
5Calculating Support Reactions
and Interaction Forces

In this chapter, we will see how to calculate support reactions and interac-
tion forces in statically determinate bar-type structures from the equilibrium
equations using a number of examples.

For compound structures, if you write down all the available equilibrium
equations and then try to solve the system, you soon end up with a large
number of calculations. To prevent this, you have to select the equilibrium
equations in a sensible order, preferably in such a way that an unknown
force can be calculated directly with each new equilibrium equation.

The strategy for determining all the forces as efficiently as possible depends
to a large degree on the type of structure. For this reason, in addition to
self-contained structures, we will also look at compound and related struc-
tures, such as hinged beams, three-hinged frames (with or without tie-rods),
shored structures and trussed beams.

The loading remains limited to a few point loads. In one case, the structure
is loaded by a concentrated couple.
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Figure 5.1 (a) A light mast fixed at A with (b) the support reac-
tions.

5.1 Self-contained structures

In this section, we will use five examples to show how, for statically de-
terminate self-contained structures, it is possible to determine the support
reactions and interaction forces directly from the equilibrium.

Example 1
The light mast ABC in Figure 5.1a is fixed at A and is loaded at C by a
vertical force of 6 kN.

Question:
Draw the support reactions at A as they are expected to act and determine
them.

Solution:
No horizontal loading is being exerted on the mast. The horizontal support
reaction at A is therefore zero. The vertical support reaction at A must gen-
erate an equilibrium with the vertical force of 6 kN, and will therefore be
pointed upwards. In order to determine the fixed-end moment, the isolated
structure is considered to be pinned at A. The load causes a clockwise
rotation about A. The fixed-end moment has to prevent this rotation and
will therefore act counter-clockwise. The support reactions are shown in
Figure 5.1b. The equilibrium equations are

∑
Fx = Ah = 0,∑
Fy = −(6 kN) + Av = 0,∑
Tz|A = −(6 kN) × (1.5 m) + Am = 0.

The solution is

Ah = 0, Av = 6 kN and Am = 9 kNm.
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Figure 5.2 (a) A block supported on three bars; (b) the assumed
directions of the support reactions at A and B.

The fact that the solutions found are positive confirms the correctness of
the directions assumed for these support reactions.

Note that the support reaction Av and the force of 6 kN at C together form
a couple that is in equilibrium with the fixed-end moment Am.

Example 2
In Figure 5.2a, a block with a weight of 60 kN is supported on three bars.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces N(a), N(b) and N(c) in the bars1 with the correct

sign for tension and compression, based on the convention that a force
N as tensile force is positive and as compressive force is negative.

Solution (units in kN and m):
a. Figure 5.2b shows the support reactions. The directions of Ah and Av
are such that the line of action of their resultant coincides with two-force
member (a). For the others, the directions of the support reactions have been
assumed arbitrarily.

On the basis of the slope of bar (a), it follows that Ah/Av = 4/3, or
Ah = (4/3)Av. Av can be determined using the moment equilibrium about
B:

∑
Tz|B = −Av × 4 − 60 × 4 = 0 ⇒ Av = −60 kN

so that

Ah = 4
3Av = −80 kN.

1 The upper index indicates the relevant bar. The brackets can be omitted as they
do not create any confusion.
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Bh is found from the horizontal force equilibrium:

∑
Fx = Ah + Bh = −80 + Bh = 0 ⇒ Bh = 80 kN.

Bv follows from the vertical force equilibrium:

∑
Fy = Av + Bv − 60 = −60 + Bv − 60 = 0 ⇒ Bv = 120 kN.

Bv can also be determined from the moment equilibrium about A.

Figure 5.2 (b) The assumed directions of the support reactions
in A and B; (c) the support reactions as they are actually acting;
(d) the closed force polygon for the force equilibrium of joint B;
(e) isolated joint B with all the forces acting on it.

In Figure 5.2c, the support reactions are shown as they act in reality. Only
the direction of the support reactions at A was falsely assumed.

b. Figure 5.2c shows directly that a tensile force is acting in bar (a):

N(a) =
√

A2
h + A2

v =
√

802 + 602 = 100 kN.

The forces in the bars (b) and (c) can be determined from the force equilib-
rium of joint B. The force polygon in Figure 5.2d shows that bar (b) exerts a
force of 40 kN on joint B. This force “pushes” against the joint. Figure 5.2e
shows the interaction forces between bar and joint. In bar (b), there is a
compressive force N(b) = −40 kN. Bar (c) is exerting a force of 80

√
2 kN

on joint B, also a compressive force, so that N(c) = −80
√

2 kN.

Alternative solution (units in kN and m):
The questions a and b are now answered in reverse order.

b. In Figure 5.3a, the block has been isolated at A′ and B′. N(a), N(b)

and N(c) are the (tensile) forces that the bars are exerting on the block.
In Figure 5.3b, they have been resolved into their components.
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Figure 5.3 (a) The block isolated at A′ and B′, assuming that all
the bars are tension members; (b) the forces acting on the block
resolved into horizontal and vertical components; (c) the forces ac-
tually exerted by the bars on the block; (d) the support reactions at
A and B are found from the force equilibrium of the joints A and B.

N(c) follows from the moment equilibrium about A′:
∑

Tz|A′ = −60 × 4 − 1
2

√
2 N(c) × 3 = 0 ⇒ N(c) = −80

√
2 kN.

N(a) now follows from the horizontal force equilibrium:

∑
Fx = − 4

5N(a) − 1
2

√
2N(c)

= − 4
5N(a) − (−80) = 0 ⇒ N(a) = 100 kN.

Finally, N(b) can be derived from the vertical force equilibrium:

∑
Fy = −60 −

(
N(b) + 3

5N(a)
)

− 1
2

√
2N(c)

= −60 − (N(b) + 60) − (−80) = 0 ⇒ N(b) = −40 kN.

N(a) is a tensile force; N(b) and N(c) are compressive forces (see Fig-
ure 5.3c).

a. The support reactions at A and B now follow from the force equilibrium
of the joints A and B. Figure 5.3d shows the forces that the bars are exerting
on the joints. It is not difficult to see that the support reactions are acting in
the directions shown in the figure. This gives

Ah = 80 kN, Av = 60 kN, Bh = 80 kN and Bv = 40 + 80 = 120 kN.

Example 3
Figure 5.4 represents a schematisation of a retaining wall on piles shown as
a two-dimensional problem. Assume the piles are exclusively transferring
forces in their longitudinal direction. In that case they can be considered
two-force members. The resultant of the total loading carried by the piles
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Figure 5.4 A retaining wall on piles.

Figure 5.5 (a) The isolated retaining wall, in which it has been
assumed that all the piles exert tensile forces on the bottom plate;
(b) the pile forces as they really act on the bottom plate.

is a force of 60
√

2 kN, of which the direction and line of action are shown
in the figure.

Question:
Determine the pile forces, with the correct sign for tension and compres-
sion:
a. analytically;
b. graphically.

Solution:
a. Analytical method (units in kN and m):
In Figure 5.5a, the retaining wall has been isolated and the (tensile) forces
N(a), N(b) and N(c) that the piles exert on the bottom plate are shown. To
keep the picture simple, N(b) has been shifted somewhat along its line of
action.

N(b) follows from the horizontal force equilibrium:

∑
Fx = 1

10

√
10 N(b) + 60 = 0 ⇒ N(b) = −60

√
10 kN.

N(c) can be found from the moment equilibrium about A. One could also
take the moment equilibrium about intersection Sab of the piles (a) and (b),
which works faster in this case:

∑
Tz|Sab = −60

√
2 × √

2 − N(c) × 4 = 0 ⇒ N(c) = −30 kN.

