
15Virtual Work

In this chapter we deal with the virtual work equation: an often used
alternative for the equilibrium equations.

In Section 15.1, we first introduce the concepts work and strain energy.
Performing work can be seen as a mechanical process of a body exchanging
energy with its environment. To illustrate the concept, we have included a
separate section on strain energy. The strain energy concept plays an im-
portant role in calculations that are based on energy considerations, but is
not covered further in this chapter.

The concept of work returns in the virtual work equation. In Sections 15.2
to 15.4 we show for a particle, a rigid body and a mechanism respectively
that the virtual work equation is equivalent to the equilibrium equations.
Support reactions and section forces can be derived directly from the equi-
librium equations, but also with the principle of virtual work. We provide a
number of examples in Section 15.5.

The virtual work equation is especially useful for determining the influence
lines for support reactions and section forces in statically determinate bar
type structures; this is covered in Chapter 16.
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Figure 15.1 Work is defined as the inner product of force �F and
displacement d�u:

dA = �F · �u = | �F | · |d�u| · cos α = F · du cos α = F cos α · du.

15.1 Work and strain energy

In this section we look at the concepts work and strain energy.

15.1.1 Work

If the point of application of force �F in Figure 15.1a undergoes an infinitesi-
mal displacement d�u along path s, this is referred to as the force performing
an (infinitesimal) amount of work dA, defined as the inner product of the
vectors �F and d�u:

dA = �F · d�u
= Fx dux + Fy duy + Fz duz.

Work is a scalar quantity.

The inner product of two vectors can also be calculated as the product of the
magnitude (modulus) of both vectors and the cosine of the enclosed angle:

dA = | �F | · |d�u| · cos α = F · du · cos α.

This can be seen as the product of the force and the component of the
displacement in the direction of the force, F and du cos α respectively (see
Figure 15.1b). It can also be seen as the product of the displacement and the
component of the force in the direction of the displacement, du and F cos α

respectively (see Figure 15.1c).

Note that the force F does not perform any work if it is normal to the
displacement du (in that case α = ±π/2 and cos α = 0).

If the point of application of the force moves a finite distance along path s,
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Figure 15.2 If �F is constant, the total amount of work to be per-
formed depends only on the location of the starting point and end
point, and not on the route followed.

the total amount of work is equal to the sum of the contributions of all the
infinitesimal displacements. Mathematically this corresponds to integrating
over the path length s:

A =
∫

s

�F · d�u.

The magnitude and direction of the force F may depend on the location on
the route. If �F is constant (for a vector that means constant in magnitude
and direction), then �F can be excluded from the integration symbol. The
total amount of work performed is then (see Figure 15.2):

A =
∫

s

�F · d�u = �F
∫

s

d�u = �F · �u.

In this case, the total amount of work A depends only on the position of the
starting and end points and not on the shape of the route followed.

In full

A = Fxux + Fyuy + Fzyz = Fu cos α.

Note that no work is performed if �F and �u are normal to one another (in
that case α = ±π/2 and cos α = 0).

Forces that are constant in magnitude and direction include gravitational
forces.

The dimension of work is force multiplied by distance. The applicable SI
unit is the joule, denoted as J:

J = N · m = kg · m2/s2.
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Figure 15.3 (a) A beam subject to bending with (b) the associated
load-displacement diagram.

15.1.2 Strain energy

Consider the simply supported beam in Figure 15.3a, with a point load F .
Due to a load, the beam will bend. The sag at the concentrated load is u.
The relationship between the load F and displacement u can be shown in
a load-displacement diagram (see Figure 15.3b). The shape of the diagram
depends on the properties of the material. The shape is not important at this
stage.

If with an increasing load the displacement u increases by an amount du,
the force F performs work

dA = F du.

When the load and displacement have reached their final value, the total
amount of work performed is:

A =
∫ u

0
F du.

The total amount of work performed is equal to the area under the load-
displacement diagram.

Performing work can be seen as a mechanical process of energy exchange
between a body and its environment. If the load performs positive work,
energy is extracted from the environment and transferred to the structure.
If there is no exchange of heat from the structure to its environment, and
the structure is and remains at rest (the energy added is not converted into
kinetic energy), then the energy transferred is absorbed as strain energy.
Strain energy is the energy required to deform the structure.

The work performed A is equal to the increase in strain energy Ev:

A = �Ev.
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Figure 15.4 The strain energy Ev stored in the beam is equal to
the total amount of work performed A, and is equal to the area under
the load-displacement diagram.

Figure 15.5

In general it is assumed that the strain energy is zero in the undeformed
state. In that case, it holds for the deformed state that

A = Ev.

