
16Influence Lines

In many structures, the support reactions and section forces depend not
only on the magnitudes of the loads, but also on their placement. This is
particularly true for bridges, where an important part of the load consists of

If we want to choose the dimensions of a structural element to check it for
strength and rigidity, it is important to know the location at which the load
or set of loads generate the most severe effects. Important tools for finding
the most unfavourable placement of loads are the so-called influence lines.
Influence lines are graphic representations of the magnitude of a support
reaction or section force at a fixed location due to a single point load with
variable position.1

In this chapter we look at how to determine influence lines for forces in
statically determinate structures, and how to use them.

There are two methods for determining influence lines: directly from the
equilibrium equations (Section 16.1), or by means of virtual work (Sec-
tion 16.2). We will demonstrate both methods by means of examples.

1 There are also influence lines for displacements and rotations. We do not cover
those here.

moving vehicles. Other examples are assembly halls with crane runways or
warehouses in which the placement of loads can change.
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Figure 16.1 (a) Simply supported beam with (b) the influence line
for the vertical support reaction at A and (c) the support reaction Av
due to a set of loads.

Finally, we will show how to use influence lines to determine the placement
of loads to have the maximum effect (Section 16.3).

16.1 Influence lines using equilibrium equations

Here, for a simply supported beam, we will derive the influence lines for a
support reaction, bending moment and shear force directly from the equi-
librium equations. As you will notice, this method will become already
laborious for a hinged beam.

16.1.1 Simply supported beam

Example 1 – Influence line for a support reaction
The principle of influence lines is discussed on the basis of the simply
supported beam AB in Figure 16.1a. The beam is loaded by a moving point
load F .

Question:
How does the vertical support reaction Av at A change as the point load
moves from A to B?

Solution:
Assume Av acts in the direction indicated in Figure 16.1a. If the point load
is placed at a distance x from A, it follows from the moment equilibrium
about B that

Av = F
� − x

�
.

If the position x of the point load is assumed to be variable, and we draw
Av/F as a function of x (see Figure 16.1b), we obtain the influence line for
the support reaction Av. It is the convention to plot the positive values of
Av/F in the (positive) direction of F .
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Figure 16.2 (a) Simply supported beam with (b) the isolated
left-hand segment and (c) the influence line for the bending moment
at C.

For influence lines, one does not plot Av, but rather Av/F as a function of
the position of the point load. We also can interpret the influence line as the
variation of the support reaction due to a moving unit load (e.g. F = 1 kN).

The magnitude of the support reaction, or rather the influence Av/F , can
be read from the influence line at the position of the load. In this way, using
the influence line, the support reaction can be quickly derived if the beam
is subject to a set of loads. For example, for the case in Figure 16.1c:

Av = +0.75 × (10 kN) + 0.5 × (20 kN) + 0.25 × (30 kN) = +25 kN.

From the influence line we can see that at the position of the force of 10 kN
the influence is 0.75, or in other words: the contribution of this force to Av
is:

+0.75 × (10 kN) = +7.5 kN.

The total support reaction is found by superposing all the individual con-
tributions.

Example 2 – Influence line for a bending moment
We will now determine the bending moment MC at midspan C for the beam
in Example 1 (see Figure 16.2a).

Solution:
Assume the bending moment MC is positive if it causes tension at C at the
underside of the beam. The magnitude of MC follows from the moment
equilibrium of AC (or CB) about C. It should be remembered that it makes
a difference in the equilibrium equations whether the load is to the left or
right of the cross-section under consideration.
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Figure 16.3 (a) Simply supported beam with (b) the positive di-
rection assumed for shear force VC and (c) the influence line for the
shear force at C.

If the load is to the left of C (0 ≤ x < 1
2�) then the bending moment at C

equals (see Figure 16.2b)

MC = +F
� − x

�
· 1

2� − F ·
(

1
2� − x

)
= + 1

2Fx.

If the load is to the right of C ( 1
2�<x ≤ �) then the bending moment at C

equals

MC = +F
� − x

�
· 1

2� = + 1
2F(� − x).

The variation of MC/F as a function of x, as shown graphically in Fig-
ure 16.2c, is referred to as the influence line for the bending moment at
C.