Finally, N(a) can be derived from the vertical force equilibrium:

∑
Fy = −N(a) − 3

10

√
10 N(b) − N(c) − 60 = 0 ⇒ N(a) = +150 kN.

Figure 5.5b shows the forces as they act on the structure. In pile (a) there is
a tensile force while there is a compressive force in piles (b) and (c).
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Figure 5.6 Graphical method for finding the pile forces: (a) line
of action figure and (b) force polygon.

b. Graphical method (see Section 3.1.8):
The pile forces can also be found graphically. Imagine �F (a), �F (b) and �F (c)

are the forces that the piles exert on the structure. These forces have to be
in equilibrium with the load �F , so that:

�F (a) + �F (b) + �F (c) = �F
or

�F (a) + �F (b) = �F − �F (c).

In addition to the force equilibrium there also has to be moment equilib-
rium. Therefore ( �F (a)+ �F (b)) and ( �F − �F (c)) have a common line of action.
The line of action of ( �F (a)+ �F (b)) passes through Sab and that of ( �F − �F (c))

passes through P, see the line of action figure in Figure 5.6a. The common
line of action is therefore PSab.

Since ( �F (a)+ �F (b)) and �F (c) are in equilibrium with �F in P, ( �F (a)+ �F (b)) and
�F (c) can be obtained from a force polygon (see Figure 5.6b). ( �F (a) + �F (b))

can then be resolved in Sab into �F (a) and �F (b). The force polygon in
Figure 5.6b now shows:

�F (a) = 150 kN ↓; �F (b) = 60
√

10 kN ↑ and �F (c) = 30 kN ↑.

These are the forces that the piles exert on the retaining wall. Translated
into the pile forces with the correct sign for tension and compression one
now finds:

N(a) = +150 kN; N(b) = −60
√

10 kN and N(c) = −30 kN.
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Figure 5.7 (a) A beam loaded by a couple at joint B; (b) the
isolated beam with its support reactions.

Figure 5.8 (a) The interaction forces between joint B and mem-
bers AB and BC can be found from the equilibrium of these
members; (b) the interaction forces as they are actually acting; joint
B must meet the conditions of force and moment equilibrium.

Example 4
The simply supported beam ABC in Figure 5.7a consists of the members
AB and BC that are connected rigidly in joint B. The beam is loaded at joint
B by a couple of 30 kNm.

Question:
Isolate joint B and draw all the forces1 acting on it.

Solution:
From the horizontal force equilibrium, it follows that the horizontal support
reaction A is zero. Only vertical support reactions are therefore acting at A
and C. In order to find the direction of the vertical support reaction at C,
one considers the isolated beam to be pinned by a hinge at A. Due to the
couple of 30 kNm, beam ABC will try to rotate clockwise about A. The
vertical support reaction in C must prevent this rotation and therefore acts
upwards (see Figure 5.7b).

The vertical equilibrium requires that the vertical support reactions at A and
C must be of equal magnitude and opposite direction. The vertical support
reaction Av at A therefore acts downwards (see Figure 5.7b).

Cv and Av are found with the following equilibrium equations:

∑
Ty |A = −(30 kNm) + Cv × (5 m) = 0 ⇒ Cv = 6 kN,∑
Fz = −Av + Cv = 0 ⇒ Av = 6 kN.

In Figure 5.8a, the members AB and BC have been isolated at joint B.
In this figure, the calculated support reactions are shown, as are (without
indicating their direction) the currently unknown interaction forces2 be-

1 The forces are intended here in a generalised sense (see Section 4.2.2).
2 Remember that three interaction forces act at a rigid connection (see Sec-

tion 4.2.2).
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Figure 5.9 A structure of which the parts AC, BC and DC are
connected rigidly at joint C.

Figure 5.10 (a) Graphical check of the moment equilibrium: the
lines of action of the three resulting forces at A, B and D pass
through a single point; (b) graphical check of the force equilibrium:
all the forces form a closed force polygon.

tween the members and the joint. The forces that are exerted at B on the
member ends are found from the force and moment equilibrium of respec-
tively member AB and BC. The law of action and reaction requires that the
member ends exert equal and opposite forces on joint B. Figure 5.8b shows
the interaction forces according to their direction and magnitude (forces in
kN and moments in kNm).

Check: At joint B the force and moment equilibrium is satisfied.

Example 5
Of the bar-type structure in Figure 5.9, parts AC, BC and DC are rigidly
connected at joint C.

Questions:
a. Determine and draw the support reactions.
b. Graphically check the force and moment equilibrium.
c. Isolate AC, BC, and DC at joint C and draw all the support reactions

and interaction forces.

Solution:
a. The support reactions are found from the three equilibrium equations for
the structure as a whole. The result is shown in Figure 5.10a.

b. The lines of action of the three (resulting) forces at A, B and D intersect
at one point. This means that there is moment equilibrium. In Figure 5.10b
these forces form a closed force polygon; there is therefore also force
equilibrium.

c. In Figure 5.11a, all the parts connected at joint C have been isolated.
The forces acting at C on AC can be determined using the known support
reactions at A. Equal and opposite forces are acting on joint C. The forces
between joint C and the parts BC and CD can be calculated in the same
way. The result is shown in Figure 5.11b.

Check: At joint C, the force and moment equilibrium is satisfied.
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(a) The interaction forces between joint C and parts
AC, BC and DC can be found from the equilibrium of these parts;
(b) the interaction forces as they are really acting; joint C must meet
the conditions of the force and moment equilibrium.

Hinged beams.

5.2 Hinged beams

A hinged beam is a structure in which several beams are linked through
consecutive hinges. Figure 5.12 shows examples of hinged beams. Hinged
beams are found in roof girders and bridges.

In Figure 5.12, the beams with an overhang are depicted with (a). These
beams are referred to as being supported at fixed points. The beams (b) and
(c) are sometimes referred to as being supported at floating points, as they
rest on the non-fixed supporting points S1 and/or S2. Beam (c) is called a
suspended beam; it can be placed at a later stage during construction.

Statically determinate hinged beams are also known as Gerber beams after
the German Gerber,1 who first used this type of structure in the second half
of the 19th century.

1 Heinrich Gerber (1832–1912), German engineer.

Figure 5.11

Figure 5.12
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Figure 5.13 With too many hinges, or inadequate placement, the
structure becomes kinematically indeterminate and changes into a
mechanism.

Figure 5.14 Example of a hinge in a bridge structure.

Figure 5.15 (a) A hinged beam on three supports; (b) the assumed
directions for the support reactions.

By choosing an adequate place for the hinges, it is possible to influence the
force distribution in the structure positively. However, you have to make
sure that the structure does not become kinematically indeterminate, as for
example in Figure 5.13.

A possibility for hinge S1 in a bridge structure is shown in Figure 5.14.
The right-hand part (the suspended beam) is supported at a hinge on the
left-hand part. In this example, the hinge works only if the right-hand part
exerts a downward force onto the left-hand part. This requirement is usually
fulfilled as a result of the relatively large dead weight of the suspended
beam.

From now on we assume that all hinges in a hinged beam can transfer both
tensile and compressive forces.

Example 1
The hinged beam in Figure 5.15a consists of parts AS and CS, which are
connected at a hinge in S.

Questions:
a. Determine the support reactions.
b. Determine the forces exerted on hinge S.