The strain energy stored in the beam is equal to the area under the load
displacement diagram (see Figure 15.4).

The SI unit for strain energy is joule.

15.2 Virtual work equation for a particle

In this section, we show that the virtual work equation for a particle is just
another form of the equilibrium equations.

When particles are compelled to follow a particular path, the virtual
displacements that are in line with the (limited) degree of freedom of
the particle are known as kinematically admissible virtual displacements.
These displacements are subject to special demands: they must be geomet-
rically linear. Physically this can be translated into the demand that the
virtual displacements must be very small.

15.2.1 Equilibrium

Assume a particle subject to forces (see Figure 15.5). The particle is in
equilibrium if the equations for the force equilibrium in the x, y and z

directions respectively are satisfied:

∑
Fx = 0,∑
Fy = 0,∑
Fz = 0.

A particle subject to forces.
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Figure 15.6 The displacement components of a particle.

These three equilibrium equations can also be formulated otherwise.

Assume G is a new quantity, defined as follows:

G = λ1
∑

Fx + λ2
∑

Fy + λ3
∑

Fz.

In this equation, λ1; λ2; λ3 are arbitrary quantities that cannot all equal
zero concurrently.

The demand that G = 0 for each arbitrary combination of λ1; λ2; λ3 (not
all equal to zero concurrently) is equivalent to the three equations for the
force equilibrium. For example, the combination could be

λ1 �= 0; λ2 = 0; λ3 = 0

in which case

G = λ1
∑

Fx + 0 ×∑
Fy + 0 ×∑

Fz = λ1
∑

Fx

and G can be equal to zero only if

∑
Fx = 0.

Likewise, the combination λ1 = 0; λ2 �= 0; λ3 = 0 leads to
∑

Fy = 0.
The combination λ1 = 0; λ2 = 0; λ3 �= 0 leads to

∑
Fz = 0.

15.2.2 Virtual work equation

The quantities that are to be chosen arbitrarily λ1; λ2; λ3 can also be consid-
ered to be arbitrary (imagined) displacements ux; uy; uz (see Figure 15.6),
so that

G = ux

∑
Fx + uy

∑
Fy + uz

∑
Fz.
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Figure 15.7 The virtual displacements of a particle.

In this case, G can be interpreted as the (imagined) work A done by the
forces acting on the particle.

Since we are not talking about actual but rather imagined displacements,
of arbitrary magnitude, they are referred to as virtual displacements and
they are denoted by δux ; δuy ; δuz (see Figure 15.7). In mathematics, δ is
known as the variation symbol. A virtual displacement therefore stands for
a variation of the displacement.

The work due to the virtual displacements is known as virtual work. This is
denoted by δA:

δA = δux

∑
Fx + δuy

∑
Fy + δuz

∑
Fz.

If the displacement of a particle in equilibrium is varied, the virtual work
done by the forces acting on it is zero. The converse is also true: if one
varies the displacement of a particle, and the virtual work is zero, then the
particle is in equilibrium.

Conclusion: A particles is in equilibrium only if the virtual work performed
by the forces acting on it is zero for any virtual displacement:

δA = δux

∑
Fx + δuy

∑
Fy + δuz

∑
Fz = 0.

This is known as the principle of virtual work.

The principle of virtual work combines the three independent equilibrium
equations into one virtual work equation. The virtual work equation is just
another form of the equilibrium equations.
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Figure 15.8 A particle that is compelled to follow a circular path
with radius r is loaded by two forces F .

Figure 15.9 The isolated particle with all the forces acting on it.

15.2.3 Kinematically admissible virtual displacements

A particle is compelled to follow a circular path with diameter r in the xy

plane. The path can be defined as

f (x, y) = x2 + y2 − r2 = 0.

There is no friction. The particle is loaded by a horizontal and vertical force
F , as shown in Figure 15.8.

Using the principle of virtual work, we now look for the positions on the
circle at which the particle is in equilibrium.

In Figure 15.9 the particle has been isolated. Since there is no friction, the
interaction force N is normal to the circular path.

If we are not interested in the interaction force N between the particle
and its path, we can choose a virtual displacement along the prescribed
path. Since N is normal to the path, it does not appear in the virtual work
equation.

A virtual displacement that is conform with the (limited) freedom of move-
ment of the particle is referred to as a kinematically admissible virtual
displacement.

The virtual work δA due to a kinematically admissible virtual displacement
is

δA = +Fδux − Fδuy. (a)

δux and δuy are the virtual displacements in the x and y directions respec-
tively.

For the path it holds that

f (x, y) = x2 + y2 − r2 = 0. (b)
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Figure 15.10 During the change in displacement the forces do
not change direction. Since N performs no work the virtual dis-
placement δu has to take place along the tangent to the prescribed
path.

