.
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6.6 Problems

Resultant of a line load on a member (Section 6.3.1)

6.1: 1–3 The same simply supported beam AB is carrying three para-
bolically distributed loads.

Questions:
a. Determine the line of action and magnitude of the resultant of the

distributed load.
b. Determine the support reactions at A and B.

6.2: 1–4

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B.
c. Determine the interaction forces at C.

6.3: 1–6

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B.
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6.4

Question: Determine the support reaction at A.

6.5: 1–4

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B.

6.6

Question:
For which length a of the cantilever is the support reaction at A zero for the
given load?

6.7 The same fixed beam is loaded in four different ways.

Question:
Determine the (peak value of the) distributed loads so that the fixed-end
moment in all four cases is the same.

6.8: 1–3 Three beams are given with a linearly distributed load. The peak
value of the distributed load is 1.8 kN/m for all cases.

Questions:
a. Determine the support

reaction at A.
b. Determine the support

reaction at B.
c. Determine the interac-

tion forces at C.
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6.9: 1–6 A number of beams are given with a linearly distributed load and
also a point load in two cases. The figures are not all shown to the same
scale. The top value of the linearly distributed load is 8 kN/m in all cases.
The magnitude of the point loads is given in the figure.

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B.
c. Determine the interaction forces at C.

6.10: 1–4

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B.
c. Determine the interaction forces at C.

6.11 The fixed member AB is loaded by an eccentric compressive force,
and a uniformly distributed horizontal load.

Question:
Determine the support reactions at A.
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6.12 The same shelter is loaded in four different ways.

Question:
In which case is the fixed-end moment at most?

6.13 Hinged beam ASB is fixed at A.

Question:
Determine the fixed-end moment at A.

6.14 The simply supported beam AB is carrying a uniformly distributed
load over the entire length and is also loaded by couples at the supports.

Questions:
a. Determine the support

reaction at A.
b. Determine the support

reaction at B.

6.15 You are given a hinged beam.

Questions:
a. Determine the support

reaction at A.
b. Determine the support

reaction at D.
c. Determine the other

support reactions.

6.16 You are given a hinged beam.

Questions:
a. Determine the support

reaction a A.
b. Determine the other

support reactions.

6 Loads



240 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

6.17: 1–5 You are given five different hinged beams.

Question:
Determine the support reaction at A, B and C.

6.18 You are given a canopy roof ACD modelled as a line element.

Questions: Determine the horizontal and
vertical support reactions at A and the
force in member BC (with the correct sign)
due to the following uniformly distributed
loads on ACD:
a. Dead weight of 2 kN/m.
b. Wind load of 3 kN/m.
c. Snow load of 4 kN/m.

6.19 A uniformly distributed horizontal load is acting on the left-hand post
of the three-hinged frame ASB.

Questions:
a. Determine the support reactions

at A.
b. Determine the support reactions

at B.

6.20 A uniformly distributed load is acting on the left-hand side of the
three-hinged frame ASB.

Questions:
a. Determine the support reactions

at A.
b. Determine the support reactions

at B.
c. Determine the interaction forces

at C.

6.21 A three-hinged frame with tie-rod is carrying a uniformly distributed
load of 40 kN/m.

Questions:
a. Determine the support reaction

at A.
b. Determine the force in tie-rod

AB.
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6.22: 1–3 You are given three different three-hinged frames with unequal
post lengths.

Questions:
a. Determine the support reactions at A.
b. Determine the support reactions at B.
c. Determine the interaction forces at C.

6.23

Questions:
a. Determine the support reactions at A and B.
b. Determine the force in bar DE, with the correct sign.

6.24 For the structure in problem 6.23, the roller and hinged support are
exchanged.

Questions:
a. Determine the support reactions at A and B.
b. Determine the force in bar DE, with the correct sign.

6.25 Trussed beam ACB is carrying over its entire length a uniformly
distributed load of 8 kN/m.

Question:
Determine the force in bar CD. Is it a tensile force or a compressive force?