The influence line has its maximum in the middle. This means that the
bending moment at C is a maximum when the point load F is at midspan:

MC =
(
+ 1

4�
)

× F = + 1
4F�.

Example 3 – Influence line for a shear force
For the same beam we will now determine the influence line for the shear
force VC at C (see Figure 16.3a).

Solution:
The direction assumed for VC is shown in Figure 16.3b. The shear force VC
can be found from the vertical force equilibrium of AC (or CB).

If the load is to the left of C ( 1
2�<x ≤ �) the equilibrium of AC gives

VC = Av − F = F
� − x

�
− F = −F

x

�
.
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Figure 16.4 (a) Hinged beam with influence lines for (b) the
vertical support reaction at B, (c) the bending moment at E, (d)
the bending moment at G and (e) the shear force at G; (f) positive
directions for bending moment and shear force.

If the load is to the right of C ( 1
2�<x ≤ �) then the shear force at C is equal

to the support reaction Av at A:

VC = Av = F
� − x

�
.

This determines the influence line for the shear force at C. The influence
line is shown in Figure 16.3c.

If the point load is to the left of C the influence line is negative. The shear
force acts in the direction opposite to the one assumed in Figure 16.3b.

The shear force at C is a maximum if the point load F is directly to the left
or right of C:

VC = (±0.5) × F = ± 1
2F.

A change of sign occurs at C.

16.1.2 Hinged beam

Figure 16.4 shows the influence lines for a hinged beam. The positive di-
rection of the support reaction Bv at B is shown in Figure 16.4a. For the
bending moment and the shear force, the positive directions according to
the xz coordinate system are given in Figure 16.4f.

We do not address the calculation of each of these influence lines in detail
here. They can be found by, for various positions of the point load, using
the equilibrium equations to calculate the magnitude of the various quanti-
ties. In this case, that leads to a fair amount of work as there are so many
positions of the load to be considered.

It is preferable to investigate a number of characteristic positions of the
point load (e.g. just above the support loads, or at the hinges) and to re-
member that the influence line between certain points has to be linear.
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Figure 16.5 (a) Beam with (b) mechanism for determining the
vertical support reaction at A, (c) virtual displacement for which
Av performs negative work and (d) the influence line for Av.

In the next section we introduce an alternative method, based on virtual
work.

16.2 Influence lines using virtual work

In Chapter 15 we showed that the virtual work equation offers an alternative
formulation of equilibrium equations. When determining influence lines,
we can replace the equilibrium equations by a single virtual work equation.

The alternative method, based on virtual work, provides the shape of the
influence line more quickly with less calculation. It is necessary, however,
to take three rules into account. We describe the method, and the rules,
below.

16.2.1 Simply supported beam

Example 1 – Influence line for a support reaction
To determine the influence line for the vertical support reaction Av at A
using virtual work, we convert the beam in Figure 16.5a into a mechanism
by removing the roller support at A. The unknown support reaction Av is
applied to the mechanism as a load (see Figure 16.5b).

We now apply a virtual displacement to the mechanism by displacing A
over a distance δa so that Av performs negative work (first rule) for the
directions assumed in Figure 16.5b (see Figure 16.5c). Assume that the
point of application of F undergoes a virtual displacement δw and that δw

is positive in the direction of F (second rule).

For equilibrium, the virtual work is zero:

δA = −Avδa + Fδw = 0

so that
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Figure 16.6 (a) Beam with (b) mechanism for determining the
bending moment at D.

Av = F
δw

δa
or

Av

F
= δw

δa
.

The virtual displacement δw (positive in the direction of F ) is dependent
on the position of the point load. It turns out that Av/F , the ordinate of the
influence line, is proportional to the virtual displacement δw. This means
that on a certain scale (δa) the deflection line of the mechanism due to
virtual displacement is identical with the influence line we are looking
for. The influence line for Av is shown in Figure 16.5d. The value of the
ordinate at A is equal to 1 as there δw = δa.

The fact that the influence line and the deflection line of the mechanism
are the same shape means that the signs of both quantities δw and δa are
the same. This is a consequence of the fact that the virtual displacement
has been chosen in such a way that the quantity we are looking for (Av)
performs negative work (rule 1).

If, for the scale factor δa, we chose a displacement that is equal to the
unit of length – this is known as a unit displacement – (third rule), then the
influence line is identical with the deflection line of the mechanism.

