
3Statics of a Rigid Body

So far, we have discussed the behaviour of a particle with negligibly small
dimensions, for which one can assume that all forces act on the particle at
the same point. In this chapter, we will show that for the equilibrium of a
rigid body with certain dimensions, the point of application (or actually the
lines of action) of the various forces are of critical importance.

The equilibrium of a particle demands that the resultant of all forces be
zero. This condition is also necessary for a body, but is not sufficient. Forces
on a body can together form a couple that will try to turn it. In this chapter,
we will define the moment of a couple as well as the moment of a force.
Equilibrium demands that a body does not rotate. In addition to the force
equilibrium of a body, if it is to be in equilibrium, it must also be in moment
equilibrium.

In the first instance, in order to keep the discussion simple, we will look
only at coplanar forces. Section 3.1 addresses compounding and resolving
forces and moments, while Section 3.2 looks at the equilibrium of a body
in a plane.

When considering equilibrium, we can consider forces as sliding vectors.
In the spatial discussion in Section 3.3, we will talk about the fact that
moments of a force and of a couple are vectors. The chapter ends with
Section 3.4, in which we look at equilibrium equations for a body in space.
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Figure 3.1 An element from the so-called “nabla beam” over the
Haringvliet sluices, part of the Delta works in the Netherlands.

The discussions relate to rigid bodies. In reality, there are no rigid bodies,
as all solids are deformable. Most construction material deforms so little,
however, that for equilibrium of a body, it can often be considered as non-
deformable.1

3.1 Coplanar forces and moments

3.1.1 Motion of a rigid body

If several forces act on a body with particular dimensions, they can have
various points of application. For the motion (the equilibrium) of a body,
it is certainly important where the forces act. For example, with a billiard
ball, it makes a difference whether one strikes the ball on the left or on
the right. And if you want to lift the construction element in Figure 3.1, it
makes a great difference whether you lift it from one of the upper corners
or from the middle. Only in the latter case, on the basis of symmetry, can
you expect the construction element not to rotate.

The movement of a rigid body differs from that of a particle in the sense
that we also have to take the rotation of the body into consideration.

If we investigate the free motion of a rigid body, under the action of forces
with zero resultant, there is a particular point that moves with uniform speed
in a straight line (or is and stays at rest). This point about which the body

1 There are exceptions. For example, a stability investigation – an investigation
into the reliability of the equilibrium – investigates how the distribution of forces
changes as a result of deformation of the structure. In such cases, one has to
relate the equilibrium to the deformed geometry, however small the deformations
might be, and the structure may no longer be considered rigid. This topic falls
outside the scope of this book.
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Figure 3.2 Equilibrium or motion of a body subject to forces:
(a) equilibrium, (b) translation, (c) rotation about MC; (d) rotation
and translation.

can perform further rotations is called the mass centre, MC.1

Without addressing the theory, we will cover four examples of how a rigid
body, which originally is at rest, starts to move if it is subject to forces. In
order to keep the discussion simple, we will confine our attention to cases
in which all the forces are coplanar.

1. The body is subject to two equal and opposite forces with the same line
of action, see Figure 3.2a. The state of movement does not change: if
the body is at rest it remains at rest. The two forces are in equilibrium.
The equilibrium is not influenced by the location of the points of
application of the forces on their common line of action. The forces
can be moved along their lines of action without any effect on the
motion.

2. The body is subject to a force of which the line of action passes
through the mass centre MC (see Figure 3.2b).
The mass centre MC will move in a straight line as if it were a particle
in which the entire mass is concentrated. No rotation occurs: the body
performs a translation. The effect of the force does not change when
the point of application is chosen elsewhere on the line of action of the
force.

3. The body is subject to two equal and opposite forces with parallel lines
of action (see Figure 3.2c).
The mass centre MC remains at rest, but the body starts to rotate about
an axis through MC perpendicular to the plane in which the forces are
applied. For the progression of the movement, it now matters whether
the forces maintain their direction, or turn with the body.

1 Since in a homogenous gravitational field the centre of gravity and mass centre
of a body are the same, both names are often used interchangeably.



54

Figure 3.3 Forces that maintain their direction during rotation are
fixed vectors: the final position depends on the location of the points
of application.

If the forces turn with the body, it does not matter where they are exerted
on their lines of action and they can be moved along their lines of action.
If the forces maintain their direction, such as forces resultant from the
gravitational field, they cannot be moved along their lines of action.

In Figure 3.3 this is illustrated by a plate subject to a pair of forces. One
of the forces acts on the middle of the plate, the other on a point on the
edge. Under the influence of these forces, the plate will move to a state
of equilibrium, in which the lines of action coincide. The final position
depends on where the forces are applied.

If one limits oneself to the so-called instantaneous movement of the body,
or in other words the movement immediately after the application of the
forces when the rotations are still very small, then the difference noted
disappears, and the forces may be moved along their lines of action. The
difference also disappears if one investigates the equilibrium of a body at
rest, a situation without rotation.

Conclusion: For the equilibrium (or instantaneous movement) of a rigid
body, it does not matter at which point of its line of action a force is applied.
The force on a rigid body can therefore be seen as a sliding vector. Although
physically impossible, one can therefore also allow a force to “apply itself”
to a point outside the body.

Note: In investigating the deformation or phenomena inside a body, one
cannot move a force along its line of action, and the force must be
considered as a fixed vector.

Figure 3.2 Equilibrium or motion of a body subject to forces:
(c) rotation about MC; (d) rotation and translation.

4. A force acts on a body, and the line of action does not pass through the
mass centre MC (see Figure 3.2d).
The mass centre will start to move as if the force were applied directly
to MC, and the body will also rotate about MC. The body experiences
both a translation and a rotation.
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Figure 3.4 When considering equilibrium, one can shift forces
along their lines of action. This is not permitted for considerations
of what happens “internally”.

Figure 3.5 Compounding two forces using the parallelogram rule.

Figure 3.6 Compounding two forces using (a) line of action figure
and (b) force polygon.

In the bar in Figure 3.4, one can clearly see what happens if one changes
the points of application of the two equal and opposite forces F1 = F

and F2 = F , with a common line of action. As far as the equilibrium is
concerned, it is irrelevant where F1 and F2 are applied, while it certainly
makes a difference to what happens “internally” and for the deformation of
the bar: the upper bar is loaded by a tensile force and will lengthen, while
the lower bar is loaded by compression, and will shorten.

3.1.2 Graphical composition of non-parallel forces

In the previous section it was stated that when considering the (instanta-
neous) movement and equilibrium of a rigid body, one can shift the forces
along their lines of action. This means that it is possible to determine the
resultant R of the two forces F1 and F2 in Figure 3.5 graphically by shifting
them both to the intersection of their lines of action, and then applying the
parallelogram rule. The resultant R is an imaginary force that with respect
to the equilibrium of the body has the same effect as the two forces F1 and
F2 together. We say that R is statically equivalent to F1 and F2.

Besides the magnitude and direction of the resultant, we also find the
location of its line of action �. It is pointless talking about the point of
application, only its line of action is fixed.

The magnitude and direction of the resultant can also be determined in a
force polygon (see Figure 3.6). The line of action is determined by realis-
ing that it has to pass through the intersection of the lines of action of the
forces to be compounded. Note that here the line of action of the resultant
is entirely outside the body!

If several forces have to be compounded together, this can be done in phases
by first determining the resultant of two forces, then compounding it with
the third force, and so forth. This procedure is shown in Figure 3.7a.
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Figure 3.7 Compounding several forces using (a) a line of action
figure and (b) force polygon.

Figure 3.8 Compounding two parallel forces F1 and F2 graphi-
cally by adding the equilibrium system P1 = P and P2 = P . Here
we use for the forces the visual notation.

The magnitude and direction of the resultant can also be found quickly
using a force polygon, as in Figure 3.7b. The force polygon does not provide
information about the location of the line of action, however. To find the line
of action, one would have to revert to Figure 3.7a. This figure is referred to
as the line of action figure.

For more than two forces, using the line of action figure becomes laborious,
and the analytical approach is clearly preferable (see Section 3.1.7). To
determine the magnitude and direction of the resultant, the force polygon
can still be useful.

3.1.3 Graphical composition of parallel forces

If the forces F1 and F2 are almost parallel, or parallel, one can determine the
magnitude and direction of the resultant R graphically in a force polygon,
although the graphical construction of its line of action (the line of action
figure) becomes difficult as the intersection of the lines of action is far away
or even at infinity.

In Figure 3.8, F1 and F2 are two parallel forces. The body on which the
forces act is not shown. A graphical construction of the line of action is
possible by having two equal yet opposite forces P1 = P and P2 = P apply
to point A on the line of action of F1, and to point B on the line of action
of F2, with AB as their common line of action. The magnitude of P can be
chosen arbitrarily.

Since P1 and P2 together form an equilibrium system, the combined effect
of the forces F1, F2, P1 and P2 is equal to that of only F1 and F2.

If R1 is the resultant of F1 and P1, and R2 is the resultant of F2 and P2,
then the line of action of the resultant of all the forces, that is the resultant
R of F1 and F2, passes through the intersection of the lines of action of R1
and R2.

From the graphical construction, one can see that the line of action of the
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Figure 3.9 The resultant R of two parallel forces F1 and F2, in
(a) the same and (b) opposite directions.

Figure 3.10 The pair of forces F forms a couple. a is the couple
arm. The product Fa is the moment of the couple.

resultant R of two parallel forces F1 and F2, acting in the same direction, is
between their lines of action, nearer the larger force, and such that the dis-
tances a and b to the lines of action of F1 and F2 respectively are reversed
proportionally to the magnitudes of these forces (see Figure 3.9a):

a

b
= F2

F1
.

If the two parallel forces F1 and F2 have opposite directions, then the re-
sultant R has the same direction as the larger of the two forces, and the
line of action of R is outside the lines of action of F1 and F2 on the side
of the larger force. Now too, the distances a and b from the line of action
of R to the lines of action of F1 and F2 are reversed proportionally to the
magnitude of these forces (see Figure 3.9b).

In conclusion, for the resultant R of two parallel forces F1 and F2:
• R is in the direction of the larger force;
• the line of action of R is closer to the larger force;
• R is between F1 and F2 if these forces are in the same direction;
• R is outside F1 and F2 if these forces have opposite directions.