Solution (units in kN and m):
a. There are three equilibrium equations available for the structure. With
the directions assumed for the support reactions in Figure 5.15b, the
following applies for the given xy coordinate system:∑

Fx = Ah = 0, (a)

∑
Fy = −40 − 60 + Av + Bv + Cv = 0, (b)

∑
Tz|A = −40 × 4 − 60 × 12 + Bv × 8 + Cv × 16 = 0. (c)

The moment equilibrium for the entire structure can also be applied for a
point other than A.
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Figure 5.15 (a) A hinged beam on three supports; (b) the assumed
directions for the support reactions. (c) The hinge forces in S.

The three equations (a) to (c) are insufficient for finding all the support re-
actions. A fourth equation is required. This equation relates to the property
that no couple can be transferred at hinge S. If parts AS and CS are isolated
at S, we are left with the interaction forces Sh and Sv (see Figure 5.15c).
The missing equation is now found from the moment equilibrium about S
of one of the individual parts.

For the left-hand part AS one finds1

∑
T (AS)

z |S = 40 × 6 − Av × 10 − Bv × 2 = 0 (d)

and for the right-hand part CS

∑
T (CS)

z |S = −60 × 2 + Cv × 6 = 0. (e)

Both equations (d) and (e) are of equal value, but it should be clear that
equation (e) is preferable as it is simpler.

The support reactions are therefore most easily found as follows:

(e)
∑

T (CS)
z |S = 0 ⇒ Cv = 20 kN,

(c)
∑

T (AC)
z |A = 0 ⇒ Bv = 70 kN,

(b)
∑

F (AC)
y = 0 ⇒ Av = 10 kN,

(a)
∑

F (AC)
x = 0 ⇒ Ah = 0.

It seems that the correct direction was assumed for all the support reactions.
The support reactions are shown in Figure 5.16.

1 In
∑

T
(AS)
z |S = 0, the upper index indicates the part AS to which the equilib-

rium equation relates. This notation is particularly useful if the equilibrium has
to be written down for the various parts of the same structure.
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Figure 5.16 The support reactions as they really act; the hinge
forces follow from the equilibrium of AS or CS.

Figure 5.17 The forces acting on the isolated hinged joint S.

Figure 5.18 The support reactions and interaction forces can also
be found by first working out the equilibrium of SC and then the
equilibrium of AS.

b. The hinge forces follow from the equilibrium of the separate parts.
Taking the right-hand part CS in Figure 5.16 we find

∑
F (CS)

x = −Sh = 0 ⇒ Sh = 0,∑
F (CS)

z = Sv − 60 + 20 = 0 ⇒ Sv = 40 kN.

The same values are found from the force equilibrium for the left-hand part
AS.

Sh and Sv are the forces that are acting at S on AS and CS. The forces acting
on the hinged joint S are the same magnitude, but of opposite direction (see
Figure 5.17).

Alternative solution:
The floating supported part CS can be seen as a beam, supported on a roller
and a hinge (see Figure 5.18). The support reactions at S and C follow from
the equilibrium of CS:

∑
F

(CS)
x = 0 ⇒ Sh = 0,

∑
T

(CS)
z |C = 0 ⇒ Sv = 40 kN,

∑
T

(CS)
z |S = 0 ⇒ Cv = 20 kN.

With Sh and Sv we now know the load on the overhang of ABS and we can
determine the support reactions at A and B:

∑
T

(AS)
z |A = 0 ⇒ Bv = 70 kN,

∑
T

(AS)
z |B = 0 ⇒ Av = 10 kN,

∑
F

(AS)
x = 0 ⇒ Ah = 0.
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Figure 5.19 (a) A hinged beam with four supports; (b) the as-
sumed directions of the support reactions; (c) the support reactions
as they really act.

Example 2
The hinged beam in Figure 5.19a is given.

Question:
Determine the support reactions.

Solution (units in kN and m):
In Figure 5.19b, the following applies for the assumed directions of the
support reactions in the given coordinate system, and for the system as a
whole:

∑
Fx = Dh = 0, (a)

∑
Fy = −40 − 60 + Av + Bv + Cv + Dv = 0, (b)

∑
Tz|A = −40 × 3 − 60 × 10

+Bv × 6 + Cv × 14 + Dv × 20 = 0. (c)

We have three equations with five unknowns. The two missing equations
are found from the condition that the hinges S1 and S2 cannot transfer
couples. Therefore the following applies for the isolated part S2D:

∑
T (S2D)

z |S2 = Cv × 2 + Dv × 8 = 0. (d)

and for the isolated part S1D:

∑
T (S1D)

z |S1 = −60 × 2 + Cv × 6 + Dv × 12 = 0. (e)

Here the moment equilibrium has been associated with the parts to the right
of the hinges. One could just as well look at the moment equilibrium of
the parts to the left of both hinges, although doing so would involve more
calculations.
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Figure 5.20 The support reactions can also be found by first work-
ing out the moment equilibrium of suspended beam S1S2 and then
the equilibrium of AS and DS.

To summarise, a good strategy for solving this is as follows:

(a)
∑

F (AD)
x = 0 ⇒ Dh = 0 kN,

(e)
∑

T (S1D)
z |S1 = 0

(d)
∑

T (S2D)
z |S2 = 0

⎫⎬
⎭ ⇒ Cv = 40 kN and Dv = −10 kN,

(c)
∑

T (AD)
z |A = 0 ⇒ Bv = 60 kN,

(b)
∑

F (AD)
y = 0 ⇒ Av = 10 kN.

Figure 5.19c shows the support reactions as they act in reality. Apparently,
only the direction of Dv was initially assumed falsely.

Alternative solution:
The most efficient approach however is to first look at the moment
equilibrium of the suspended beam S1S2 (see Figure 5.20):

∑
T (S1S2)

z |S1 = 0 ⇒ S2;v = 30 kN,∑
T (S1S2)

z |S2 = 0 ⇒ S1;v = 30 kN,

With S1;v and S2;v, we know the vertical forces that the suspended beam ex-
erts on the overhangs of beams AS1 and S2D. For these beams, the vertical
support reactions can be determined from the moment equilibrium:

∑
T (AS1)

z |B = 0 ⇒ Av = 10 kN,∑
T (AS1)

z |A = 0 ⇒ Bv = 60 kN,∑
T (S2D)

z |D = 0 ⇒ Cv = 40 kN,∑
T (S2D)

z |C = 0 ⇒ Dv = −10 kN,
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Figure 5.21 (a) A three-hinged frame with the hinge bearings at
different levels.

Finally, the horizontal force equilibrium for each of the structural members
gives

S1;h = S2;h = Dh = 0 kN.

5.3 Three-hinged frames

Figure 5.21a is an example of a three-hinged frame. The frame consists of
two self-contained parts AS and BS that are connected at S by means of a
hinge, and are supported at A and B by a hinge. The whole is statically
determinate. Three-hinged frames are often used as covering structures.
They were previously mentioned in Sections 3.2.2 and 4.4.4.

A three-hinged frame has four unknown support reactions. In order to be
able to calculate these, we need four equilibrium equations. Three of these
are found from the equilibrium of the structure as a whole. The fourth equa-
tion follows from the condition that the hinged joint at S cannot transfer a
couple.

Example 1
In the three-hinged frame in Figure 5.21a, the hinge bearings at A and B
are at different levels. The frame is loaded by a vertical force of 60 kN that
acts on the right-hand part BS.

Questions:
a. Determine the support reactions.
b. Determine the forces that parts AS and BS in S exert on one another.
c. Perform a graphical check of the equilibrium.