Conclusion: If the force sought performs negative work (rule 1) over a unit
displacement (rule 3), then the influence line is equal to the deflection line
of the mechanism. The influence line is positive where the displacement is
in the direction of F (segment AB) and negative where the displacement is
in the opposite direction of F (segment BC) (rule 2).

Example 2 – Influence line for a bending moment
The second example relates to the influence line for the bending moment at
cross-section D of the beam in Figure 16.6a.

Again we convert the beam into a mechanism by introducing a hinge at
D. The action of the bending moment at D is replaced by the pair of mo-
ments MD that are applied to the mechanism at either side of the hinge (see
Figure 16.6b). The direction of MD can be chosen arbitrarily.
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Figure 16.6 (a) Beam with (b) mechanism for determining the
bending moment at D. (c) Virtual displacement for which MD
performs negative work and (d) the influence line for MD.

We apply a virtual displacement to the mechanism by rotating beam seg-
ments AD and DBC at D through an angle δθ with respect to one another,
but in such a way that MD performs negative work (rule 1) (see Fig-
ure 16.6c). Assume that load F is displaced by a distance δw, and that
δw is positive in the direction of F (rule 2).

For equilibrium, the virtual work is zero:

−MDδθ + Fδw = 0

so that

MD

F
= δw

δθ
.

The bending moment MD is proportional to the displacement δw. The in-
fluence line for MD therefore has the same shape as the deflection line of
the mechanism. The scale factor is the angle δθ .

For a virtual displacement, δw and δθ are infinitesimally small, but their
ratio is finite. The influence line can therefore be drawn on an enlarged
scale. δθ can be defined as (see also Section 15.4.2):

δθ = δa

�
.

If we select δa equal to �, it is said that the angle δθ has the orthogonal unit
value – this is also referred to as a unit rotation (rule 3). In that case the
influence line is exactly the same as the deflection line of the mechanism
(see Figure 16.6d).

Conclusion: If we apply a unit rotation to the hinge, so that the bending
moment performs negative work, then the influence line for that bending
moment is the same as the deflection line of the mechanism.
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Figure 16.7 The construction of an angle δθ with orthogonal unit
value.

Figure 16.8 (a) Beam with (b) mechanism for determining the
shear force at D, (c) virtual displacement for which VD performs
negative work.

Arcs can be used to construct an orthogonal unit angle as shown in Fig-
ure 16.7. In that figure, two arcs are drawn, but one arc is actually sufficient,
as appears from the plot of the influence line in Figure 16.6d.

Example 3 – Influence line for a shear force
The third example relates to the influence line for the shear force in cross-
section D of the beam in Figure 16.8a.

The procedure is identical to that in the previous examples. The beam is
transformed into a mechanism by introducing a slide joint or shear force
hinge at D and replacing the action of the shear force at D by the pair of
forces VD that are applied on the mechanism at either side of the slide joint
(see Figure 16.8b). The direction of VD can be chosen arbitrarily.

Subsequently, the mechanism is subjected to a virtual displacement by dis-
placing segments AD and DBC at D over a distance δu with respect to one
another, but in such a way that VD performs negative work (rule 1) (see
Figure 16.8c). In the deformed mechanism, beam segments AD and DBC
remain parallel to one another.

Assume load F moves over a distance δw, and δw is positive in the direc-
tion of F (rule 2).

For equilibrium, the virtual work is zero:

−VDδu + δw = 0

so that

VD

F
= δw

δu
.

The shear force VD is proportional to the deflection δw. The influence line
for the shear force at D is the same shape as the deflection line of the
deformed mechanism. The scale factor is the displacement δu.
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Figure 16.8 (a) Beam with (b) mechanism for determining the
shear force at D, (c) virtual displacement for which VD performs
negative work. (d) The influence line for VD.

If we choose δu as a unit length displacement (rule 3), then the influence
line is identical to the deflection line of the mechanism (see Figure 16.8d).

Conclusion: If the shear force performs negative work over a unit dis-
placement, then the influence line is the same as the deflection line of the
mechanism. Where the displacement is in the direction of F (segments AD
and BC), the influence line is positive and the shear force acts in the as-
sumed direction. The influence line is negative where the displacement is in
the direction opposite to that of F (segment DB); here the shear force acts
opposite to the direction assumed.