3.1.4 Moment of a couple

Figure 3.10 shows the special case of two equal and opposite parallel forces
F1 = F and F2 = F . If we want to graphically compound these forces in
the way described above, using two equal and opposite additional forces
P1 = P and P2 = P , with the common line of action AB, we again find
two equal and opposite parallel forces R1 and R2 (see Figure 3.11).

It is impossible to compound the pair of forces F into a single force. We
call such a pair of forces a couple. The product of the magnitude of F of the
forces and the distance a between the lines of action is called the moment
of the couple. As symbol for this quantity we use the letter T :

T = Fa.
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Figure 3.11 The result of a couple does not change if one replaces
it by another couple with the same moment and the same direction
of rotation: Fa = Rb.

a is referred to as the couple arm and is always measured perpendicularly
to the lines of action.

The two forces R1 = R and R2 = R also form a couple. Here the moment
of the couple is

T = Rb,

b is the couple arm.

Since P1 = P and P2 = P form an equilibrium system, the effect of the
couple caused by the forces R with arm b is equal (statically equivalent) to
the effect of the couple formed by the forces F with arm a. The moment of
the couple is therefore the same for both:

T = Fa = Rb.

This can also be derived from line of action figure in Figure 3.11.

Consider triangle ABC; its area is

area ABC = 1
2a · AC = 1

2b · BC,

so that

a

b
= BC

AC
.

Triangle ABC, from the line of action figure, is geometrically similar to
force triangle A′B′C′, so that the corresponding sides are proportional:

BC

AC
= B′C′

A′C′ = R

F
.
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Figure 3.12 Three times the same couple: (a) Tz = −12 kNm,
(b) Ty = +12 kNm, (c) the couple using visual notation.

On combining these two equations we deduce that

a

b
= R

F
,

which is equivalent to

Fa = Rb.

Conclusion: The effect of a couple on the equilibrium of a body does not
change if you replace it by another couple with the same moment and the
same direction of rotation.

The magnitude of the moment of a couple determines the state of rotation
of the body. In addition to a magnitude, the moment also has a direction of
rotation. The sign for the direction of rotation is linked to the coordinate
system, see the sign convention in Section 1.3.2.

In the xy coordinate system shown, the moment of the couple in Fig-
ure 3.12a is

Tz = −Fa = −12 kNm.

The letter T is given the index z, which indicates the normal of the plane in
which the couple acts.

In Figure 3.12b the moment of the same couple is in another coordinate
system:

Ty = +Fa = +12 kNm.

In Figure 3.12c, the couple is represented by a curved arrow. In this visual
notation the arrow indicates the direction of rotation of the moment and
includes a value. The same conventions apply as for the visual notation of
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a force (see Section 1.3.6).

Couples can be compounded in many different ways. In Figure 3.13, the
couples operating in the xy plane, T1, T2 and T3, have been compounded
by replacing them by equal couples of which the forces have common lines
of action. If T1 = 12 kNm, T2 = 6 kNm and T3 = 10 kNm, and the distance
a between the lines of action is 4 m, then, in the coordinate system shown,

Tz;1 = +T1 = +12 kNm = F1a ⇒ F1 = Tz;1/a = +3 kN,

Tz;2 = +T2 = +6 kNm = F2a ⇒ F2 = Tz;2/a = +1.5 kN,

Tz;3 = −T3 = −10 kNm = F3a ⇒ F3 = Tz;3/a = −2.5 kN.

Note: The force F3 has the value 2.5 kN and acts opposite to the direction
shown in Figure 3.13.

The moment of the resultant couple is

Tz = Ra = (F1 + F2 + F3) · a =
3∑

i=1
Tz;i = 8 kNm.

If all the couples are exerted in the same plane, the moment of the resultant
couple is found by compounding the couple moments simply by adding
them together.

The example shows that the couples form an equilibrium system if the sum
of their moments is zero (because R = 0).

3.1.5 The moment of a force about a point

The moment of a force about a point A is defined as the product of magni-
tude F of the force and the perpendicular distance a from point A to the line
of action of the force. The sign of the moment is plus or minus, depending

Figure 3.13 The moment of the resultant couple is found by
adding the moments of the couples to be compounded (algebra-
ically).
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Figure 3.14 The moment of a force with respect to a point
is defined as the product of the magnitude of the force and the
perpendicular distance to its line of action.

Figure 3.15 The moment of the force F about point A is equal
to the moment of the couple that one has to add to the force if one
shifts it parallel to its line of action through A.

on whether the force F turns the body in the positive or negative direction
of rotation about A.

For Figure 3.14, the moment of force F with respect to A is seen as positive
as F causes a rotation about A in the positive direction of rotation in the xy

plane:

Tz|A = +Fa = +(10 kN)(4 m) = +40 kNm.

The same force F causes the body to rotate about B in the negative direction
of rotation. The moment of F about B is therefore negative:

Tz|B = −Fb = −(10 kN)(5 m) = −50 kNm.

The moment of the force F about a point C located on its line of action, is
zero:

Tz|C = 0.

For a force, in contrast to a couple, one has to specify the point about which
the moment is being calculated. Here, this is done by including the point in
question, after a vertical line, in the expression for the moment.

Figure 3.15 shows a single force F acting at point B. Now introduce two
equal and opposite forces F1 = F and F2 = F acting at point A. Since
F1 and F2 together form an equilibrium system, the single force F at B is
statically equivalent to the three forces F at B and F1 and F2 at A. F at
B and F2 = F at A together form a couple with moment Fa. The force
F = 7 kN at B is therefore statically equivalent with a force F = 7 kN at
B and a couple with moment Fa = 21 kNm.

Conclusion: The moment of a force F about a point A is equal to the mo-
ment of the couple one has to add when moving the force parallel to its a
line of action to A.
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Figure 3.16 The moment of the force F about point A is
equal to the sum of the moments about A of its components:
Tz|A = Fa = Fyrx − Fxry .

Figure 3.17 The moment of a force does not change if the force
is shifted along its line of action: Tz|A = Fa = Fyp = Fxq.

The moment of a force F in the xy plane about a point A in the same plane
can be calculated in a variety of ways (see Figure 3.16). The components
of F are

Fx = F cos α,

Fy = F sin α.

If the force is applied in a point B, then

rx = xB − xA,

ry = yB − yA.

From the figure one can derive

a = rx sin α − ry cos α.

For the moment of F about A applies

Tz|A = Fa = F(rx sin α − ry cos α) = Fyrx − Fxry.

Fyrx is the moment of the component Fy about A, and −Fxry is the
moment of the component Fx about A. This shows that the moment of a
force F about a point A is equal to the sum of the moments about A of its
components.

Since the moment of a force does not change if the force is moved along its
line of action, it is sometimes useful to shift the force to point C or D (see
Figure 3.17). In this case, the moment of F about A is

Tz|A = Fa = Fyp = Fxq.
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Figure 3.18 The moment about A of the force at B can be calcu-
lated in various ways.

Figure 3.19 The sum of the moments of F1 and F2 about an
arbitrary point A is equal to the moment of the resultant R about
that point A. This is known as Varignon’s First Theorem.

Example
The moment about A of the force at B in Figure 3.18 can now be calculated
as follows:
• Force multiplied by the distance to its line of action:

Tz|A = −(2
√

5 kN)(2
√

5 m) = −20 kNm.

• Force in B resolved into its components:

Tz|A = −(4 kNm)(3 m) − (2 kNm)(4 m) = −20 kNm.

• Force shifted to C:

Tz|A = −(2 kN)(10 m) = −20 kNm.

• Force shifted to D:

Tz|A = −(4 kN)(5 m) = −20 kNm.

3.1.6 Moment theorems

In Figure 3.19, R is the resultant of the forces F1 and F2:

Rx = Fx;1 + Fx;2,

Ry = Fy;1 + Fy;2.

In order to be able to determine the moment of F1 and F2 about an arbitrary
point A, both forces are shifted to the intersection of their lines of action.
In the previous section, it was shown that the moment of a force about an
arbitrary point is equal to the sum of the moments of its components about
that point. Therefore, for the moment of F1 and F2 about A it is true that:∑

Tz|A = (Tz|A due to F1) + (Tz|A due to F2)

= (Fy;1rx − Fx;1ry) + (Fy;2rx − Fx;2ry)

= (Fy;1 + Fy;2)rx − (Fx;1 + Fx;2)ry
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Figure 3.20 A body loaded by couples Tz;i and forces Fi , with
components Fx;i and Fy;i , at points i (i = 1, 2, 3, . . . ).

= Ryrx − Rxry

= Tz|A due to R.

Conclusion: If two forces F1 and F2 have a resultant R, the sum of the
moments of F1 and F2 about an arbitrary point A is equal to the moment of
the resultant R about that point A. This is called Varignon’s First Moment
Theorem.1 The theorem also applies if F1 and F2 have parallel lines of
action.

If the two forces F1 and F2 together form a couple, the sum of the moments
of F1 and F2 is independent of the point with respect to which the moment
is determined. This sum of moments is equal to the moment of the couple.
This is known as the Varignon’s Second Moment Theorem.

Varignon’s momentary theorems can be applied repeatedly if several forces
act in the same plane. This results in the following General Moment Theo-
rem:
The sum of the moments of a number of forces distributed in a plane, about
an arbitrary point A in that plane, is either equal to the moment of the
resultant force about that point or equal to the moment of the resultant
couple.

3.1.7 Compounding forces and moments analytically

Compounding coplanar forces and couples analytically is now relatively
simple. Each of the forces Fi (i = 1, 2, . . .) can be resolved into the com-
ponents Fx;i and Fy;i , and for each of these forces, we can now determine
the moment about an arbitrary point A. In fact, this means that all the forces
are shifted to point A with addition of a couple (see Section 3.1.5). If we
place the origin O of the coordinate system at A, and xi and yi are the

1 Pujol Varignon (1654–1722) was a French mathematician.

Figure 3.19 The sum of the moments of F1 and F2 about an
arbitrary point A is equal to the moment of the resultant R about
that point A. This is known as Varignon’s First Theorem.