6.26 Trussed beam ASB is carrying over its entire length a uniformly
distributed load of 10 kN/m.

Questions:
a. Determine the force in bar 1.
b. Determine the force in bar 2.
c. Draw the closed force polygon for the equilibrium of joint B.

6 Loads
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6.27 Trussed beam ASB is carrying over its entire length a uniformly
distributed load of 34 kN/m.

Questions:
a. Determine the force in bar 1.
b. Determine the force in bar 2.
c. Determine the force in bar 3.
d. Draw the closed force polygon

for the equilibrium of joint A.
e. Draw the closed force polygon

for the equilibrium of joint B.

6.28 You are given a queen post truss with a uniformly distributed load of
40 kN/m.

Question:
Determine the force in mem-
ber AB. Is this a tensile force
or a compressive force?

6.29 The dead weight of beam ABSCD is 125 kN/m.

Questions:
a. Determine the support reac-

tion at A due to this dead
weight.

b. Determine the other support
reactions.

6.30 In the compound structure shown, ED and DC are connected by a
hinge at D.

Questions:
a. Determine the vertical support reactions at A and B.
b. Determine the forces in the members AE and BC, with the correct signs.
c. Determine the forces in the members AG and BG, with the correct

signs.
d. Determine the horizontal support reactions at A and B.
e. Draw the closed force polygon for the equilibrium of joint A.
f. Draw the closed force polygon for the equilibrium of joint B.

Modelling load flow (Section 6.4)

6.31 Steel beams AA′, BB′ and CC′ are carrying roof slabs. The dead
weight of the roof slabs, together with the live load, equals 4 kN/m2. The
dead weight of the beams is estimated as 1 kN/m.



243

Questions:
a. Determine the (uniformly) distributed line load which has to be taken

into account for beam AA′.
b. Determine the (uniformly) distributed line load which has to be taken

into account for beam BB′.

6.32 You are given a wooden joisting whereby the joists have a lateral
distance of 0.6 m. The joists have a mass of 10 kg/m, and the floor has a
mass of 10 kg/m2. The live load is 1.5 kN/m2. The load on an arbitrary
joist (no edge joist) is modelled by as a uniformly distributed line load q .
Let g = 10 N/kg.

Question:
How large is q?

6.33 For the building on spread foundation the following is given:

• Roof
Live load 500 N/m2

Dead load 300 N/m2

Dead weight 1500 N/m2

• Beams
Dead weight 3000 N/m

• Columns
Dead weight 1500 N/m

Question:
Determine the load on one of the footings.

6.34 You are given a concrete skeleton with the columns on a grid of
5.5 × 5.5 m2 and a height between floors of 3.25 m. The floors and the
roof are 0.25 m thick. All the columns have cross-sectional dimensions of
0.5 × 0.5 m2. The specific weight of concrete is 24 kN/m3. The dead load
is 1.5 kN/m2.

Question:
Determine the load on the lower columns of the skeleton (or make a good
estimation) due to the dead weight and dead load. Distinguish between:
a. a centre column,
b. an outer column, and
c. a corner column.

6 Loads
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6.35 A roof truss is loaded by the forces shown. The truss spacing is
a. The roof load (including the dead weight of the roof) is a uniformly
distributed surface load p.

Question:
Which combination of truss spacing a and load p occur according to the
given forces on the roof truss?

Truss spacing Load
a (m) p (kN/m2)

a. 4 22.5

b. 4 25

c. 3.75 20

d. 3 22.5

e. 3 25

6.36 For a concrete box girder bridge with a large number of spans, all the
spans have the same length of 42 m. The piers have a pile foundation. The
cross-sectional dimensions of the bridge and piers are shown in the figure.
The box girder bridge has the same wall thickness of 0.4 m everywhere.
The specific weight of concrete is 24 kN/m3.

Questions:
Due to the dead weight, determine:
a. The load on the bridge modelled as a line element.
b. The load on a centre pier.
c. The load on a pile under the centre pier (assuming all piles are loaded

equally).