16.2.2 General procedure for the method of virtual work

Determining the influence line for a force quantity1 using the method of
virtual work requires the same procedure each time:
• Convert the structure into a mechanism by creating a joint (hinge) that

cannot transfer the force quantity in question.
• Allow the force quantity to act on the mechanism as a load.
• Apply a virtual displacement to the mechanism such that the force

quantity performs negative work.
• Select a unit displacement or unit rotation for the displacement or ro-

tation respectively over which the force performs work. The deflection
line of the deformed mechanism is the influence line.

• The force quantity in question is positive when the displacement is in
the direction of the force quantity and negative when it is opposite to
the direction of the force quantity.

1 Generalisation for support reactions and section forces.
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Figure 16.9 (a) Hinged beam with (b) mechanism for determining
fixed-end moment MD at D and (c) the influence line for MD.

16.2.3 Hinged beam

On the basis of a few examples relating to hinged beams, we demonstrate
that the method of virtual work provides a quick and easy way of plotting
influence lines.

Example 1 – Influence line for a fixed-end moment
The hinged beam in Figure 16.9a has hinges at S1 and S2, and is fixed at D.
We will determine the influence line for the fixed-end moment MD at D.

The influence line is found by changing the fixed-end support at D into
a hinged support, and there applying a unit rotation such that MD per-
forms negative work.1 The deformed mechanism in Figure 16.9b is then
the influence line in Figure 16.9c.

The influence line shows that the fixed-end moment for the direction as-
sumed for MD in Figure 16.9b has a maximum positive value when load F

is at S1:

MD = +2Fa.

The most negative fixed-end moment occurs when the load is at A, the end
of the overhang:

MD = −4Fa.

The zeros in the influence lines allow us to check: the fixed-end moment is
always zero when the load is placed at one of the supports B, C or D.

1 Note: the unit rotation is applied at D and not at S2!
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Figure 16.10 (a) Hinged beam with (b) the influence line for the
shear force directly to the right of C and (c) the influence line for
the shear force at S1.

Example 2 – Influence line for shear forces
The beam from Example 1 is again shown in Figure 16.10a.

Figure 16.10b shows the influence line for the shear force V
right
C directly to

the right of C. Figure 16.10c shows the influence line for the shear force
VS1 at hinge S1.

The influence lines are found by introducing a slide joint directly to the
right of C, and at S1, respectively, and there applying a unit displacement
such that the shear force performs negative work. The deformed mechanism
is then the influence line we are looking for.

The (assumed) positive direction of the shear force is shown separately in
the figures.

The mechanisms are not shown separately. However, a ① shows where in
the mechanism a unit displacement was applied.

In the influence line for V
right
C (Figure 16.10b) the paths through S1C and

CS2 are parallel. After all, in the mechanism, segments S1C and CS2 can
displace only with respect to one another, and cannot rotate with respect to
one another.

In the influence line for VS1 (Figure 16.10c) the paths through ABS1 and
S1C are not parallel, as in accordance with the mechanism the segments
ABS1 and S1C can rotate with respect to one another due to the hinge at S1.

Example 3 – Various influence lines
Figures 16.11b to 16.11e show various influence lines for the hinged
beam in Figure 16.11a. The positive direction of the support reaction Bv
at B is shown in Figure 16.11a. For the bending moment and the shear
force, the positive directions are related to the xz coordinate system in
Figure 16.11f.

These influence lines are also shown in Section 16.1.2. There, we did not
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Figure 16.11 (a) Hinged beam with influence lines for (b) the
vertical support reaction at B, (c) the bending moment at E, (d)
the bending moment at G and (e) the shear force at G; (f) positive
directions for bending moment and shear force.

address the amount of arithmetic needed for a direct calculation from the
equilibrium equation.

The method of virtual work gives the same result with far less effort. If the
correct mechanism is selected, and the virtual displacement is applied in
such a way that the required quantity performs negative work over a unit
displacement or unit rotation, the deformed mechanism is the influence line
we are looking for.

The mechanisms are not shown separately. However, a ① shows where in
the mechanism a unit displacement or unit rotation was applied.

It is recommended to check the influence line by calculating the value and
the sign at a few relevant points from the equilibrium equations.