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM
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Figure 3.21 (a) The resultant force R at O and the associated
couple

∑
Tz|O are statically equivalent to (b) a force R at a distance

a = (
∑

Tz|O)/R from O.

coordinates of the point of application of force Fi (or of another point on
the line of action of Fi ), then (see Figure 3.20)

Rx = ∑
Fx;i = ∑

Fi cos αi,

Ry = ∑
Fy;i = ∑

Fi sin αi,∑
Tz|O = ∑ {(Fy;ixi − Fx;iyi) + Tz;i}.

The sum of the moments also includes the moments of the (concentrated)
couples Tz;i that may be applied on the body.

For the (instantaneous) movement or the equilibrium of a rigid body, one
may replace the force system by a single resultant force R at O together
with a couple

∑
Tz|O (see Figure 3.21a).

The resultant force R at O can be compounded with the couple
∑

Tz|O
into a single force R by shifting it parallel to itself to a line of action at a
perpendicular distance a from O (see Figure 3.21b):

a =
∑

Tz|O
R

.

The line of action of R can also be found as follows. Imagine that (x, y) is
an arbitrary point on the line of action of R (see Figure 3.21b). According
to the moment theorem,

∑
Tz|O = Ryx − Rxy.

The values for
∑

Tz|O, Rx and Ry are known, while those of x and y are
unknown. This expression therefore also provides the equation for the line
of action of R. The line of action of R intersects the x axis at
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x =
∑

Tz|O
Ry

; y = 0,

and the y axis at

x = 0; y = −
∑

Tz|O
Rx

.

A special case is when R = 0 and
∑

Tz|O �= 0. In this case, there is no
resultant force, while there is a resultant couple. When also

∑
Tz|O = 0,

then there is equally no resultant couple and the forces together form an
equilibrium system.

To summarise, with respect to the resultant of a system of forces and
couples, one can distinguish the following cases:

• R �= 0 and
∑

Tz|O �= 0
There is a resultant force, and the line of action does not pass through O.

• R �= 0 and
∑

Tz|O = 0
There is a resultant force of which the line of action passes through O.

• R = 0 and
∑

Tz|O �= 0
There is no resultant force, but there is a resultant couple.

• R = 0 and
∑

Tz|O = 0
The forces and couples together form an equilibrium system.

Example
Three forces and a couple are exerted on the triangular block in Fig-
ure 3.22a. The magnitude and the direction of the forces can be found in
the diagram, as can the direction of couple T . The magnitude of the couple
is 30 kNm.

Figure 3.21 (a) The resultant force R at O and the associated
couple

∑
Tz|O are statically equivalent to (b) a force R at a distance

a = (
∑

Tz|O)/R from O.
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Figure 3.22 (a) A triangular block subject to three forces and a
couple; (b) the resultant force R on the block, determined using a
force polygon.

Question:
Determine the magnitude, direction, and line of action of the resultant force
on the block.

Solution:
For convenience sake, the units (kN and/or m) are not always shown in the
interim calculations. For the components of the resultant force R applies

Rx =
3∑

i=1
Fx;i = −10 + 30 + 0 = +20 kN,

Ry =
3∑

i=1
Fy;i = 0 + 20 − 40 = −20 kN

so that

R =
√

R2
x + R2

y =
√

202 + (−20)2 = 20
√

2 kN.

The magnitude and direction of R and of its components can of course also
be determined graphically by using a force polygon (see Figure 3.22b).

The moment about O of the three forces and the couple is

∑
Tz|O = +10 × 6 (for F1)

+(20 × 6 − 30 × 3) (for F2, resolved into its components)

−40 × 4 (for F3)

+30 (for T )

= −40 kNm.
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Figure 3.23 The resultant force R at a point (x, y) of its line of
action: (a) in its components Rx and Ry and (b) in components as
they act in reality.

Figure 3.24 The resultant R and its line of action.

The resultant R must have the same moment about O as the three forces
and the couple. Imagine (x, y) is a point on the line of action of R, with
components Rx and Ry (see Figure 3.23a). Then

∑
Tz|O = −40 kNm = Ryx − Rxy.

With Rx = +20 kN and Ry = −20 kN, this gives the following equation
for the line of action of the resultant R:

−40 kNm = (−20 kN)x − (+20 kN)y ⇒ x + y = 2 m.

Of course it is also possible to depict Rx and Ry as in Figure 3.23b, accord-
ing to the actual magnitude and direction. This figure immediately gives the
expression shown above fore the line of action of R. Figure 3.24 shows the
resultant R with its line of action.

Note: If one performs the calculation using a picture, all the unknown
quantities that are related to the coordinate system in that picture have to
be shown positively. In Figure 3.23a that would be x, y, Rx and Ry , in
Figure 3.23b this only relates to x and y.

3.1.8 Resolving a force along given lines of action graphically

A force F , with given magnitude, direction, and line of action, can be re-
solved along three given lines of action a, b and c, which do not intersect in
one point, into the forces Fa, Fb and Fc (see Figure 3.25a).

Here

�F = �Fa + �Fb + �Fc,
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Figure 3.25 Resolving the force F graphically along three given
lines of action; (a) line of action figure and (b) force polygon.

Figure 3.26 Resolving the force F graphically along three given
lines of action; (a) line of action figure and (b) force polygon.

( �F − �Fa) = ( �Fb + �Fc).

( �F − �Fa) and ( �Fb + �Fc) are equal and therefore have the same line of action.
The line of action of ( �F − �Fa) passes through the intersection A of the lines
of action of �F and �Fa. The line of action of ( �Fb + �Fc) passes through the
intersection Sab of the lines of action b and c. Therefore, ASbc is the line of
action of both ( �F − �Fa) and ( �Fb + �Fc). �F at A can now be resolved into �Fa
with line of action a and ( �Fb + �Fc) with line of action ASbc. Subsequently
( �Fb + �Fc) at Sbc can be resolved into �Fb and �Fc. This is shown graphically
in Figure 3.25b in a single force polygon.

The order in which �F is resolved is irrelevant. In Figure 3.26 �F is first
resolved at B into �Fb and ( �Fa + �Fc) and subsequently ( �Fa + �Fc) at Sac, the
intersection of the lines of action a and c, is resolved into �Fa and �Fc. The
force polygon now has a different shape, as the forces were resolved in a
different order, but the result is the same.

The name Culmann1 is associated with this graphical method in the
literature.

3.1.9 Resolving a force along given lines of action analytically

Resolving F into three forces Fa, Fb and Fc along given lines of action
a, b, and c, can of course also be done analytically. Of the many possible
methods, the method below is based on Varignon’s first moment theorem:

1 Karl Culmann (1821–1881), a German engineer, was involved in the design
and construction of important railway bridges and was especially known for his
graphical methods for calculating structures.

so that
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Figure 3.27 Analytically resolving force F along three given lines
of action.

the moment of F about an arbitrary point is equal to the sum of the moments
of Fa, Fb and Fc about that same point.

In Figure 3.27, the directions of the as yet unknown forces Fa, Fb, and
Fc have been assumed. In addition, a coordinate system has been assumed
in order to be able to indicate the sign of the moments (the direction of
rotation).

If the moment theorem is applied with respect to Sbc, the intersection of the
lines of action of Fb and Fc, then these forces do not contribute to the sum
of the moments, and one can determine Fa directly:

∑
Ty |Sbc = −F ·p = −Fa·ha ⇒ Fa = p

ha
F.

Note: The signs are related to the xz coordinate system shown.

By applying the moment theorem in the same way with respect to Sac and
Sab respectively, we also find Fa and Fc directly.

Since the direction of rotation of F about Sab is opposite to that of Fc about
Sab the value of Fc will be negative. This means that the force Fc works
opposite to the direction assumed in Figure 3.27.

The analytical approach can also be used for resolving a couple into three
forces along given lines of action.

Example
The block in Figure 3.28a is subject to the three forces Fa, Fb and Fc,
along given lines of action a, b and c. The resultant is the couple T with the
direction shown in the figure.

Question:
Determine the three forces if T = 80 kNm.
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Figure 3.28 Resolving a couple into three forces along given lines
of action: (a) the couple T and the lines of action a, b and c; (b) the
assumed directions of the forces Fa, Fb and Fc; (c) the forces as
they have to act on the block in reality if they are to be statically
equivalent to the couple.

Solution:
In Figure 3.28b an assumption was made with respect to the directions of
the forces. In the coordinate system given

∑
Tz|A = − 4

5Fa × (4 m) = −T = −80 kNm ⇒ Fa = +25 kN,∑
Tz|B = +Fb × (4 m) = −T = −80 kNm ⇒ Fb = −20 kN.

The minus sign in the latter answer shows that the force Fb acts in the
opposite direction to that assumed in Figure 3.28b.

From
∑

Tz|C = −80 kNm we can derive Fc directly. Finding the location
of C, the intersection of the lines of action, takes some calculation. The
force Fc is therefore easier to find since the resultant force is zero:

∑
Fx = 3

5Fa + Fc = 3
5 × (25 kN) + Fc = 0 ⇒ Fc = −15 kN.

Apparently the direction of Fc was also falsely assumed. Figure 3.28c
shows the forces as they are actually exerted on the block. It would indeed
not be difficult to determine the correct directions of the forces prior to
making the calculation.

3.2 Equilibrium of a rigid body in a plane

For the (instantaneous) motion of a rigid body, the system of forces ex-
erted on it can be replaced by a single force at an arbitrary point and
a couple. When considering the motion of the body, it is preferable to
choose the mass centre as that point, as the motion can then be split
into a translation due to the force, and a rotation due to the couple (see
Section 3.1.1).

From the above, it follows that a rigid body is in equilibrium if for all the
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forces exerted on it, the resultant force and the resultant couple are zero.
The equilibrium conditions for a rigid body, only subject to forces in the xy

plane, are:

∑
Fx = 0,∑
Fy = 0,∑
Tz = 0.

The summation symbol means that all contributions of the forces acting on
the body have to be added.

The first two equations stand for the force equilibrium in respectively the
x and y direction, and express that there is no resultant force. The third
equation stands for the moment equilibrium, and expresses that the forces
together do not form a resultant couple. Here, the moment with respect to
an arbitrary point has to be determined for all the forces, and the moments
have to be added together.