Figure 5.20 The support reactions can also be found by first work-
ing out the moment equilibrium of suspended beam S1S2 and then
the equilibrium of AS and DS.
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Figure 5.21 (b) The assumed directions for the support reactions;
(c) the support reactions as they really act.

Solution (units in kN and m):
a. For the given coordinate system and the directions assumed for the
support reactions in Figure 5.21b the following applies for the structure as
a whole:

∑
F (ASB)

x = Ah − Bh = 0, (a)

∑
F (ASB)

y = −60 + Av + Bv = 0, (b)

∑
T (ASB)

z |A = −60 × 6 − Bh × 2 + Bv × 8 = 0. (c)

The missing fourth equation is found from the moment equilibrium about
S of one of the separate parts AS or BS. For the left-hand part AS one finds

∑
T (AS)

z |S = Ah × 2 − Av × 4 = 0. (d)

For the right-hand part BS, one finds

∑
T (BS)

z |S = −60 × 2 − Bh × 4 + Bv × 4 = 0. (e)

The equations (d) and (e) are equivalent. Either of them is sufficient for
calculating the support reactions in combination with the equations (a) to
(c). The other equation can then be used to check the values found.

Equation (e) is preferable in finding the solution as, in combination with
equation (c), it leads directly to the support reactions at B:

Bh = 20 kN; Bv = 50 kN.

From (a) and (b) we find

Ah = 20 kN; Av = 10 kN.
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Figure 5.22 The interaction forces at S follow from the force
equilibrium of AS or BS.

Figure 5.23 (a) The left frame half AS is in equilibrium if the
two forces at A and S are equal and opposite and have a common
line of action; (b) the three-hinged frame is in moment equilibrium
if the lines of action of force F and the support reactions at A and
B intersect in a single point; (c) the three-hinged frame is in force
equilibrium if force F and the support reactions at A and B form a
closed force polygon.

The support reactions are shown in Figure 5.21c. Since there is only vertical
and no horizontal loading, the horizontal support reactions are equal and
opposite.

Check: The solution is true in equation (d).

b. The forces that parts AS and BS in S exert on one another (the interaction
forces at S) follow from the force equilibrium of one of the separate parts
AS or BS (see Figure 5.22). The force equilibrium for the left-hand part AS
gives

Sh = 20 kN and Sv = 10 kN.

The same values follow from the force equilibrium for the right-hand part
BS. This therefore offers an opportunity for checking.

c. Since the load only acts on one half of the frame, one can also easily
check the solution graphically (see Section 3.2.2).

Only two forces are acting on the left-hand part AS: the support reaction
at A and the hinge force at S. The left-hand part AS can be in equilibrium
only if the two forces that act on AS at A and S are equal and opposite.
Both forces must also have the same line of action (see Figure 5.23a). The
line of action of the support reaction at A will therefore pass through S and
is thus determined.

Three forces are acting on the entire frame (the two support reactions at
A and B and the load) that together have to form an equilibrium system.
This is possible only if the lines of action of the three forces intersect in a
single point (if not, there is no moment equilibrium). The line of action of
the support reaction at B must therefore pass through the intersection of the
line of action of the point load and the known line of action of the support
reaction at A (see Figure 5.23b).

With the known lines of action for both support reactions, the magnitude
and direction can be found by means of the force polygon in Figure 5.23c.
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Figure 5.24 (a) A three-hinged frame with the hinged supports at
the same level; (b) the assumed directions for the support reactions;
(c) the support reactions as they really act.

The figure shows that the support reactions at A and B correspond in
magnitude and direction with those calculated previously.

Example 2
The left-hand column of the three-hinged frame from the previous example
is extended in such a way that the hinge bearings at A and B are at equal
level (see Figure 5.24a). The load remains unchanged.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces that AS and BS at S exert on one another.
c. Determine the forces acting on joint D.

Solution (units in kN and m):
a. For a three-hinged frame with the hinge bearings at equal level, the
vertical support reactions can be determined directly from the moment
equilibrium of the structure as a whole.

With the directions assumed for the support reactions in Figure 5.24b the
following applies for the given coordinate system for the frame as a whole:

∑
T (ASB)

z |A = −60 × 6 + Bv × 8 = 0 ⇒ Bv = 45 kN, (a)

∑
T (ASB)

z |B = 60 × 2 − Av × 8 = 0 ⇒ Av = 15 kN. (b)

One of these equations for the moment equilibrium can be replaced by the
equation for the vertical force equilibrium.

The horizontal force equilibrium of the structure as a whole gives

∑
F (ASB)

x = Ah − Bh = 0. (c)

Since there is no horizontal loading, the horizontal support reactions are
equal and opposite. The magnitude of the horizontal support reactions
follow from the moment equilibrium about S of one of the parts AS or BS.
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Figure 5.25 The hinge forces at S follow from the force equilib-
rium of AS or BS.

Figure 5.26 (a) The interaction forces between joint D and mem-
bers SD and BD are found from the equilibrium of the separate
members; (b) the interaction forces as they really act.

If one selects the left-hand part AS, this gives

∑
T (AS)

z |S = Ah × 4 − Av × 4 = 0 (d)

or, if one assumes the right-hand part BS

∑
T (BS)

z |S = −60 × 2 − Bh × 4 + Bv × 4 = 0. (e)

Both equations are equivalent. The solution is

Ah = Bh = 15 kN.

All the support reactions are shown in Figure 5.24c.

b. The interaction forces in hinge S follow from the force equilibrium of
AS or BS (see Figure 5.25). The equilibrium of the left-hand part AS gives

Sh = Sv = 15 kN.

Check: For these forces, the left-hand part BS is also in equilibrium.

c. To find the forces acting on joint D, the joint is isolated (see Fig-
ure 5.26a). There are three interaction forces acting between joint D and
member SD. The magnitude of these forces is found from the equilibrium
of member SD. In the same way, one can use the equilibrium of BD to find
the magnitude of the three interaction forces between joint D and member
BD. The result is shown in Figure 5.26b.

Check: Joint D has to meet the conditions of force and moment equilibrium.
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Figure 5.27 (a) A vertical load on a three-hinged frame gives (b)
not only vertical but also horizontal support reactions; (c) by linking
the bearings A and B of the three-hinged frame by a tie rod, the
horizontal support reactions can be eliminated.

Figure 5.28 A three-hinged frame with tie rod, with a horizontal
and vertical load.

5.4 Three-hinged frames with tie-rod

The previous section shows that a vertical load on a three-hinged frame
generates not only vertical, but also horizontal support reactions (see Fig-
ures 5.27a and 5.27b). Horizontal forces on foundations in soft soil often
cause problems. To reduce the horizontal forces on the foundation, one can
decide to link the bearings A and B of the three-hinged frame by means
of a so-called tie-rod. In this way a self-contained structure is created
that can be supported by a roller and a hinge (see Figure 5.27c). This
is referred to as a three-hinged frame with tie-rod. Tie-rod AB ensures
that the roller support B stays in place and carries the horizontal sup-
port reactions. Vertical loading now generates exclusively vertical support
reactions.

Whether rod AB is subject to tension or compression depends on the load-
ing. The name tie-rod indicates that such a structure is used only if tension
can be expected in the rod.

Example
In Figure 5.28, a vertical and a horizontal load is acting on a three-hinged
frame with tie-rod.

Questions:
a. Determine the support reactions.
b. Determine the force in rod AB.
c. Determine the interaction forces at S.
d. Determine the forces acting on joint A.

Solution (units in kN and m):
a. In Figure 5.29a, the structure has been isolated from its supports. The
support reactions follow from the equilibrium of the structure as a whole.
For the directions assumed for Ah, Av and Bv we find
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Figure 5.29 (a) The assumed directions of the support reactions;
(b) the support reactions as they really act.