16.3 Working with influence lines

We have found that the method of virtual work provides the easiest way to
find influence lines.

In this section we address working with influence lines, and we do not
discuss how they are found. Using a number of examples, we show how
to determine the force quantity in question (support reaction, section force)
using an influence line for a set of loads and a uniformly distributed load.

Influence lines are often used for determining the most unfavourable place-
ment of the load, the placement where the load has the most severe effect
on the quantity in question. We also provide a number of examples of this.

16.3.1 Calculating forces using a given influence line

Example 1 – Set of loads
From an influence line, we can read off the influence of a point load with a
variable position on a certain quantity (support reaction, section force) at a



756 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 16.12 (a) Hinged beam with set of loads and the influence
lines for (b) the bending moment at D and (c) the shear force at D.

fixed location. We can also say that the influence line gives the variation of
a certain quantity due to a movable unit load. The value of the quantity is
found at the position of the point load.

Figure 16.12 shows a hinged beam with the influence lines for the bending
moment and the shear force at D. The positive directions of MD and VD are
shown with the influence lines.

The hinged beam is loaded in field BC by a set of forces. The length of
the beam, and the positions and magnitudes of the forces are shown in the
figure. For each of the point loads, the influence line shows the associated
influence quantity at the position of the load. The influence quantity for
the bending moment (MD/F ) has the dimension of length. Figure 16.12b
therefore includes the values in metres. The influence quantity for the shear
force (VD/F ) is dimensionless.

The influence lines give the following for the bending moment:

MD = −
(

5
4 m

)
× (15 kN) −

(
5
6 m)

)
× (30 kN) −

(
5

12 m
)

× (45 kN)

= −62.5 kNm

and for the shear force

VD = − 1
4 × (15 kN) − 1

6 × (30 kN) − 1
12 × (45 kN) = −12.5 kN.

The correctness of these values can be checked by considering the equilib-
rium equations.

Example 2 – Uniformly distributed load
In Figure 16.13a, the beam in the previous example is loaded along its
entire length by a uniformly distributed load q = 80 kN/m. Here too we
will determine the bending moment and the shear force at D.
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Figure 16.13 (a) Hinged beam with uniformly distributed full load
and the influence lines for (b) the bending moment at D and (c) the
shear force at D.

First we calculate the bending moment. The influence quantity MD/F ,
which is a function of x, is hereafter for simplicity denoted by f (x). The
contribution dMD to the bending moment MD of the distributed load q over
a small length dx is found by multiplying the small resulting force q dx by
the associated value of f (x) of the influence line:

dMD = f (x) · q dx.

The bending moment at D due to the distributed load between x = x1 and
x = x2 is found by summing up all the contributions, or in other words, by
integrating:

MD =
∫ x2

x1

f (x)q dx.

Since the distributed load is constant here, q can be taken outside the
integration symbol:

MD = q

∫ x2

x1

f (x) dx.

The integral represents the area of the influence line between x1 and x2 (see
Figure 16.13b).

The bending moment due to a uniformly distributed load q is therefore
equal to the load q , multiplied by the area of the influence line for the part
where the load is acting. The signs have to be taken into account when
determining the magnitude of the areas.

The bending moment at D due to the uniformly distributed full load is found
from the influence line in Figure 16.13b:
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Figure 16.14 Beam with the influence line for the bending
moment at C, with a set of loads that moves over a distance �x.

MD =
{
+ 1

2 × (10 m) ×
(

5
2 m

)
− 1

2 × (10 m) ×
(

5
4 m

)}
× (80 kN/m)

= 500 kNm.

In the same way, the shear force at D is found from the area of the influence
line in Figure 16.13c. Since it is immediately clear that the total area of the
influence line over field AB is zero, we have only to determine the area over
field BC:

VD = − 1
2 × (10 m) × 1

4 × (80 kN/m) = −100 kN.

16.3.2 Most unfavourable placements of loads

If the load consists of a single point load, the influence line shows directly
where the force has the maximum effect. Also for a uniformly distributed
load the most unfavourable placement is rather easy to find. With a set of
loads, however, this is no longer the case, and several positions will have to
be investigated.

Here we look at a case in which we can rather easily calculate the most
unfavourable position for a set of loads. The second example relates to a
uniformly distributed load.