If (concentrated) couples are applied to the body, schematically represented
by curved arrows, their moments of course also have to be included in
the moment summation. The equations for the force equilibrium are not
influenced by these couples.

For particles (with negligibly small dimensions), the force equilibrium is a
necessary and sufficient condition for equilibrium. For rigid bodies (with
finite measurements) the force equilibrium is a necessary but not sufficient
condition for equilibrium; since a body can rotate, another condition is
required, namely the moment equilibrium.

3.2.1 Equilibrium equations

In a plane, the equilibrium of a body is assured if it meets two conditions
for the force equilibrium and one condition for the moment equilibrium:
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Figure 3.29 The relationships
∑

Tz|A = 0 and
∑

Tz|B = 0
imply that there is no resultant couple and that, if there is a resultant
force R, its line of action is along AB.

∑
Fx = 0,∑
Fy = 0,∑
Tz = 0.

These equilibrium equations in a plane can be replaced by three arbitrary
linear combinations, on the condition that these combinations are inde-
pendent. Three of these combinations are mentioned separately below:

1. The condition of force equilibrium in two mutually perpendicular
directions can be replaced by the condition that of all the forces, the
sum of the components in two arbitrary directions is zero.

2. The equilibrium can also be described by three moment conditions with
respect to three points A, B and C that are not in a straight line:∑

Tz|A = 0,∑
Tz|B = 0,∑
Tz|C = 0.

That these three equations are sufficient to ensure equilibrium can be
shown as follows (see Figure 3.29). Each system of coplanar forces and
couples can be replaced by either a resultant force, or a resultant couple. If∑

Tz|A = 0, there is no resultant couple. There could still be a resultant
force of which the line of action must pass through A. If

∑
Tz|B = 0, the

line of action of the resultant force must also pass through B. If C is not
located on AB (the line of action of the resultant force), and

∑
Tz|C = 0,

the resultant force can only be zero.

3. The equilibrium can also be formulated by two moment conditions with
respect to two points A and B and an equation for the force equilibrium
in a direction that is not perpendicular to AB:
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Figure 3.30 Corner joint in a frame; the three unknown section
forces M , V and N can be deduced from the equilibrium.

∑
Tz|A = 0,∑
Tz|B = 0,∑
Fx = 0 (the x direction may not be perpendicular to AB).

The relationships
∑

Tz|A = 0 and
∑

Tz|B = 0 imply that there is no resul-
tant couple and that, if there is a resultant force, its line of action coincides
with AB (see Figure 3.29). The resultant force is zero if the condition for
force equilibrium is met in the direction AB, or in another direction that is
not perpendicular to AB.

The equilibrium conditions can therefore be formulated in various ways.
For a manual calculation, one always has to look for equilibrium equations
that are as simple as possible in order to limit the amount of calculation.
When using a computer for the calculation, the systematics and the general
applicability of the set up of the calculation (the program) are more impor-
tant than the number of calculations involved and the laborious character of
the calculations.

Example
Figure 3.30 shows the corner joint of a frame. The joint is loaded at C
by a vertical force of 5 kN. So-called section forces act on the cross-
sectional planes a and b. They act in the centre lines shown. The system
is in equilibrium.

Question:
Determine the three unknown section forces M , V and N (with the correct
sign for the directions shown).1

1 M (bending moment), V (shear force) and N (normal force) are section forces.
Their nomenclature and sign conventions will be revealed in Chapter 10.

Figure 3.29 The relationships
∑

Tz|A = 0 and
∑

Tz|B = 0
imply that there is no resultant couple and that, if there is a resultant
force R, its line of action is along AB.
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Figure 3.31 The closed force polygon represents the force
equilibrium for the corner joint in the frame.

Solution:
The two unknown section forces V and N are determined using the two
equations for the force equilibrium. For the coordinate system shown,

∑
Fx = +(4 kN) − 2

5

√
5 × V + 1

5

√
5 × N = 0,∑

Fy = +(2 kN) − (5 kN) − 1
5

√
5 × V − 2

5

√
5 × N = 0.

These are two equations with two unknowns. The solution is

V = +√
5 kN and N = −2

√
5 kN.

It would also be possible to construct a closed force polygon and to derive
the forces from there. This is shown in Figure 3.31. The force of 2

√
5 kN

on the line of action of N is active in an opposite direction to that shown in
Figure 3.30. That is why there is a minus sign in the expression for N .

M is found using the equation for the moment equilibrium about an arbi-
trary point. If A is selected, the contribution of V and N to the moment is
zero, and M can be found even if V and N are still unknown:

∑
Tz|A = −M − (4 kN)(1 m) − (2 kN)(1.5 m) +

+(5 kN)(0.5 m) + (16 kNm) = 0 ⇒ M = 11.5 kNm.

If M had been calculated first, one would be able to derive V directly
afterwards from, for example, the moment equilibrium about C:

∑
Tz|C= −(11.5 kNm) − (2 kN)(1 m) − V × (1

2

√
5 m

)+ (16 kNm) = 0.

This again gives V = +√
5 kN. As such, there are several ways to derive

the unknown forces.
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Figure 3.32 A body subject to two forces at two points.

Figure 3.33 The left section of the three-hinged frame ABC, as
an example of a body subject to two forces at two points.

Figure 3.34 Two-force members are straight bars that can transfer
forces only along their so-called bar axes.

The various guises of the equilibrium equations offer an important opportu-
nity for performing control calculations. Checking results is necessary not
only for manual calculations, but also for computer calculations.

3.2.2 Particular cases of equilibrium

In the analysis of the transfer of forces in structures, certain equilibrium
systems are quite common. For a good insight into the behaviour of a
structure, it is important to be able to quickly recognise three more or less
particular cases of equilibrium. They are covered below.

1. A body subject to two forces at two points (see Figure 3.32).

A body subject to two forces can be in equilibrium only if both forces:
• have the same line of action,
• have the same magnitude, and
• have opposite directions.
If these three conditions are not all met, the two forces together form ei-
ther a resultant force or a resultant couple, and the system will not be in
equilibrium.

Figure 3.33 shows the left part AB of a so-called three-hinged frame. The
foundation exerts a force FA at A on AB, while the right part BC of the
frame exerts a force FB at B on AB. If we neglect the weight of the frame,
the part AB of the frame is in equilibrium only if both forces FA and FB
are equal and opposite, with AB as the common line of action.

Certain construction elements are intentionally designed to this type of
force transfer. These are straight bars, only subject to a force at both ends
(see Figure 3.34). Such bars, which can transfer forces only along their so-
called bar axis, are called two-force members. Depending on whether they
are loaded by tensile or compressive forces, they are also referred to as
tension members or compression members.
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Figure 3.35 (a) The truss as a structure of two-force members; (b)
the forces at the ends of compression member CD are the resultants
of several forces.

Figure 3.36 The body, subject to two forces FA and FB at A and
B, is in equilibrium if these forces are equal and opposite and have
the common line of action AB.

When analysing structures, one must be able to recognise two-force mem-
bers quickly. Structures made solely of two-force members are called
trusses. Figure 3.35 is an example of a truss. In this truss, bar CD is loaded
by compression. Calculating the forces in a truss is covered in detail in
Chapter 9. It can be noted at this stage that, in a joint, the bars that come
together exert forces on one another on the basis of the law of action and
reaction. It is therefore possible for several forces to be exerted concur-
rently on the end of a bar. For example, the two compression forces on
the ends of bar CD in Figure 3.35 are in fact the resultants of several
forces.

Example
Two forces are exerted on the body in Figure 3.36a: FA is exerted on A, FB
is exerted on B. Of FA, only the horizontal component of 28 kN is given.
The body is in equilibrium.

Question:
The magnitude and direction of FB.

Solution:
If two forces are exerted on a body, the body can only be in equilibrium
if the two forces have a common line of action, an equal magnitude and
an opposite direction. In vector notation: �FA = − �FB. From the moment
equilibrium about A, it follows that the common line of action of FA and
FB is along AB (see Figure 3.36b). In that case, the horizontal compo-
nent of FB is (4/5)FB. From the horizontal force equilibrium, it follows
that:

∑
Fx = −(28 kN) + 4

5FB = 0 ⇒ FB = 35 kN.
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Figure 3.37 A body subject to three forces at three points:
(a) moment equilibrium exists; (b) there is no moment equilibrium;
(c) the closed force polygon shows that both bodies are in force
equilibrium.

Figure 3.38 The right part of the three-hinged frame ABC as an
example of a body subject to three forces at three points: (a) moment
equilibrium exists because the lines of action pass through a single
point and (b) there is force equilibrium because the forces form a
closed force polygon.

2. A body subject to forces at three points (see Figure 3.37).

A body that is subject to three forces can be in equilibrium only if
• the three forces are coplanar,
• the forces form a closed force polygon (force equilibrium),1 and
• their lines of action pass through a single point (moment equilibrium).

The same closed force polygon (c) is applicable for both bodies (a) and
(b) in Figure 3.37: there is therefore force equilibrium in both cases. In
case (a) there is moment equilibrium. This is easily checked by determining
the moment of the three forces about the intersection of the three lines of
action: none of the forces contribute to the sum of the moments. There is
no moment equilibrium in case (b). The system of forces forms a resultant
couple. The magnitude of the couple is determined by deriving the sum of
the moments about the intersection of two lines of action.

Figure 3.38 shows the right-hand part BC of the three-hinged frame, men-
tioned earlier. This part of the frame is loaded by the vertical force F shown.
In addition, the left frame part AB is exerting a force FB at B on BC and
the foundation is exerting a force FC at C on BC. Moment equilibrium is
only possible if the lines of action of the three forces F , FB and FC pass
through a single point. The force equilibrium exists if the three forces form
a closed force polygon.

Example
The block in Figure 3.39, loaded by two forces in C, is kept in equilibrium
by the three forces Ah, Av and Bv.

Question:
Determine these three forces and check the moment equilibrium and the

1 It should be noted that three forces in space can only form a closed force polygon
if they are acting in the same plane. The first condition is therefore actually
superfluous as a result of the second.
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Figure 3.39 A block, loaded by two forces at C, is kept in
equilibrium by the three forces Ah, Av and Bv.