Figure 5.30 Three-hinged frame ASB and rod AB isolated from
one another, assuming that a tensile force N acts in rod AB.

∑
F (ASB)

x = 40 − Ah = 0 ⇒ Ah = 40 kN,

∑
F (ASB)

y = −60 − 60 + Av + Bv

= −60 − 60 + Av + 70 = 0 ⇒ Av = 50 kN,

∑
T (ASB)

z |A = −40 × 2 − 60 × 2

−60 × 6 + Bv × 8 = 0 ⇒ Bv = 70 kN.

The support reactions are shown in Figure 5.29b.

b. To calculate the force in rod AB, it is isolated from ASB in Figure 5.30.
We can immediately recognise a two-force member in rod AB: the rod is
loaded only by forces at its ends A and B and can therefore be in equilib-
rium only if these forces are equal and opposite with AB as common line
of action. It is assumed that a tensile force N acts in rod AB.

The magnitude of N follows from the moment equilibrium about S of one
of the parts AS or BS. In Figure 5.31a both parts have been isolated at S.
In order to simplify the calculation, N has been resolved into a horizontal
component Nh and a vertical component Nv:

Nh = 2
5

√
5 N,

Nv = 1
5

√
5 N.

Taking the right-hand part BS we find

∑
T (BS)

z |S = −60 × 2 + 70 × 4 − Nh × 6 + Nv × 4

= 160 − 8
5

√
5 N = 0
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Figure 5.31 (a) The magnitude of N follows from the moment
equilibrium of one of the frame halves about S, after which the in-
teraction forces at S follow from the force equilibrium of the frame
halves; (b) all the forces as they really act on the frame halves.

from which it follows that

N = 20
√

5 kN

and

Nh = 40 kN,

Nv = 20 kN.

Since N is positive, the force in rod AB is indeed a tensile force.

The equation for the moment equilibrium about S can be simplified by
shifting N along its line of action to a convenient position, for example
to the point vertically under S. In that case it follows that

∑
T (SB)

z |S = −60 × 2 + 70 × 4 − Nh × 4 = 0 ⇒ Nh = 40 kN.

Check: For the value determined for N , the left-hand part AS must also
satisfy the conditions for moment equilibrium:

∑
T (AS)

z |S = 0.

c. The hinge forces at S follow from the force equilibrium of the left-hand
or right-hand part of the frame. With the directions of Sh and Sv assumed
in Figure 5.31a we find for the right-hand part BS

∑
F (BS)

x = −Nh − Sh = −40 − Sh = 0 ⇒ Sh = −40 kN,∑
F (BS)

z = −60 + 70 + Nv + Sv

= −60 + 70 + 20 + Sv = 0 ⇒ Sv = −30 kN.

Clearly the wrong direction was assumed in Figure 5.31a for both hinge
forces. Figure 5.31b shows all the forces as they act in reality.
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Figure 5.32 The forces acting on joint A and frame half AS.

Figure 5.33 (a) This portal-like structure with only hinged joints
is kinematically indeterminate and can tilt. To prevent tilting one
can (b) fix the columns or (c) replace the hinged joints between the
columns and the beams by rigid joints.

Check: With the hinge forces calculated, the left-hand frame part AS must
also be in force equilibrium.

d. The following forces are acting on joint A:
• the support reactions Ah = 40 kN and Av = 50 kN;
• the force N exerted by the tie-rod AB, with components Nh = 40 kN

and Nv = 20 kN;
• the forces exerted by the left-hand frame part AS.

The last-mentioned forces can be found from the force equilibrium of joint
A. All the forces on the joint are shown in Figure 5.32.

Check: The part AS isolated from joint A has to be in force equilibrium.

Note that here the horizontal load of 40 kN is transferred via a long detour
to the support at A.

5.5

The portal-like structure in Figure 5.33a, with only hinged joints, is kine-
matically indeterminate. The structure can tilt. To prevent this, one can
fix one or more of the columns (Figure 5.33b). Or one can replace one
or more of the hinges between column and beam by rigid connections
(Figure 5.33c). It is also possible to prevent the construction from tilting
by applying so-called shoring bars, indicated in Figure 5.34 with the letter
s.

If the shoring bar s in Figure 5.34b can transfer only compressive forces,
a single shoring bar is not enough. The shoring bar applied does prevent
tilting to the left, as in Figure 5.33a (the shoring bar has to shorten and
therefore comes under pressure), but not tilting to the right (the shoring bar
would be subject to tensile pressure, and may fall or come loose). In that
case, two shoring bars would be required, as shown in Figure 5.34c.

Shored structures
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Figure 5.34 (a) A fixed end and (b) a rigid corner connection, both
created by using a shoring bar. (c) If the shoring bar can transfer
only compressive forces, two shoring bars are required to prevent
the tilting to the left and to the right.

Figure 5.35 (a) A Mansart truss with (b) the structural model.

The solution with shoring bars, also known simply as shoring, stems from
the time when stiff corner joints were hard to achieve. You will often find
them in (older) timber structures.

An example of this is the wooden roof structure in Figure 5.35a. This type
of structure, still often used at the turn of the century, is called a mansart
roof truss.1 Figure 5.35b gives the structural model.

Strut B ensures that the horizontal forces are transferred to the beam layer
that operates as a tie-rod. Strut B, in combination with the hammer beam
C, can be seen as a shore that ensures a certain restraint of rafter A, in the
same way as the shoring bar in Figure 5.34a, but in this case placed on the
inside. Brace G fixes the corner between rafter A and collar beam D. They
operate like the shoring bar in Figure 5.34b.

Figure 5.35a clearly shows that brace G is connected to rafter A and collar
beam D by means of toothed joints. Since toothed joints work only under
pressure, the upper struts can transfer only compressive forces. For the
shoring bars, one still often refers to bars that are loaded by compressive
forces.

Shoring bars are used not only to make a structure kinematically deter-
minate, but also to influence the force flow positively, as the shores F in
Figure 5.35. These shores provide additional support to rafter A, which can
therefore be made lighter.

Shoring is found not only in old structures. Shores are still used to influence
force flow positively, so that less material is required to meet the demands
of strength and rigidity.

1 Named after Jules Hardouin Mansart (1646–1708), French architect. He built
the Dôme des Invalides in Paris and major sections of the palace in Versailles.
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Figure 5.36 Examples of shored structures. In examples (e) to (f)
one refers to a tie rod rather than a shoring bar.

Figure 5.37 (a) A shored three-hinged frame. (b) A three-hinged
frame in principle consists of two self-contained parts that are
connected by a hinge at S and supported by hinges at A and B.

The following examples will be limited to statically determinate structures.
It is assumed that shoring bars can transfer both tensile and compressive
forces.

Figure 5.36 shows a number of statically determinate shored structures. In
cases (e) and (f) one refers to a tie-rod1 rather than to a shoring bar, even
though the tie-rod is actually fulfilling the role of a shore.

Example 1
The shored structure in Figure 5.37a is loaded by the force F = 50

√
2 kN.

Questions:
a. Determine the support reactions.
b. Determine the forces in the shoring bars (with the correct sign for

tension and compression).
c. Determine all the forces acting on bar SD.