Figure 16.14 shows the influence line for the bending moment at C for beam
AB. The maximum value is m. The beam is subject to a set of loads. Part of
the loads is in field AC; another part is in field CB. If the set of loads moves
over a distance �x, the ordinate of the influence line at the position of the
loads in field AC increases by

�x tan α = �x
m

a
.

Therefore, the bending moment at C increases by
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�MC = ∑
AC

Fi · �x
m

a
= R(AC) m

a
�x.

R(AC) is the resultant of all the loads in field AC.

At the same time, the ordinate of the influence line at the position of each
of the loads in field CB decreases by

�x tan β = �x
m

b
.

This changes the bending moment at C by

�MC = −∑
CB

Fi · �x
m

b
= −R(CB) m

b
�x.

R(CB) is the resultant of all the loads in field CB.

Due to the displacement of the set of loads by a distance �x the total
increase of the bending moment at C is

�MC =
(

R(AC)

a
− R(CB)

b

)
· m�x = (q(AC) − q(CB)) · m�x.

Here, q(AC) = R(AC)/a and q(CB) = R(CB)/b can be seen as the average
loads in fields AC and CB respectively. As long as q(AC) is larger than q(CB)

the bending moment increases if the set of loads moves in the positive x

direction.

If one of the loads passes the location C, the average field loads change.
The bending moment MC is a maximum for that load at C for which
(q(AC) − q(CB)) is zero or changes sign.
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Figure 16.15 (a) Beam with a set of loads; (b) influence line for
the bending moment at C; (c) to (g) positions of the set of loads to
be investigated; (h) most unfavourable position of the set of loads.

Example 1 – Most unfavourable placement of a set of loads
The beam in Figure 16.15a carries a moving set of loads consisting of four
forces of 60 kN for which the mutual distances are shown in the figure.
Figure 16.15b shows the influence line for the bending moment at C. We
will calculate the maximum bending moment at C due to the set of loads.

Solution:
The maximum bending moment at C occurs when the placement of the set
of loads is such that the average loads of fields AC and CB are zero or
change sign. Figures 16.15c to 16.15g show five consecutive positions by
moving a load from field AC to BC. The average field loads are shown in
Table 16.1 for each of the positions.

For the change from position (e) to position (f) in Figure 16.15, a change
in sign occurs in (q(AC) − q(CB)). Figure 16.15h therefore gives the most
unfavourable position of the set of loads in relation to the bending moment
at C.

Table 16.1

Position load q(AC) (kN/m) q(CB) kN/m) q(AC) − q(CB)

Figure 16.15c 4×60
6 = 40 0 > 0

Figure 16.15d 3×60
6 = 30 1×60

12 = 5 > 0

Figure 16.15e 2×60
6 = 20 2×60

12 = 10 > 0

Figure 16.15f 1×60
6 = 10 3×60

12 = 15 < 0

Figure 16.15g 0 4×60
12 = 20 < 0
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Figure 16.16 (a) Bridge modelled as a hinged beam with uni-
formly distributed movable load; (b) influence line for the shear
force at E; (c) the load that causes the maximum positive shear
force; (d) the load that causes the maximum negative shear force;
(e) for railway bridges, trains are an uninterrupted load.

The maximum bending moment is

MC =
(

8
3 + 4 44

12 + 40
12

)
(m) × (60 kN) = 820 kNm.

The first term between brackets includes the influence values to be found
from the influence line at the position of each of the point loads.

Example 2 – Most unfavourable placement of a uniformly distributed
load
The hinged beam in Figure 16.16a is a model of a bridge. The traffic load
on the bridge, consisting of a large number of vehicles in a line, is modelled
as a uniformly distributed moving load of 90 kN/m. Figure 16.16b shows
the influence line for the shear force at E. We will determine the maximum
shear force at E in an absolute sense.

Solution:
Since gaps may appear in traffic jams, the uniformly distributed load is
sometimes interrupted. The maximum positive shear force occurs when the
uniformly distributed load is present in all fields where the influence line is
positive as indicated in Figure 16.16c. This gives

VE =
{

1
2 × (30 m) ×

(
+ 1

3

)
+ 1

2 × (20 m) ×
(
+ 2

3

)}
× (90 kN/m)

= 1050 kN.