Figure 3.40 (a) Forces are exerted on the block at three points of
which the lines of action pass through a single point, so that there
is moment equilibrium; (b) since all the forces exerted on the block
form a closed force polygon there is also force equilibrium.

force equilibrium graphically.

Solution:
The three unknown forces are determined using the three equilibrium
equations:

∑
Fx = Ah + (4 kN) = 0,∑
Fy = Av + Bv − (6 kN) = 0,∑
Tz|A = +Bv × (6 m) − (6 kN)(8 m) − (4 kN)(3 m) = 0.

The first equation gives Ah = −4 kN, the third gives Bv = 10 kN, and the
second equation gives Av = −4 kN.

Av can also be found directly from the moment equilibrium about B:

∑
Tz|B = −Av × (6 m) − (6 kN)(2 m) − (4 kN)(3 m) = 0 ⇒ Av = −4 kN.

The fact that Ah and Av are negative means that they act in a direction
opposite to the directions given in Figure 3.39.

In Figure 3.40a, the forces are depicted as they act on the block in reality.
The block is subject to forces at three points:
• the resultant of the two forces at C, with line of action c,
• the force Bv at B, with line of action b, and
• the resultant of the forces Ah and Av at A, with line of action a.

Graphical check of the moment equilibrium (see Figure 3.40a):
For a body subject to three forces, the lines of action of the three forces
have to pass through a single point. This condition is met.

Graphical check of the force equilibrium (see Figure 3.40b):
There is force equilibrium if all the forces acting on the block form a closed
force polygon. This is the case.



80 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 3.41 A body subject to several forces. (a) All the lines
of action pass through a single point: there is moment equilibrium.
(b) All the lines of action are parallel: there is force equilibrium in
the direction perpendicular to these lines of action.

Figure 3.42 Both bodies are in force equilibrium; (a) there is
moment equilibrium; (b) there is no moment equilibrium: the forces
together form a couple (anti-clockwise) with magnitude 3Fa.

3. A body subject to several forces of which the lines of action all pass
through a single point (Figure 3.41a) or are all parallel (Figure 3.41b).

If for all the forces on a body the lines of action intersect at a single point,
the moment equilibrium of the body is assured (see Figure 3.41a). The force
equilibrium needs further investigation.

If for all the forces on a body the lines of action are parallel, the force
equilibrium is assured in the direction perpendicular to the lines of action
(see Figure 3.41b).

The force equilibrium in other directions, and the moment equilibrium
needs further investigation.

Example
In Figure 3.42, both bodies are in force equilibrium. If one investigates the
moment equilibrium by determining the sum of the moments of the forces,
for example about A, it turns out that in case (a) the system is in moment
equilibrium, while it is not in moment equilibrium in case (b). In case (a)
the forces form an equilibrium system. In case (b), the forces form a couple
acting anti-clockwise with magnitude 3Fa. Nothing can be said about the
sign associated with the direction of the couple until a coordinate system is
chosen.

3.3 Forces and moments in space

So far, we looked at the equilibrium of a body only in the simple case in
which all the forces and couples act in one plane. The moment was taken
about a point in the same plane. In this section we look at the general three
dimensional case. Here we have to define the concept of moment of forces
and couples more generally.
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Figure 3.43 The moment of the force �F about a point A is defined
as the vector product �T = �r × �F ; the moment vector �T is perpen-
dicular to the plane through �r and �F .

Figure 3.44 The direction of moment vector �T is determined by
the corkscrew rule or the right-hand rule.

3.3.1 Moment of a force about a point

Imagine a force �F in space, with point of application B (see Figure 3.43).
The moment �T of this force about point A is now defined as the vector
product (cross product) of the position vector �r , from A to B, and the force
vector �F :

�T = �r × �F .

The vector product of two vectors �r and �F is a vector with magnitude
rF sin θ and perpendicular to both �r and �F . Here r and F are the mag-
nitudes of �r and �F respectively, and θ is the smaller angle between the
vectors �r and �F when both are drawn outwards from the same point.

There are two useful rules for finding the direction of the moment vector �T .
The first is that it corresponds to the direction in which a corkscrew (with a
right-hand screw) moves when the handle is turned from the first vector �r to
the second vector �F through the angle θ (that is the direction of the rotation
that the moment will cause about A) (see Figure 3.44). If necessary, the
vectors will have to be shifted to the intersection of their lines of action. An
alternative for finding the direction of �T is the so-called right-hand rule: if
one bends the fingers of the right hand to form a fist in the direction of the
rotation that �F would cause about A, then the thumb points in the direction
of the moment vector.

In Figure 3.44, the vectors �r and �F are in the xy plane. The moment vector
�T is then parallel to the z axis. The figure also shows the perpendicular line
AC from point A to the line of action of �F . The length of line segment
AC is r sin θ , and the magnitude of the vector product is therefore equal
to the product of the magnitude of the force and the distance from point A
to the line of action of the force.1 This corresponds to the definition of the

1 Note that �T is again independent of the location of the point of application B on
the line of action of �F .



82

Figure 3.45 The unit vectors �ex , �ey and �ez.

moment of a force about a point, as given in Section 3.1.5. In that section,
the limitation to forces and points in the same plane was essential. Here the
definition is more general.

In order to distinguish a moment vector from a force vector in an illustra-
tion, the moment vector is often given a double arrow point.

The vector product can also be effectively described by defining vectors
according to components. For example:

�r = rx �ex + ry �ey + rz�ez,

�F = Fx �ex + Fy �ey + Fz�ez.

For the vector products of the mutually perpendicular unit vectors as
shown in Figure 3.45, the following relationships apply on the basis of the
definition of a vector product:

�ex × �ey = −�ey × �ex = �ez,

�ey × �ez = −�ez × �ey = �ex,

�ez × �ex = −�ex × �ez = �ey,

and

�ex × �ex = �ey × �ey = �ez × �ez = 0.

The components of �T = �r × �F are therefore

Tx = ryFz − rzFy,

Ty = rzFx − rxFz,

Tz = rxFy − ryFx.
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Figure 3.46 The line of action � of force F = 65 kN passes
through the points A(4, 0, 0) and B(0, 12, 3). The question relates
to the moment of the force about point C(2, 6, 6). The coordinates
are expressed in metres.

This definition for the components of the moment vector �T is a generalisa-
tion of the definition of Tz as given in Section 3.1.5.

For the moment vector �T and its components Tx , Ty and Tz it is again
preferable to mention the point A about which the moment was determined,
such as �T |A, Tx |A, and so forth.

An alternative notation for the moment vector �T is

�T = �r × �F =

∣∣∣∣∣∣∣
�ex �ey �ez

rx ry rz

Fx Fy Fz

∣∣∣∣∣∣∣ .

The components of �T are found by developing the determinant.

Example
For the force F = 65 kN in Figure 3.46, the line of action � passes through
the points A(4, 0, 0) and B(0, 12, 3). The coordinates are expressed in
metres.

Question:
Determine the moment of the force about point C(2, 6, 6).

Solution:
The units used are kN and m; they are not always shown in interim cal-
culations.

First the components Fx , Fy and Fz are determined (see Section 2.2.1).
Vector AB (pointing from A to B) has the same direction as the force �F . If
AB is hereafter referred to as �d, then

�d = dx �ex + dy �ey + dz�ez = (−4�ex + 12�ey + 3�ez) m,
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Figure 3.46 The line of action � of force F = 65 kN passes
through the points A(4, 0, 0) and B(0, 12, 3). The question relates
to the moment of the force about point C(2, 6, 6). The coordinates
are expressed in metres.

and

d = | �d| =
√

(−4)2 + 122 + 32 = 13 m.

Since the direction cosines of �F and �d are equal

cos αx = Fx

F
= dx

d
⇒ Fx = F

dx

d
= 65 × −4

13 = −20 kN,

cos αy = Fy

F
= dy

d
⇒ Fy = F

dy

d
= 65 × 12

13 = +60 kN,

cos αz = Fz

F
= dz

d
⇒ Fz = F

dz

d
= 65 × 3

13 = +15 kN.

�F can now be defined according to its components:

�F = (−20�ex + 60�ey + 15�ez) kN.

Imagine �F is exerted at point A, then

�r = CA = rx �ex + ry �ey + rz�ez = (+2�ex − 6�ey − 6�ez) m,

and for the moment of �F with respect to C

�T |C = �r × �F =

∣∣∣∣∣∣∣
�ex �ey �ez

rx ry rz

Fx Fy Fz

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
�ex �ey �ez

+2 −6 −6

−20 +60 +15

∣∣∣∣∣∣∣ .

This gives the following components:

Tx |C = ryFz − rzFy = (−6 m)(+15 kN) − (−6 m)(+60 kN)

= +270 kNm,
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Figure 3.47 The components of vector �T for the moment of �F
about point C. The moment vector �T is perpendicular to plane ABC.

Ty |C = rzFx − rxFz = (−6 m)(−20 kN) − (+2 m)(+15 kN)

= +90 kNm,

Tz|C = rxFy − ryFx = (+2 m)(+60 kN) − (−6 m)(−20 kN)

= 0 kNm.

To show that the moment of force �F with respect to C is independent of
the point of application on its line of action, the following represents an
example in which �F is exerted at B. In that case

�r = CB = (−2�ex + 6�ey − 3�ez) m.

The result of

�T |C = �r × �F =

∣∣∣∣∣∣∣
�ex �ey �ez

rx ry rz

Fx Fy Fz

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
�ex �ey �ez

−2 +6 −3

−20 +60 +15

∣∣∣∣∣∣∣
does indeed give the same values:

Tx |C = ryFz − rzFy = (+6 m)(+15 kN) − (−3 m)(+60 kN)

= +270 kNm,

Ty |C = rzFx − rxFz = (−3 m)(−20 kN) − (−2 m)(+15 kN)

= +90 kNm,

Tz|C = rxFy − ryFx = (−2 m)(+60 kN) − (+6 m)(−20 kN)

= 0 kNm.

Figure 3.47 shows the components of the moment vector in C. The moment
vector �T lies in the horizontal plane through C. Further consideration shows
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Figure 3.48 The moment of the force �F about line m is de-
fined as the moment �Tm of the projection �F//V of �F on a plane
V perpendicular to m about point A, the intersection of V and m.

that �T is indeed perpendicular to plane ABC. The magnitude of the resultant
moment about C is

T |C =
√

2702 + 902 = 90
√

10 = 284.6 kNm.