Solution:
a. You will recognise a three-hinged frame in the structure. There are two
self-contained parts that are connected in a hinge at S and are supported
by hinges at A and B (see Figure 5.37b). The structure in Figure 5.37a
is therefore also referred to as a shored three-hinged frame. The support
reactions can be derived in the standard way for a three-hinged frame (see
Section 5.3). The calculation, which will be left to the reader, leads to the
support reactions shown in Figure 5.38.

b. The shoring bars are loaded only by forces at the end of the bars and
therefore act as two-force members. Suppose that a tensile force N(1) acts
in the left shoring bar (1) and a tensile force N(2) in the right shoring bar (2).
In Figure 5.39, AC and BD have been isolated. The unknown interaction
forces at C and D are not shown here.

1 Since the vertical weight causes tension in these bars.
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Figure 5.38 The support reactions of the frame as they really act.

Figure 5.39 The isolated columns AC and BD. The unknown
interaction forces at C and D are not shown here.

Figure 5.40 To see which forces the shoring bars and frame are
exerting on one another, they have been isolated.

It is now possible to deduce N(1) from the moment equilibrium of AC about
C:

∑
T (AC)

z |C = +(40
√

2 kN)(2
√

2 m) + N(1) × (
√

2 m) = 0

so that

N(1) = −80
√

2 kN.

There is a compressive force in shoring bar (1).

In the same way, one can find N(2) from the moment equilibrium of DB
about D:

∑
T (BD)

z |D = +(10
√

2 kN)(3
√

2 m) − N(2) × (
√

2 m) = 0

so that

N(2) = 30
√

2 kN.

Shoring bar 2 is a tension bar.

To demonstrate clearly how the shoring bars act on frame ASB, the frame
and the shoring bars have been isolated from one another in Figure 5.40.
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Figure 5.41 The forces acting on SD are found from the equilib-
rium of the isolated parts.

Figure 5.42 (a) A structure loaded by a vertical force of 40 kN on
the left-hand rafter, with (b) its support reactions.

c. The force acting at S on SD is equal to the support reaction at A. The
force that shoring bar (2) exerts on SD is also known. Still unknown are the
components of the force exerted on SD at D. These are found via the force
equilibrium of column BD (see Figure 5.41).

Check: SD must be in equilibrium.

Example 2
The structure in Figure 5.42a is loaded on rafter ACE by a vertical force
F = 40 kN.

Questions:
a. Determine the support reactions.
b. Determine the force in bar CD (with the correct sign for tension and

compression).
c. Determine the hinge force at E.

Solution:
a. The support reactions follow directly from the equilibrium of the struc-
ture as a whole. There are only vertical support reactions. They are shown
in Figure 5.42b.

b. Suppose the tensile force in CD is N(CD). In Figure 5.43, CD has been
isolated from AEB. The magnitude of N(CD) follows from the moment
equilibrium about E of one of the rafters AE or BE. The unloaded rafter
BE is simpler with respect to the amount of arithmetic:

∑
T (BE)

z |E = −N(CD) × (4 m) + (15 kN(6 m) = 0 ⇒ N(CD) = 22.5 kN

CD is a tension member.

c. The hinge force at E is subsequently found from the force equilibrium
of one of the rafters AE or BE. Again, the unloaded right-hand rafter BE
is preferable. In Figure 5.44a, BE has been isolated, and the result of the
calculation is shown.
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Figure 5.44 Graphical determination of the forces acting at D and
E on the right-hand rafter BDE: (a) line of action figure and (b) force
polygon.

Figure 5.45 The forces acting on the left-hand rafter ACE.

The forces acting on BDE at D and E can also be determined graphically.
The lines of action b and d are known (see Figure 5.44a). Line of action e of
the hinge force at E must pass through the intersection of b and d (moment
equilibrium of a body subjected to three forces). In a force polygon, one
can now determine the forces at D and E that ensure equilibrium with the
support reaction at B (see Figure 5.44b).

Check: The left-hand rafter ACE must also be in equilibrium. You can see
immediately that there is force equilibrium in Figure 5.45. To check the
moment equilibrium, write down the moment equation for all the forces
about an arbitrary point.

Figure 5.43 To see how rafter AEB and bar CD exert forces on
one another, they have been isolated.
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Figure 5.46 (a) A structure loaded by a vertical force of 40 kN
on the tie rod, with (b) its support reactions. For self-contained
structures the support reactions do not change if one shifts a loading
force along its line of action; on the other hand the interaction forces
do change.

Figure 5.47 (a) The interaction forces between the isolated parts
AE, BE and CD. The interaction forces Cv and Dv are found from
the moment equilibrium of CD.

Example 3
Figure 5.46a uses the same structure as in Example 2, except that this time,
the vertical force F = 40 kN has been shifted along its line of action to a
point of application on member CD.

Questions:
a. Determine the support reactions.
b. Determine the forces acting on the isolated parts ACE, BDE, and DE.
c. Perform a graphical check of the moment equilibrium for each of the

parts.

Solution:
a. The support reactions are the same as those in example 2. They are
shown in Figure 5.46b. Note that for a self-contained structure, the support
reactions do not change if one shifts a force along its line of action. The
forces within the structure do change, however, as is shown below.

b. In Figure 5.47a, the various structural parts have been isolated, and all
the interaction forces are shown.

First look at the equilibrium of CD. From the moment equilibrium about C
follows

Dv = 10 kN.

From the moment equilibrium about D follows

Cv = 30 kN.

The horizontal force equilibrium gives

Ch = Dh.
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Figure 5.47 (b) The equilibrium of AE and BE is then used to find
the other interaction forces.

Figure 5.48 Graphical check of the moment equilibrium of AE,
CD and BE: in all the cases, the lines of action of the three (resul-
ting) forces pass through a single point.

Next look at the right-hand rafter AE (see Figure 5.47b). The moment
equilibrium about E gives

Ch = 15 kN

so that

Dh = 15 kN.

The force equilibrium gives

Eh = −15 kN,

Ev = 5 kN.

The direction of Eh was obviously assumed falsely.

In Figure 5.48, all the interaction forces are shown as they act in reality.

Check: BE must also meet the conditions of the force and moment equi-
librium. Figure 5.48 shows that the force equilibrium conditions are
satisfied. Only the moment equilibrium has to be checked.

c. If three forces act on a body, there is moment equilibrium only if the lines
of action of the forces intersect at one point. In Figure 5.48, this check for
moment equilibrium has been performed for each of the structural parts.
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Figure 5.49 (a) A beam and (b) a trussed beam.

Figure 5.50 After a dividing wall has been demolished, the bear-
ing capacity of a beam can be restored by introducing intermediate
supports.

Figure 5.51 A statically determinate trussed beam.

5.6 Trussed beams

The bearing capacity of the beam in Figure 5.49a can be increased by in-
troducing intermediate supports. These structures are referred to as trussed
beams when these intermediate supports are realised by a bar system
applied directly to the beam (see Figure 5.49b).

Trussed beams are used in simple bearing structures and for auxiliary
structures in the construction industry (formwork bearers). You may also
see them in restoration activities when, for example, after a dividing wall
has been demolished, the bearing capacity of the floor beams is no longer
adequate, as a result of the enlarged span (see Figure 5.50).

In the examples given, the trussed beams are (internally) statically in-
determinate. In the following will address only statically determinate
structures.

Example
The trussed beam ASB in Figure 5.51 consists of the two beam segments
AS and SB joined by a hinge at S. The structure is loaded by a vertical force
of 50 kN.

Questions:
a. Determine the support reactions.
b. Determine the forces in the bars (a) to (e) (with the correct sign for

tension and compression).
c. Draw the forces acting on beam segments AS and SB.
d. Draw the forces acting on joint D.