After the virtual displacement, it applies that

f (x + δux, y + δuy) = (x + δux)2 + (y + δuy)2 − r2 = 0. (c)

If we combine equations (c) and (b) we find the following relationship
between δux and δuy :

2xδux + (δux)2 + 2yδuy + (δuy)2 = 0. (d)

Since this equation is determined by the geometry of the prescribed path, it
is known as a geometric equation.

During the variation of the displacement, the forces do not change direction.
The same is true for N . Since N does not perform work, the virtual dis-
placement has to occur along the tangent of the prescribed path, as shown
in Figure 15.10. This means that the geometric relationship between δux

and δuy has to be linear. Ignoring the quadratic (higher order) terms in the
geometric equation (d) can be physically interpreted as a demand that the
virtual displacements have to be small.

If we remove the quadratic terms in (d)1 we find

2xδux + 2yδuy = 0

or

δuy = −x

y
δux. (e)

When the particle is in equilibrium, δA = 0. With (a) and (e) the virtual
work equation becomes

1 This is referred to as the linearisation of the geometric equation (d).
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Figure 15.11 There are two locations on the circular path where
the particle is in equilibrium under the influence of forces F : A and
B.

δA = +Fδux − Fδuy = Fδux + F
x

y
δux =

(
1 + x

y

)
Fδux = 0.

Since F �= 0 and δux �= 0 the solution is

1 + x

y
= 0 or x + y = 0.

The equilibrium positions are therefore on the line x + y = 0. This leads to
two solutions: the particle under the influence of forces F is in equilibrium
at either A or B (see Figure 15.11).

Comment: The principle of virtual work says nothing about the state of
the equilibrium. It cannot be used to discover that the equilibrium at A is
reliable (stable) and that the equilibrium at B is unreliable (unstable).1

15.2.4 Virtual displacements in a mathematical sense

The fact that the geometric equations between the varied displacements
have to be linear means, from a mathematical perspective, that we have to
consider the so-called first-order variation. The first-order variation of a
function f (x, y) is defined as

δf (x, y) = ∂f

∂x
δx + ∂f

∂y
δy

1 If the particle at B loses its equilibrium as a result of a small disruption it will
become increasingly far removed from the original equilibrium position due to
forces F : the equilibrium at B is unreliable (unstable equilibrium). At A the
forces F compel the particle to return to its original equilibrium position after
disruption: the equilibrium at A is reliable (stable equilibrium). Examining the
reliability of equilibrium (stability investigation) is beyond the scope of this
book.
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or, with δx = δux and δy = δuy ,

δf (x, y) = ∂f

∂x
δux + ∂f

∂y
δuy.

For the function

f (x, y) = x2 + y2 − r2 = 0

that describes the circular path of the particle we find

δf (x, y) = ∂

∂x
(x2 + y2 − r2)δux + ∂

∂y
(x2 + y2 − r2)δuy

= 2xδux + 2yδuy = 0.

This leads directly to the expression (e) we are looking for:

δuy = −x

y
δux.

The method used here is far simpler than the approach in Section 15.2.3,
where we first derived the geometric equation (d) and then linearised it (by
removing all the non-linear terms).

15.3 Virtual work equation for a rigid body

For rigid bodies, the complete equilibrium equations can also be replaced
by a single virtual work equation. Deriving the virtual work equation for
a rigid body shows again that the geometrical relationship between the
virtual displacements has to be linear.
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Figure 15.12 The components of force F at point i.

15.3.1 Equilibrium

In a plane1 there are three equilibrium equations, two for the force
equilibrium:

∑
Fx = 0,∑
Fy = 0

and one for the moment equilibrium:

∑
Tz = 0.

There is equilibrium when all three conditions are satisfied.

The requirement

G = λ1
∑

Fx + λ2
∑

Fy + λ3
∑

Tz = 0

for all arbitrary combinations of λ1; λ2; λ3 (not all concurrently zero) is an
alternative for the three equilibrium equations:

• The combination λ1 �= 0; λ2 = 0; λ3 = 0 leads to
∑

Fx = 0.

• The combination λ1 = 0; λ2 �= 0; λ3 = 0 leads to
∑

Fy = 0.

• The combination λ1 = 0; λ2 = 0; λ3 �= 0 leads to
∑

Tz = 0.

Assume a number of forces are acting on the body (see Figure 15.12):

Fxi ; Fyi are the components of Fi at point i with coordinates xi ; yi ;

Fxj ; Fyj are the components of Fj at point j with coordinates xj ; yj ; etc.

1 For simplicity we will look only at rigid bodies in the xy plane.



15 Virtual Work 721

Figure 15.13 The displacement of point i due to a translation
ux0; uy0 and a large rotation ϕz0.