3.3.2 Moment of a force about a line

Figure 3.48 shows a force �F with line of action �, and a line m. The lines �

and m will generally cross one another and not be perpendicular. Imagine
V is an arbitrary plane perpendicular to m. The lines � and m intersect the
plane V at B and A respectively. In Figure 3.48, it has been assumed that �F
is applied at B. As shall become clear in a moment, �F may also be applied
elsewhere on �.

�F can be resolved into a component �F⊥V perpendicular to plane V and
so parallel to m, and a component �F//V in plane V . If �F is not applied
at B, �F//V is the projection of �F on V . The line of action of �F//V is the
projection of the line of action � of �F on V . Wherever one places the plane
V perpendicular to m, the line of action of �F//V always remains the same.

The moment �Tm of the force �F about line m has now been defined as the
moment of the projection �F//V of �F on a plane V perpendicular to m with
respect to the intersection A of V and m.

For the components of �T |A, the moment of �F about point A in a xyz

coordinate system, we have earlier derived that

Tx |A = ryFz − rzFy,

Ty |A = rzFx − rxFz,

Tz|A = rxFy − ryFx.

Here one recognises the moment about three lines through A, parallel to the

Figure 3.47 The components of vector �T for the moment of �F
about point C. The moment vector �T is perpendicular to plane ABC.
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Figure 3.49 A curved beam AB is loaded at B by the three
components of a force.

Figure 3.50 The moment of the couple about a point A is
�T = �r × �F . This moment is independent of the location of point A.

x, y and z axis respectively.

Comment:
For a moment about the origin O of the coordinate system or a moment
about one of the coordinate axes, the point O is generally omitted in the
representation of the moment.

Example
The curved beam AB in Figure 3.49 is loaded at B by a force of which
the components are defined with respect to magnitude and direction in the
figure.

Question:
Find the moment about the x, y and z axis respectively of the force(s) at B.

Solution:

Tx = +(25 kN)(3 m) − (50 kN)(1 m) = +25 kNm,

Ty = +(40 kN)(1 m) − (25 kN)(2 m) = −10 kNm,

Tz = +(50 kN)(2 m) − (40 kN)(3 m) = −20 kNm.

3.3.3 Moment of a couple

Two parallel forces that are equal and opposite form a couple (see Sec-
tion 3.1.4). Figure 3.50 shows two forces �F1 = �F and �F2 = − �F , forming
a couple in space.1

For the moment of the couple about a point A we have

�T |A = �r1 × �F1 + �r2 × F2 = �r1 × �F + �r2 × (− �F) = (�r1 − �r2) × �F
= �r × �F .

1 There is no resultant force, for �F1 + �F2 = 0.
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Figure 3.51 (a) The components of a resultant force
∑ �F in O

and a resultant couple
∑ �T . (b) The resultant force vector and the

resultant moment vector need not necessarily have the same direc-
tion. (c) By shifting the resultant force

∑ �F parallel to itself one
can provide that the resultant moment vector has the same direction
as the force vector. The combination of a force and a moment of
which the vectors have the same direction is called a screw.

The moment of the couple is equal to the moment of the one force about
an arbitrary point on the line of action of the other force. The moment
is independent of the location of point A about which it was originally
determined. This means that the moment of a couple is a free vector. The
moment vector of the couple is perpendicular to the plane in which the
couple acts.

3.3.4 Compounding forces and couples

Compounding forces and couples in space is analytically relatively simple.
Each of the forces Fi (i = 1, 2, . . . , n) can be resolved into the components
Fx;i ; Fy;i; Fz;i and for each of these forces, one can determine the moment
with respect to an arbitrary point A. In fact, this means that all the forces
with the addition of a couple, are shifted to that point A (see Section 3.1.5).

If we place the origin O of the coordinate system at A, and xi , yi , zi are the
coordinates of the point of application of force Fi (or of another point on
the line of action of Fi ), then:

∑
Fx =

n∑
i=1

Fx;i ,
∑

Tx =
n∑

i=1
{(yiFz;i − ziFy;i) + Tx;i},

∑
Fy =

n∑
i=1

Fy;i ,
∑

Ty =
n∑

i=1
{(ziFx;i − xiFz;i) + Ty;i},

∑
Fz =

n∑
i=1

Fz;i ,
∑

Tz =
n∑

i=1
{(xiFy;i − yiFx;i) + Tz;i}.

The moment sum also includes the moments of any (concentrated) couples
Ti that act on the body.∑

Fx ,
∑

Fy and
∑

Fz are the components of the resultant force
∑ �F in

O while
∑

Tx ,
∑

Ty and
∑

Tz are the components of a resultant couple∑ �T (see Figure 3.51a). The resultant force vector
∑ �F at O and the resul-
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Figure 3.52 (a) A flat slab of 6 × 5 m2 in the horizontal xy

plane is loaded by six vertical forces. The grid lines are 1 m apart.
(b) The system of forces is statically equivalent with a vertical force
R = 30 kN at O pointing downwards, together with two couples of
150 kNm and 60 kNm of which the moment vectors are along the
x and y axis respectively, or (c) with only a force R = 30 kN at the
point (x = 5 m, y = 2 m).

tant moment vector
∑ �T need not necessarily have the same direction (see

Figure 3.51b).

By shifting the resultant force
∑ �F parallel to itself one can provide that

the resultant force vector and moment vector have the same direction (see
Figure 3.51c). The combination of a force and a moment of which the
vectors have the same direction is called a screw.1

The following represents three examples that relate to the determination of
the resultant of a number of forces and/or couples.

Example 1
A flat slab of 6 × 5 m2 in the horizontal xy plane is loaded by six vertical
forces (see Figure 3.53a). The grid lines are 1 m apart.

Question:
Determine the resultant force R as to magnitude and direction and the
location at which it acts on the slab.

Solution:
The units used are kN and m. The units are omitted in the interim cal-
culations.

The x and y components of all the forces given are zero, as are their mo-
ments about the z axis, therefore

∑
Fx = 0,∑
Fy = 0,∑
Tz = 0.

1 Reducing a system of forces and couples into a screw is an interesting academic
problem, but is of little practical use and therefore not covered in further detail.
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In addition,

∑
Fz = +15 + 20 − 40 + 30 − 30 + 35 = +30 kN,∑
Tx = −40 × 1 + 30 × 1 + 35 × 2 + 20 × 3 + 15 × 4 − 30 × 4

= +60 kNm,∑
Ty = 15 × 0 − 20 × 1 + 40 × 2 − 30 × 4 + 30 × 4 − 35 × 6

= −150 kNm.

So the system of forces can be replaced by a downward force R = 30 kN
at O, together with two couples of 150 kNm and 60 kNm of which the
moment vectors are along the x and y axis respectively (see Figure 3.53b).

Since the moment vectors are perpendicular to force R, they can be elim-
inated by shifting R to another point of application. Imagine (x, y) is the
new point of application (see Figure 3.53c). We can find (x, y) from the
condition that R = 30 kN has to generate the same moment about the x

and y axis as all the forces together, so that

∑
Tx = Ry = 60 kNm ⇒ y = 60 kNm

R
= 60 kNm

30 kN
= 2 m,

∑
Ty = −Rx = −150 kNm ⇒ x = 150 kNm

R
= 150 kNm

30 kN
= 5 m.

Figure 3.52 (a) A flat slab of 6 × 5 m2 in the horizontal xy

plane is loaded by six vertical forces. The grid lines are 1 m apart.
(b) The system of forces is statically equivalent with a vertical force
R = 30 kN at O pointing downwards, together with two couples of
150 kNm and 60 kNm of which the moment vectors are along the
x and y axis respectively, or (c) with only a force R = 30 kN at the
point (x = 5 m, y = 2 m).
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Figure 3.53 (a) A flat slab of 6×5 m2 in the horizontal xz plane is
loaded by five vertical forces. The grid lines are 1 m apart. (b) There
is no resultant force, but there is a resultant couple of which the
moment vector is in the xz plane. The resultant couple acts in a
plane perpendicular to the moment vector.

Example 2
In Figure 3.53a, a flat slab of 6 × 5 m2 in the horizontal xy plane is loaded
by five vertical forces. The distance between the grid lines is 1 m.

Question:
Determine the resultant of this set of forces.

Solution:
The units used are kN and m. The units are omitted in the interim cal-
culations.

When determining the resultant of this system of parallel forces, only the
force sum in the z direction and the moment sum about the x and y axis are
relevant:

∑
Fy = +25 − 15 + 20 − 45 + 15 = 0 kN,∑
Tx = 25 × 0 + 15 × 1 − 20 × 3 − 15 × 4 + 15 × 4 + 45 × 4

= +75 kN,∑
Tz = +25 × 6 − 15 × 2 + 20 × 5 − 45 × 3 + 15 × 1

= +100 kN.

There is no resultant force, but there is a resultant couple T of which the
moment vector is in the xy plane (see Figure 3.53b). Its magnitude is

T =
√

752 + 1002 = 125 kNm.

The resultant couple acts in a plane perpendicular to the moment vector.
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Figure 3.54 A junction of three coplanar tubes that are rigidly
connected at equal angles of 120◦. The tubes are loaded (by torsion)
by the couples TA, TB and TC.

Figure 3.55 (a) The couples acting on the junction represented by
their moment vectors. (b) If there is no resultant couple, the three
moment vectors must form a closed polygon.

Example 3
Figure 3.54 shows a junction of three coplanar tubes that are rigidly con-
nected at equal angles of 120◦. The tubes are loaded (by torsion) by the
couples TA, TB and TC. The resultant couple on the junction is zero.

Question:
How large are the couples TA and TB if TC = 75 Nm?

Solution:
In Figure 3.55a, the couples are represented by their moment vectors. The
three vectors are in the xy plane, the plane in which the tubes are lo-
cated. The resultant moment on the junction is zero if the three vectors
form a closed polygon, analogous to the closed force polygon for force
equilibrium. The equilateral triangle in Figure 3.55b gives

TA = TB = TC = 75 Nm.