Solution:
a. The support reactions follow directly from the equilibrium of the
structure as a whole. They are shown in Figure 5.52.
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Figure 5.52 The trussed beam, isolated from its supports, has been
“cut” across hinged joint S and bar (e). It has been assumed that bar
(e) is a tension member.

Figure 5.53 The forces in the bars (a) and (c) follow from the
force equilibrium of joint C′: in bar (a) there is a tensile force and
in bar (c) there is a compressive force.

Figure 5.54 The isolated beam segments AS and SB, with all the
forces as they really act.

b. The bars (a) to (e) are loaded only at their ends. They are therefore two-
force members. Note: ACS and SDB are not two-force members!

In Figure 5.52, the isolated structure has been dissected across bar (e) and
the hinged joint at S. Suppose there is a tensile force in bar (e) of N(e).
The magnitude of N(e) follows from the moment equilibrium about S of
the left-hand or right-hand part. The simpler equation is obtained with the
unloaded right-hand part:

∑
T (SB)

z |S = (20 kN)(6 m) − N(e) × (3 m) = 0 ⇒ N(e) = 40 kN.

Bar (e) is therefore a tension member.

The moment equilibrium of the left-hand part about S can be used to check
the solution.

The forces in the bars (a) and (c) follow from the force equilibrium of joint
C′. In Figure 5.53 these forces have been determined using a force polygon.
In bar (a) there is a tensile force, while there is a compressive force in bar
(c):

N(a) = 40
√

2 kN and N(c) = −40 kN.

In the same way, the force equilibrium of joint D′ gives

N(b) = 40
√

2 kN and N(d) = −40 kN.

c. Figure 5.54 shows all the forces acting on the beam segments AS and
SB. The components of the hinge force S follow from the force equilibrium
of the part to the left or to the right of S.
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Figure 5.55 (a) Joint D isolated from the beam segments SD and
DB. Three interaction forces are acting in the rigid connections.
These can be found from the equilibrium of the separate beam seg-
ments. (b) The interaction forces as they really act. Joint D satisfies
the conditions for force and moment equilibrium.

Figure 5.56 A beam (a) suspended from and (b) leaning upon a
strengthening bar system.

d. In Figure 5.55a, joint D has been isolated from SD and DB. Three inter-
action forces are acting in the rigid connections. The forces exerted by joint
D on SD and DB can be found from the equilibrium of these parts. Equal
and opposite forces act on joint D (see Figure 5.55b).

Check: Joint D is in force equilibrium and in moment equilibrium.

5.7 Strengthened beams

The strengthened beams in Figure 5.56 are in many ways comparable to
trussed beams. An important difference is that in here the strengthening
bar system is supported outside the beam. In Figure 5.56a the beam is
suspended from the strengthening bar system, in Figure 5.56b the beam
is leaning upon it.

These structures are used in bridges. They are used also as auxiliary
structures during building activities.

The structures in Figure 5.56 are statically indeterminate to the first degree.
In the following we will address only statically determinate examples.

Example
The structure in Figure 5.57 is loaded by a vertical force of 40 kN.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars (1) to (3) and (a) to (d).
c. Draw the forces acting on the hinged joint S.

Solution (units in kN and m):
a. This compound structure has five support reactions:
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Figure 5.57 A statically determinate strengthened beam.

Figure 5.58 Assuming that a tensile force N acts in bar (2), the
force equilibrium of the hinged joints S′, C′ and D′ can be used to
express the forces in the bars (a) to (d) and (1) and (3) in terms of
N .

• two at hinged support A,
• one at roller support B,
• one at hinge A′, and
• one at hinge B′.

The three equilibrium equations for the structure as a whole are not suffi-
cient for finding the five unknown support reactions. The solutions have to
be found by means of the strengthening bar system.

Bars (1) to (3) and (a) to (d) are all two-force members. If one of the
bar forces is known, all the others follow from the force equilibrium of
the joints S′, C′ and D′. This is shown graphically in Figure 5.58 on the
assumption that there is a tensile force N in bar (2):

N(2) = N.

The force equilibrium of joint S′ then gives

N(b) = N(c) = 1
2

√
17 N.

The force equilibrium of joint C′ gives

N(1) = 3
2N and N(a) = 2

√
2 N,

while the equilibrium of joint D′ gives

N(3) = 3
2N and N(d) = 2

√
2 N.
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Figure 5.59 (a) The isolated beam ASB. (b) All the forces acting
on the beam ASB as they really act. (c) The entire structure with all
the support reactions.

In Figure 5.59a, hinged beam ASB has been isolated and all the forces
acting on it are shown. The horizontal force equilibrium of the hinged beam
as a whole then gives

Ah = 0.

The vertical support reactions Av and Bv, and the unknown force N are
calculated in the same way as for a hinged beam (see Section 5.2).

For the beam as a whole applies

∑
Tz|A = 3

2N × 4 + N × 8 + 3
2N × 12 + Bv × 16 − 40 × 6

= 32N + 16Bv − 240 = 0.

(a)

For the right-hand section SB

∑
Tz|S = 4 × 3

2N + 8 × Bv = 0. (b)

These two equations with N and Bv as unknowns give

N = 12 kN and Bv = −9 kN.

The vertical support reaction at B therefore acts opposite to the direction
assumed in Figure 5.59a.

The vertical support reaction at A follows from the vertical force equilib-
rium of beam ASB as a whole:

∑
Fy = Av + 3

2N + N + 3
2N + Bv − 40 = 0
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Figure 5.60 (a) The hinged joint S isolated from the beam seg-
ments AS and SB. The interaction forces can be found from the
equilibrium of the segments AS and SB. (b) All the forces as they
really act. Joint S is in equilibrium.

so that

Av = −4N − Bv + 40 = −4 × 12 − (−9) + 40 = 1 kN.

Figure 5.59b shows all the forces on beam ASB as they really act.

b. The forces in the bars (1) to (3) and (a) to (d) were previously expressed
in terms of N (see Figure 5.58). With N = 12 kN the result is

N(1) = N(3) = 3
2N = 18 kN,

N(2) = N = 12 kN,

N(a) = N(d) = 2
√

2 N = 24
√

2 kN,

N(b) = N(c) = 1
2

√
17 N = 6

√
17 kN.

All bar forces are tensile forces.

Figure 5.59c gives the entire structure with all the support reactions.

Check: The structure as a whole satisfies the conditions of the force and
moment equilibrium.

c. In Figure 5.60a, the beam segments AS and BS and the hinged joint
S have been isolated. The values of all the known forces are shown. The
forces acting on joint S are found via the equilibrium of the segments AS
and SB. They are shown in Figure 5.60b.

Check: Joint S is in equilibrium.
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5.8 Problems

Self-contained structures (Section 5.1)

5.1: 1–4 A block is supported on a roller at A and a hinge at B. The block
is loaded by a force F = 20

√
2 kN. Length scale: 1 square ≡ 1 m.

Question:
Determine the support
reactions at A and B:
a. analytically;
b. graphically.

5.2: 1–6 Given a number of fixed structures.

Questions:
a. In which directions would you expect the support reactions at A to act?
b. Determine the support reactions at A, working with the directions

assumed in (a).
c. For which support reactions did you assume the wrong direction?
d. Draw all the support reactions as they act in reality.

5.3: 1–10 A number of beams are supported on a hinge and a roller. The
dimensions are given in m, the forces are in kN.

Questions:
a. Determine the support reactions analytically.
b. Check the answers graphically (if possible).
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5.4: 1–5 A block is supported on a roller at A and a hinge at B. A number
of forces act on the block. In case 2, a couple T = 36 kNm also acts on the
block. Force scale: 1 square ≡ 1 kN; length scale: 1 square ≡ 1 m.