The maximum negative shear force is found for the load in Figure 16.16d:

VE =
{

1
2 × (10 m) ×

(
− 1

3

)
+ 1

2 × (30 m) ×
(
− 1

3

)}
× (90 kN/m)

= −600 kN.

The maximum shear force in an absolute sense is therefore 1050 kN and
occurs with the load shown in Figure 16.16c.
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The fact that the positive shear force is predominant is clear from the in-
fluence line: the positive area under the influence line is larger than the
negative area.

In contrast to bridges for standard traffic, loads for trains on railway bridges
are uninterrupted loads, that may consist partly of empty carriages, for
which one then assumes a lesser load. For a railway bridge, the maximum
shear force at E in an absolute sense occurs for the load given in Fig-
ure 16.16e. Assume the uniformly distributed load is again 90 kN/m, but
now with a minimum of 15 kN/m for the empty carriages. The maximum
shear force is then

VE =
{

1
2 × (30 m) ×

(
+ 1

3

)
+ 1

2 × (20 m) ×
(
+ 2

3

)}
× (90 kN/m) +

+ 1
2 × (10 m) ×

(
− 1

3

)
× (15 kN/m)

= 1025 kN.

It is up to the reader to check that neither a distributed load over the entire
length AD nor a distributed load over BD are predominant.

Figure 16.16 (a) Bridge modelled as a hinged beam with uni-
formly distributed movable load; (b) influence line for the shear
force at E; (c) the load that causes the maximum positive shear
force; (d) the load that causes the maximum negative shear force;
(e) for railway bridges, trains are an uninterrupted load.
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16.4 Problems

General comment: If the influence line of a quantity X is requested, the
positive direction of this quantity must be stated beforehand. You must then
indicate the corresponding direction of X on the influence line by means of
plus and minus signs (or deformation symbols).

Influence lines using virtual work (Sections 16.2 and 16.3)

16.1: 1–5 A point load F = 20 kN and a uniformly distributed load q = 5
kN/m can move across a beam. The same questions are asked for the
following five quantities X:
1. X = bending moment at B.
2. X = bending moment at C.
3. X = shear force directly to the left of B.
4. X = shear force directly to the right of B.
5. X = shear force at C.

Questions:
a. Draw the influence line for X.
b. Where must the load F be placed so that X is a maximum? Determine

this maximum value.
c. Where must the load F be placed so that X is a minimum? Determine

this minimum value.
d. Using the influence line, determine the value of X when the uniformly

distributed load q acts only on CD.

e. Where must the uniformly distributed load q be placed so that X is a
maximum? Determine this maximum value.

f. Where must the uniformly distributed load q be placed so that X is a
minimum? Determine this minimum value.

16.2: 1–6 A point load F = 30 kN and a uniformly distributed load q = 6
kN/m can move over the hinged cantilever beam. The same questions are
asked for six different quantities X:
1. X = vertical support reaction at A.
2. X = vertical support reaction at B.
3. X = shear force directly to the left of B.
4. X = shear force directly to the right of B.
5. X = bending moment in the middle of AB.
6. X = bending moment at B.

Questions:
a. Draw the influence line for X.
b. Where must the load F be placed so that X is a maximum? Determine

this maximum value.
c. Where must the load F be placed so that X is a minimum? Determine

this minimum value.
d. Using the influence line, determine the value of X when the uniformly

distributed load q acts over the entire length of the beam.
e. Where must the uniformly distributed load q be placed so that X is a

maximum? Determine this maximum value.
f. Where must the uniformly distributed load q be placed so that X is a

minimum? Determine this minimum value.
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16.3: 1–9 A point load F , a set of loads F1; F2; F3 and a uniformly dis-
tributed load q can move across the hinged beam in Figure 16.3. Use
F = 40 kN, F1 = 20 kN, F2 = 50 kN, F3 = 30 kN and q = 8 kN/m. The
same questions are asked for nine different quantities X:
1. X = vertical support reaction at B.
2. X = vertical support reaction at C.
3. X = vertical support reaction at D.
4. X = bending moment at B.
5. X = bending moment at C.
6. X = bending moment at E.
7. X = shear force directly to the left of C.
8. X = shear force directly to the right of C.
9. X = shear force at S2.