This can of course also be determined analytically. If there is no resultant
couple, then

∑
Tx = − 1

2TA − 1
2TB + TC = − 1

2TA − 1
2TB + (75 Nm) = 0,∑

Ty = + 1
2TA

√
3 − 1

2TB
√

3 = 0.

The result of these two equations is again

TA = TB = 75 Nm.
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3.4 Equilibrium of a rigid body in space

Generalising the equilibrium equations for a rigid body is relatively simple.
After all, equilibrium demands that both the resultant force and the resultant
moment about an arbitrary point A are zero. This means that the following
requirements have to be met by the forces and moments exerted on a rigid
body at rest:

∑
Fx = 0,∑
Fy = 0,∑
Fz = 0,∑
Tx |A = 0,∑
Ty |A = 0,∑
Tz|A = 0.

The first three equations state that there is force equilibrium in the x, y

and z directions respectively, and that the body is therefore not subject
to translation acceleration. The latter three equations define that there is
moment equilibrium at A about lines parallel to respectively the x, y and z

axis, and that the body is not subject to rotational acceleration.

The following examples address the equilibrium of a body in space.
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Figure 3.56 A structure consisting of a system of mutually
perpendicular beams in the horizontal xy plane that is loaded
perpendicularly to its plane by a number of forces and couples.
The unknown forces Av, Bv and Cv have to be derived from the
equilibrium.

Example 1
The structure in Figure 3.56 consists of a number of mutually perpendicular
beams in the horizontal xy plane that are loaded at the locations shown by
three vertical forces of respectively 40, 60 and 100 kN and by two couples
of 30 and 50 kNm. The structure is kept in equilibrium by the three vertical
forces Av, Bv and Cv.

Question:
Determine these three unknown forces.

Solution:
Since all the forces are parallel to the z axis,

∑
Fx = 0 and

∑
Fy = 0.

The moment vectors of both couples are in the xy plane, so that in addition

∑
Tz = 0.

To determine the three unknown forces, we can use the following three
equilibrium equations:

∑
Fz = 0,

∑
Tx = 0 and

∑
Ty = 0.

By choosing the equilibrium equations carefully, and by applying them in a
carefully chosen order, it is sometimes possible to cut back on the amount
of calculation needed.

Cv is derived directly from
∑

Ty = 0:

∑
Ty = −(30 kNm) − (40 kN) × (1 m) + Cv × 2 = 0

⇒ Cv = +35 kN.

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM



3 Statics of a Rigid Body 95

Figure 3.57 The forces Av, Bv and Cv as they are actually acting
on the structure.

Figure 3.58 A cube with edge length a and weight G is kept in
equilibrium by six forces F1 to F6. For the angle α between the
lines of action of the forces applies tan α = 3/4.

Next, we find Av directly from
∑

Tx = 0:

∑
Tx = −Av × (5 m) + (60 kN) × (3 m) + (50 kNm)

−Cv × (3 m) + (100 kN) × (1 m) + (40 kN) × (1 m) = 0

⇒ Av = +53 kN,

after which Bv follows directly from
∑

Fz = 0:

∑
Fz = +{(100 + 40 + 60) kN} − Av − Bv − Cv = 0

⇒ Bv = +112 kN.

Figure 3.57 shows the forces Av, Bv and Cv as they act on the structure in
reality.

To check, one could also have a look at the moment equilibrium at a point
other than the origin, such as point A:

∑
Tx |A = −{(60 − 35) kN} × (2 m) + (50 kNm) −

−{(100 + 40) kN} × (4 m) + (112 kN) × (5 m) = 0.

The moment equilibrium is also met about a line through A parallel to the
x axis.

Example 2
In Figure 3.58, a cube with edge length a and weight G is kept in equilib-
rium by the six forces F1 to F6. For the angle α between the lines of action
of the forces applies tan α = 3/4.

Question:
Determine the six forces F1 to F6 if a = 1 m and G = 24 kN.
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Figure 3.59 All the forces acting on the cube projected on the
three coordinate planes.

Solution:
When writing down the equilibrium equations, it can sometimes be useful
to project all the forces on the three coordinate planes (see Figure 3.59). In
doing so, the forces F2, F4 and F6 are resolved into components according
to the coordinate directions. Using Figure 3.59 one finds

∑
Fx = 3

5F2 + 3
5F6 = 0, (a)

∑
Fy = F1 + 4

5F2 + F3 + 4
5F4 + F5 + 4

5F6 = 0, (b)

∑
Fz = 3

5F4 − G = 0, (c)

∑
Tx =

(
F1 + 4

5F2 + F3

)
· a − G · 1

2a = 0, (d)

∑
Ty = 3

5F2 · a − 3
5F4 · a + G · 1

2a = 0, (e)

∑
Tz = −

(
F3 − 4

5F4 + F5

)
· a = 0. (f)

Equation (c) gives

F4 = 5
3G = 40 kN.

Using this, one finds from equation (e)

F2 = 5
6G = 20 kN

and then from equation (a)

F6 = − 5
6G = −20 kN.

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM
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Figure 3.60 The forces (in kN) as they are acting on the cube.

Determining the forces F1, F2 and F3 from the three remaining equations
(b), (d) and (f) demands some arithmetic. Sometimes one can reduce the
amount of calculation by looking at the moment equilibrium about another
point. Also here:

∑
Tz|P = −

(
F1 + 4

5F2 + 4
5F6

)
· a = 0 (g)

so that

F1 = 0.

Equation (d) now gives

F3 = − 1
6G = −4 kN.

Finally, equation (f) gives

F5 = − 7
6G = −28 kN.

Figure 3.60 depicts the forces (in kN) as they are acting on the cube in
reality. The forces F3, F5 and F6 act in directions opposite to those shown
in Figure 3.58.

By using alternative equilibrium equation (g), equation (b) for the force
equilibrium in y direction was not used, and can be used as a check. With
the forces expressed in kN this gives

∑
Fy = F1 + 4

5F2 + F3 + 4
5F4 + F5 + 4

5F6

= 0 + 4
5 × 20 − 4 + 4

5 × 40 − 28 − 4
5 × 20 = 0.

The conditions for force equilibrium in y direction are met.
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Figure 3.61 The cube, which has been halved diagonally, is sub-
ject to a couple of 80 kNm in plane ABEF and a couple of 60 kNm
in plane BCDE. The body is kept in equilibrium by a couple on the
diagonal plane ACDF.

Figure 3.62 (a) If there is moment equilibrium, the moment vec-
tors form a closed polygon. (b) Top view of the diagonally-halved
cube with the moment vectors acting on it.

Example 3
The cube that has been halved diagonally in Figure 3.61 is subject to a
couple of 80 kNm in plane ABEF and a couple of 60 kNm in plane BCDE.
The directions are shown in the figure. The body is kept in equilibrium by
a couple on the diagonal plane ACDF.

Question:
Determine the magnitude of that couple and resolve it into a component in
plane ACDF and a component perpendicular to plane ACDF.

Solution:
There is moment equilibrium if the moment vectors form a closed polygon.
The polygon in Figure 3.62a shows that a couple of 100 kNm is acting on
plane ACDF. Of this couple, the moment vector has a component perpen-
dicular to plane ACDF of 10

√
2 kNm and a component along plane ACDF

of 70
√

2 kNm. Figure 3.62b shows the top view for the halved cube, with
all the moment vectors that act on it.

When interpreting these results, one should remember that the moment
vector is perpendicular to the plane on which the couple is exerted. The
component of the couple that is acting in the diagonal plane has a moment
vector perpendicular to that plane and is 10

√
2 kNm. The component of the

couple that is acting perpendicular to the diagonal plane has its moment
vector in that plane and is 70

√
2 kNm.
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3.5 Problems

Compounding forces graphically (Sections 3.1.2 and 3.1.3)

3.1 The line of action of the resultant of
the two forces F and the weight G = 2F

of the block intersect the right-hand side
of the block at a distance a from the top.

Question:
How large is a?

3.2: 1–2 The forces shown are exerted in the web and flange of a thin-
walled profile. Length scale: 1 square ≡ 25 mm.

Questions:
a. Using a force polygon deter-

mine the magnitude and direc-
tion of the resultant of these
forces.

b. How large are the components
of the resultant in the yz coor-
dinate system shown?

c. Using a line of action figure, de-
termine the location of the line
of action of the resultant; where
does this line of action intersect
the y axis?

3.3 The forces F1 and F2 are exerted on a body at points A and B. The
body is not shown. Force scale: 1 square ≡ 5 kN. Length scale: 1 square ≡
1 m.

Question:
Using a force polygon, determine the magnitude and direction of the resul-
tant of both forces graphically, and in a line of action figure determine the
location of the line of action.
Hint: use additional forces at A and B of magnitude 15 kN.

3.4 The two parallel forces F1 and F2 are exerted on a body at A and B.
The body is not shown. Force scale: 1 square ≡ 10 kN. Length scale: 1
square ≡ 1 m.

Question:
Determine graphically (using a
force polygon), the magnitude and
direction of the resultant of both
forces, and (using a line of action
figure) the location of the line of ac-
tion.
Hint: use additional forces at A and
B of magnitude 40 kN.
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Moment of a couple (Section 3.1.4)

3.5 A block is subject to four couples in the xy plane. Force scale: 1 square
≡ 1 kN. Length scale: 1 square ≡ 1 m.

Question:
Find in the xy coordinate
system the moment of:
a. the couple formed by

the pair of forces F1;
b. the couple formed by

the pair of forces F2;
c. the couple formed by

the pair of forces F3;
d. the couple T if T =

10 kNm;
e. the resultant couple.

Moment of a force about to a point (Section 3.1.5)

3.6 F1 and F2 are statically equivalent to a
couple.

Questions:
a. How large is the distance e between both

forces if the moment of F1 about A is
+2160 Nmm and the moment of F2 about
A is −1620 Nmm.

b. How large is the distance e between both forces if the moment of F1
about a point B is +2160 Nmm and the moment of F2 about the same
point B is +1620 Nmm.

3.7 A force F is exerted on the
body at A. Force scale: 1 square ≡
1 kN. Length scale: 1 square ≡ 1 m.

Question:
In four ways (!), calculate the mo-
ment of F with respect to the ori-
gin O of the xy coordinate system
shown.