Question: Determine the support reactions at A and B.

5.5 A roof structure is loaded by
wind forces:

F1 = 5.6 kN,

F2 = 2.8 kN.

Question:
Determine the support reactions at
A and B.

5.6 A truss arch is loaded by wind forces: F1 = F2 = 750
√

2 kN,

F3 = F4 = 500
√

5 kN.

Question:
Determine the support reactions at A and B.

5.7: 1–8 The simply supported beam AB is loaded in various ways by
couples. The magnitude of the couples is shown in kNm. Length scale:
1 square ≡ 1 m.

Question:
Find the support reactions at A and B.
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5.8: 1–8 A number of beams simply supported at A and B are composed
of the segments AC and BC that are rigidly connected at C. The location of
joint C is shown in the figure by means of a vertical dash. The forces are
given in kN, the lengths in m.

Questions:
a. Determine the support reactions.
b. Determine the interaction forces at C; draw these forces as they act at

C on segments AC and BC.
c. Draw the forces as they really act on joint C.

5.9: 1–6 A number of cantilever beams, simply supported at A and B, are
composed of two segments that are rigidly connected at C. The location of
joint C is shown in the figure by means of a vertical dash. The forces are
given in kN, the lengths are in m.

Questions:
a. Determine the support reactions.
b. Determine the interaction forces at C; draw these forces as they act at

C on the segments AC and BC.
c. Draw the forces as they really act on joint C.

5.10 Question:
Determine the support reactions at
A and B.
a. graphically;
b. analytically.



5 Calculating Support Reactions and Interaction Forces 193

5.11 Questions:
For porch ACD determine
the support reactions at A
and B due to:
a. only F1;
b. only F2;
c. both F1 and F2.

5.12: 1–2 You are given a retaining wall on piles. Assume the piles are
only transferring forces in their longitudinal direction. The resultant of all
the loads that the piles have to bear is a force of 40

√
2 kN. The direction

and line of action are given in the figure. Length scale: 2 squares ≡ 1 m.

Question:
Find the pile forces with the correct signs for tension and compression (a
tensile force is positive and a compression force is negative).

5.13: 1–4

Questions:
a. Make a realistic assumption about the directions of the support reac-

tions at A, B and C.
b. Determine these support reactions.
c. Draw the support reactions as they really act and include relevant

values.
d. If possible, check the calculated support reactions graphically.
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5.14: 1–12 A beam, loaded by a force F = 30 kN, is supported by the
three bars a, b and c. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A, B and C.
b. Determine the forces in the beams, with the correct sign.
c. Isolate the beam, draw all the forces as they really act on it, and check

the equilibrium.

5.15: 1–10 A beam is supported by the bars a, b and c. The load of the
beam is expressed in the force F = 30 kN. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A, B and C.
b. Determine the forces in the bars, with the correct sign.
c. Isolate the beam, draw all the forces as they really act on it, and check

the equilibrium.
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Hinged beams (Section 5.2)

5.16: 1–16 The dimensions of the hinged beams are given in m, the forces
are in kN.

Questions:
a. Determine the support reactions.
b. Isolate all the beam segments and draw the forces as they really act on

these segments.
c. Check the force and moment equilibrium of the structure as a whole.

Three-hinged frames (Section 5.3)

5.17 Three-hinged arch ACB is loaded by a force F = 40 kN.

Questions:
Determine the support reactions at A and B:
a. graphically;
b. analytically.
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5.18: 1–9 The figure shows a number of three-hinged frames with loads
expressed in kN. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Isolate both frame halves and draw all the forces as they really act on

them.

5.19: 1–11 The figure shows a number of three-hinged frames with the
loading expressed in kN. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Graphically check the support reactions (if possible).
c. Isolate both frame halves and draw all the forces as they really act on

them.
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Three-hinged frames with tie rods (Section 5.4)

5.20 The structural parts AB, AS and BS are connected by hinges at A, B
and S. The load is in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Determine the force in rod AB, with the correct sign.
c. Determine the forces acting on the isolated parts AB, AS and BS.
d. Determine the forces acting on the isolated joints A, B, and S.

5.21: 1–4 The structural parts AB, AS and BS are connected by hinges at
A, B and S. The load is given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Determine the forces in rod AB, with the correct sign.
c. Determine the forces acting on the isolated parts AB, AS and BS.
d. Determine the forces acting on the isolated joints A, B and S.
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5.22: 1–12 The structural parts AB, AS and BS are connected by hinges
at A, B and S. The load is given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Determine the forces in rod AB, with the correct sign.
c. Determine the forces acting on the isolated parts AB, AS and BS.
d. Determine the forces acting on the isolated joints A, B and S.

Shored structures (Section 5.5)

5.23: 1–3 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Determine the force in the shoring bar, with the correct sign.
c. Determine the forces acting on the isolated joints B and C.

5.24: 1–3 The load is given in kN; length scale: 1 square ≡ 1 m.
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Questions:
a. Determine the support reactions at A and B.
b. Determine the force in bar BD, with the correct sign.
c. Isolate all bars and draw all the forces really acting on them.

Trussed beams (Section 5.6)

5.25: 1–5 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars a to e, with the correct sign.
c. Isolate the beam sections AS and BS and draw all the forces acting on

them.
d. Isolate joint B, draw all the forces really acting on it, and check the

force equilibrium using a force polygon.

5.26: 1–3 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars a to e, with the correct signs.
c. Isolate beam segments AS and BS and draw all the forces really acting

on them.
d. Isolate joint B, draw all the forces really acting on it, and check the

force equilibrium using a force polygon.
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5.27: 1–4 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars a to c, with the correct signs.
c. Isolate beam segments AS and BS and draw all the forces really acting

on it.
d. Isolate joint A, draw all the forces really acting on it, and check the

force equilibrium using a force polygon.

5.28: 1–2 Trussed beam ASB is loaded by a vertical force F = 48 kN.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars a to e, with the correct signs.
c. Isolate beam segments AS and BS, and draw all the forces really acting

on them.

Strengthened beams (Section 5.7)

5.29: 1–4 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars a to c, with the correct signs.
c. Isolate beam BC, draw all the forces really acting on it, and check the

force and moment equilibrium.
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5.30 The queen post truss is loaded at stay d by a vertical force of 60 kN.

Questions:
a. Determine the forces in bars a to e, with the correct signs.
b. Isolate beam segments AS and BS and draw all the forces really acting

on them.
c. Determine the support reactions at A and B.

5.31: 1–4 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the forces in bars a to d and a′ to c′, with the correct signs.
b. Isolate beam segments AS and BS and draw all the forces really acting

on them.
c. Determine the support reactions at A, B, C and D.



202 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Various compound structures

5.32: 1–3 The forces are given in kN. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Isolate all the structural members at the supports and hinged joints, and

draw all the forces really acting on them.

5.33: 1–6 The forces are given in kN. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Isolate all the structural members at the supports and hinged joints, and

draw all the forces really acting on them.

5.34 Given a frame with the loads in kN. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A and B.
b. Isolate all the structural members at the supports and hinged joints, and

draw all the forces really acting on them.
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5.35: 1–6 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars a to e, with the correct signs.
c. Determine the interaction forces at S, as they act on AS and BS.

5.36: 1–4 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Graphically check the support reactions.

c. Determine the force in shoring bar a, with the correct sign.
d. Determine the hinge forces at S, as they act on CS and BS.

5.37: 1–4 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Determine the force in bars 1 and 2, with the correct signs.
c. Isolate the circled joint and draw all the forces acting on it.