Questions:
a. Draw the influence line for X.
b. Where must the load F be placed so that X is a maximum? Determine

this maximum value.
c. Where must the load F be placed so that X is a minimum? Determine

this minimum value.
d. Using the influence line, determine the value of X due to the set of

loads when F1 is at S1.
e. Using the influence line, determine the value of X due to the set of

loads when F2 is at S2.
f. Using the influence line, determine the value of X when the uniformly

distributed load q acts over the entire length of the beam.

g. Where must the uniformly distributed load q be placed so that X is a
maximum? Determine this maximum value.

h. Where must the uniformly distributed load q be placed so that X is a
minimum? Determine this minimum value.

16.4: 1–10 A point load F , a set of loads F1; F2; F3 and a uniformly
distributed load q can move across the hinged beam in Figure 16.4. Use
F = F1 = F2 = F3 = 200 kN and q = 24 kN/m. The same questions are
asked for 10 different quantities X:
1. X = vertical support reaction at A.
2. X = vertical support reaction at B.
3. X = bending moment at B.
4. X = bending moment at E.
5. X = bending moment at G.
6. X = shear force at S1.
7. X = shear force at E.
8. X = shear force at G.
9. X = shear force directly to the left of C.
10. X = shear force directly to the right of C.

Questions:
a. Draw the influence line for X.
b. Where must the load F be placed so that X is a maximum? Determine

this maximum value.
c. Where must the load F be placed so that X is a minimum? Determine

this minimum value.
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d. Using the influence line, determine the value of X due to the set of
loads when F1 is at S1.

e. Using the influence line, determine the value of X due to the set of
loads when F2 is at E.

f. Using the influence line, determine the value of X when the uniformly
distributed load q acts only on BD.

g. Using the influence line, determine the value of X when the uniformly
distributed load q acts over the entire length of the beam.

h. Where must the uniformly distributed load q be placed so that X is a
maximum? Determine this maximum value.

i. Where must the uniformly distributed load q be placed so that X is a
minimum? Determine this minimum value.

16.5: 1–18 A point load F , a set of loads F1; F2; F3 and a uniformly
distributed load q can move across the hinged beam in Figure 16.5. Use
F = 80 kN, F1 = 30 kN, F2 = 50 kN, F3 = 20 kN and q = 18 kN/m. The
same questions are asked for 18 different quantities X:
1. X = vertical support reaction at A.
2. X = vertical support reaction at B.
3. X = vertical support reaction at C.
4. X = vertical support reaction at D.
5. X = shear force at E.
6. X = shear force at G.
7. X = shear force at S1.
8. X = shear force at H.
9. X = shear force directly to the left of C.
10. X = shear force directly to the right of C.
11. X = shear force at S2.
12. X = shear force at K.
13. X = bending moment at B.
14. X = bending moment at C.
15. X = bending moment at E.

16. X = bending moment at G.
17. X = bending moment at H.
18. X = bending moment at K.

Questions:
a. Draw the influence line for X.
b. Where must the load F be placed so that X is a maximum? Determine

this maximum value.
c. Where must the load F be placed so that X is a minimum? Determine

this minimum value.
d. Using the influence line, determine the value of X due to the set of

loads when F1 is at E.
e. Using the influence line, determine the value of X due to the set of

loads when F2 is at G.
f. Using the influence line, determine the value of X when the uniformly

distributed load q acts over the entire length of the beam.
g. Using the influence line, determine the value of due to a uniformly

distributed load q between S1 and S2 and between K and L.
h. Where must the uniformly distributed load q be placed so that X is a

maximum? Determine this maximum value.
i. Where must the uniformly distributed load q be placed so that X is a

minimum? Determine this minimum value.
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16.6: 1–6 Given the same simply supported beam and six different sets of
loads.

Questions:
a. Determine the influence line for the support reaction at A.
b. Determine the maximum value of the support reaction at A due to the

set of loads.
c. Determine the influence line for bending moment at C.
d. Determine the maximum value of the bending moment at C due to the

set of loads.
e. Determine the influence line for the shear force at C.
f. Determine the maximum value for the shear force at C due to the set of

loads.

16.7: 1–6 Given the same simply supported beam and six different sets of
loads. Answer the same questions as in problem 16.6.