3.8 Find the forces F1 and F2
have magnitudes 250 and 180 kN
respectively. Length scale: 1 square
≡ 0.5 m.

Question:
The moment about A, B, and C
respectively of:
a. F1;
b. F2;
c. the resultant of F1 and F2.

3.9 For rigid bodies, a force may be shifted parallel to its line of action
with the addition of a couple. Force scale: 1 square ≡ 1 kN. Length scale:
1 square ≡ 1 m.

Question:
How large is the moment of that
couple if the force F at P is shifted
respectively to:
a. A.
b. B.
c. C.
d. O.
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3.10 A console in a column is loaded at A by a vertical force of 70 kN.

Questions:
a. Replace the force at A by a

force at B and a couple.
b. Replace the force at A by a

force at C and a couple.

3.11 A console is subject to a horizontal force of 4 kN and a vertical force
of 5 kN. In order to calculate the forces on the bolts A and B, the load is
shifted to a point exactly halfway between A and B with the addition of a
couple.

Question:
Determine the magnitude and
direction of the couple.

3.12 The console shown is fixed to a column by three bolts. In order to
calculate the bolted connection, the load on the console is replaced by a

horizontal and a vertical force at the point of the middle bolt, together with
a couple.

Question:
The magnitude and direction of the
forces and of the couple.

3.13: 1–2 In the left-hand and right-hand figures, a cross-section is subject
to an eccentrically-applied tensile force. This force is statically equivalent
to a normal force N and a bending moment M . The positive directions of
N and M are shown in the middle figure.

Question:
Determine N and M , with the correct sign. Also depict N and M as they
act in reality, and include their values.

Comment: N (normal force) and M (bending moment) are so-called section
forces. Their nomenclature and sign conventions will be discussed further
in Chapter 10.
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3.14: 1–3 As problem 3.13.

3.15 The section forces N = 150 kN and M = 21 kN are acting in a
cross-section. They can be replaced by a single force acting at a distance
ez from the x axis, whereby it is assumed that ez is positive if this force is
acting on the positive side of the x axis (z > 0).

Questions:
a. Depict N and M as they are

acting on the cross-section in
reality and include their values.

b. Determine ez with the correct
sign.

c. Depict the force that is stati-
cally equivalent to N and M .
Include its magnitude, direction
and point of application.

3.16: 1–2 As problem 3.15, but with
1. N = −1 kN and M = +150 Nm.
2. N = +42 kN and M = −10.5 kNm.

3.17 The section forces N = −35 kN and M = +10.5 kNm are acting in
a cross-section. They can be replaced by a single force acting at a distance
ez from the x axis, whereby it is assumed that ez is positive if this force is
acting on the positive side of the x axis (z > 0).

Questions:
a. Depict N and M as they are act-

ing in the section in reality and
include their values.

b. Determine ez with the correct
sign.

c. Depict the force that is stati-
cally equivalent to N and M .
Include its magnitude, direction
and point of application.

3.18: 1–2 As problem 3.17, but with
1. N = −25 kN and M = −20 kNm.
2. N = +42 kN and M = −10.5 kNm.

3.19 A is subject to a force
F = 100 kN. The moment of this
force about O is Tz|O = 300 kNm.

Question:
Where does the line of action in-
tersect the x axis and the y axis
respectively?
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3.20 For a force F the line of action passes through the points A and B.
The moment of F about O is Tz|O = 6 kNm.

Question:
Determine the components Fx and
Fy .

Compounding forces and couples analytically (Section 3.1.7)

3.21: 1–2 The two forces are equivalent to a single force R. Force scale:
1 square ≡ 5 kN. Length scale: 1 square ≡ 1 m.

Question:
Where does the line of action R intersect the x axis?
a. x = −1 m,
b. x = +1 m,
c. x = +6 m,
d. x = +14 m.

3.22 The resultant of the three parallel forces exerted on the body is R.

Question:
Determine the distance of the line
of action of R to point A.

3.23: 1–2 The forces shown act on a thin-walled cross-section.

Question:
Determine the line of action, magnitude, and direction of the resultant of
these forces.

3.24: 1–4 A number of forces act on a block. In case (2), there is also a
couple T = 36 kNm. Force scale: 1 square ≡ 1 kN. Length scale: 1 square
≡ 1 m.
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Question:
Determine the resultant.

3.25: 1–4 A block is subject to three forces. The forces are not drawn to
scale; the values are shown in kN. Length scale: 1 square ≡ 1 m.

Question:
Determine the resultant.

Resolving a force (couple) along three given lines of action (Sections 3.18
and 3.19)

3.26 The force F is replaced by the three forces Fa, Fb and Fc with given
lines of action a, b and c.

Question:
Determine the forces Fa, Fb and Fc:
a. graphically;
b. analytically.

3.27 Force F is resolved into the components Fa, Fb and Fc with given
lines of action a, b and c.

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM
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Question:
Find the magnitudes and directions of Fa, Fb and Fc.

3.28: 1–2 The force F = 60 kN is replaced by a force along line of action
a and a force through point B, respectively point C.

Question:
Determine the magnitudes and directions of these forces.

3.29 The force F = 28 kN is resolved into two parallel forces F1 and F2
with lines of action �1 and �2.

Question:
Determine the magnitudes and directions of the forces F1 and F2.

3.30 A couple T = 110 kNm is resolved into the forces Fa, Fb and Fc with
given lines of action a, b and c. Length scale: 1 square ≡ 1 m.

Question:
Determine Fa, Fb and Fc.

3.31 The couple T = 60 kNm is the resultant of four forces Fa, Fb, Fc and
Fd with given lines of action a, b, c, and d. The magnitude and direction of
the force Fa is given: Fa = 30

√
2 kN.

Question:
Determine Fb, Fc and Fd.
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Equilibrium of a rigid body in a plane (Section 3.2)

3.32 A block is subject to the forces shown in the horizontal plane. The
north direction is shown.

Question:
Which of the following statements
about the forces exerted on the
block is true?
a. They comply with the three

equilibrium conditions.
b. They form a couple together.
c. Their resultant points south-

west.
d. Their resultant points east.

3.33 The three forces shown are exerted on the body.

Question:
Which statement about the body is
true?
a. There is moment equilibrium.
b. There is force equilibrium.
c. There is no equilibrium.
d. There is equilibrium.

3.34 A body is subject to two parallel forces F .

Question:
Which statement is true?
a.

∑
Fx �= 0.

b.
∑

Fy �= 0.
c.

∑
Tz �= 0.

d. The body is in equilibrium.

3.35 For two of the bodies shown, the equilibrium depends on the magni-
tude of the forces. For the other two, it is absolutely certain that they are
not in equilibrium (the weights of the bodies are neglected).

Question:
Which of the two bodies are
definitely not in equilibrium?
a. A and B.
b. A and C.
c. A and D.
d. B and C.

3.36 A triangular plate ABC is subject to four forces each with magnitude
F (in the plane of the plate) that are not in equilibrium with one another. A
fifth force is required to ensure equilibrium.

Question:
The line of action of the fifth force
passes through:
a. A.
b. B.
c. C.
d. None of the points A, B and C.

3.37: 1–4 The forces shown act on the edges of the triangular plate ABC.
Their points of application are in the middle of the edges. The system is in
equilibrium.
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Question:
Determine F//AB and F⊥AB, with the correct sign. Also depict how the
forces are acting in reality and include their values.

3.38 Of the six forces that act on the middle of the edges of the triangular
plate ABC, one is known.

Question:
Which of the remaining five forces
can be determined?

3.39 Of the six forces that act on the middle of the edges of the triangular
plate ABC, three are given.

Question:
Determine the other three forces.

3.40: 1–2 A roof structure, loaded by the forces shown of 7 kN and 3.5 kN,
is kept in equilibrium by the forces Av, Bv and Bh. Length scale: 1 square
≡ 0.5 m.

Question:
Determine the forces Av, Bv and Bh.
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3.41: 1–4 The part isolated (cut) from a so-called truss shown in the figure
is in equilibrium. The truss is subject to the forces shown. The values are in
kN. Length scale: 1 square ≡ 1 m.

Question:
Determine the forces:
a. Nt in top chord member t;
b. Nd in diagonal member d;
c. Nb in bottom chord member b.

Comment: Trusses and calculating the truss forces N are covered in further
detail in Chapter 9.

3.42: 1–6 The part isolated from a so-called truss shown in the figure is in
equilibrium under the influence of the forces shown. The values are shown
in kN. Length scale: 1 square ≡ 1 m.

Question:
Determine the forces:
a. Nt in top chord member t;
b. Nd in diagonal member d;
c. Nb in bottom chord member b.
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3.43: 1–4 A segment AB of length 1 m is isolated (cut away) from a beam.
The section forces shown act in cross-section A. The forces are shown in
kN and the couples (so-called bending moments) in kNm. The segment is
in equilibrium.

Question:
Determine the section forces N , V and M in cross-section B if:
a. the beam is not loaded between A and B;
b. the beam is loaded in the middle of AB by a vertical force F of 10 kN.

Comment: N (normal force), M (bending moment) and V (shear force)
are so-called section forces. Their nomenclature and sign conventions are
covered in further detail in Chapter 10.

3.44: 1–3 The body shown has been cut away from a column with console.
The section forces N , V and M act at the central axis of the column. The
console is subject to a force of 4 kN. The body is in equilibrium. Length
scale: 1 square ≡ 0.1 m.

Question:
Determine the unknown section forces.
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3.45 The section forces shown act on the cross-sections of the corner iso-
lated from a portal frame. They act at the centre lines. The corner joint is in
equilibrium. There is no loading between the cross-sections.

Questions:
a. determine the (normal) force N1;
b. determine the (normal) force N2;
c. determine the (shear) force V2.

3.46 The section forces shown act on the cross-sections of the corner
isolated from a portal frame. They act at the centre lines. The corner is
additionally loaded by a vertical force F of 4 kN.

Questions:
a. determine the (normal) force N1;
b. determine the (normal) force N2;
c. determine the (shear) force V2.
d. Which of the three forces N1, N2 and V2 is independent of the

magnitude of the vertical load F on the corner? Provide reasoning for
the answer.