To keep the picture simple, Figure 15.12 includes only the components of
the force at point i.

The body is in equilibrium when the following condition is satisfied:

G = λ1
∑
i

Fxi + λ2
∑
i

Fyi + λ3
∑
i

(xiFyi − yiFxi) = 0

for each arbitrary choice of λ1; λ2; λ3 (not all concurrently zero).

15.3.2 Displacement of a point on a rigid body

The displacement of a rigid body in a plane is defined by the displacement
of, for example, point O to O′ and a rotation about O. Assume that the
components of the translation (displacement) are ux0; uy0 and the rotation
is ϕz0.

Instead of using its coordinates xi ; yi , we can define the location of an
arbitrary point i also by its angle αi and the radius ri . The displacement of
point i is (see Figure 15.13)

uxi = ux0 − a,

uyi = uy0 + b.

a and b are the result of the rotation ϕz0. Due to the rotation, point i moves
through an arc length ϕz0ri along the circle with radius ri and centre O′.
For a and b it applies that

a = ri
{

cos αi − cos(αi + ϕz0)
}
,

b = ri
{

sin(αi + ϕz0) − sin αi

}
.

The expressions are much simplified when the rotation is small. If ϕz0 �1
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Figure 15.14 The displacement of point i due to a translation
ux0; uy0 and a small rotation ϕz0.

the circle can be replaced by its tangent � (see Figure 15.14). The dis-
placement of point i due to the rotation is then ϕz0ri with the following
components:

a = ϕz0ri sin αi = ϕz0yi,

b = ϕz0ri cos αi = ϕz0xi.

For small rotations the following applies (ignoring the signs):
• the horizontal displacement is equal to “rotation × vertical distance to

the centre of rotation”;
• the vertical displacement is equal to “rotation × horizontal distance to

the centre of rotation”.

Conclusion: Due to a translation ux0; uy0 and a small rotation ϕz0 of the

uxi = ux0 − a = ux0 − ϕz0yi,

uyi = ux0 + b = uy0 + ϕz0xi.

Note that the geometric relationships between the various displacement
quantities are linear for small rotations.

15.3.3 Virtual work equation

When a body is given a virtual displacement, the virtual work performed
by all forces acting on it is

δA = ∑
i

Fxiδuxi + ∑
i

Fyiδuyi.

The virtual displacements δuxi ; δuyi of point i can be expressed by three
independent virtual displacements δux0; δuy0; δϕz0 of the body. The equa-

Figure 15.13 The displacement of point i due to a translation
ux0; uy0 and a large rotation ϕz0. body the displacement of point i is
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tion for δA assumes the form of expression G (see Section 15.3.1) only if
the relationships between δuxi; δuyi and δux0; δuy0; δϕz0 are linear.

The geometric relationships appeared to be linear only for bodies subject to
minor rotations. We can also say that the virtual displacements have to be
very small.

In that case, the virtual work performed by the force at point i is

Fxiδuxi + Fyiδuyi = Fxi(δux0 − yiδϕz0) + Fyi(δuy0 + xiδϕz0).

The total work performed by all the forces at the points i, j , . . . is

δA = ∑
i

Fxi(δux0 − yiδϕz0) + ∑
i

Fyi(δuy0 + xiδϕz0).

This gives

δA = δux0
∑
i

Fxi + δuy0
∑
i

Fyi + δϕz0
∑
i

(xiFyi − yiFxi).

The expression for virtual work δA is now in the same form as the ex-
pression for G; the quantities λ1; λ2; λ3 have been replaced by the virtual
displacements δux0; δuy0; δϕz0.

The demand

δA = δux0
∑
i

Fxi + δuy0
∑
i

Fyi + δϕz0
∑
i

(xiFyi − yiFxi) = 0

for all arbitrary combinations of δux0; δuy0; δϕz0 (not all equal to zero) is
a necessary and sufficient condition for equilibrium and is known as the
principle of virtual work.

For simplicity, concentrated couples were not addressed. A concentrated
couple can be replaced by a statically equivalent pair of forces. Assuming
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Figure 15.15 A concentrated couple can be replaced by a stati-
cally equivalent pair of forces. The virtual work performed by the
couple is equal to the product of couple and rotation.

the pair of forces in Figure 15.15 we find

δA = −F · bδϕz0 + F · (a + b)δϕz0 = Fa · δϕz0 = Tz · δϕz0.

The work performed by a couple is equal to the product of couple and
rotation. The work is positive when the couple and rotation are in the same
direction.

15.3.4 Virtual rotations in a mathematical sense

In deriving the virtual work equation, we found that the geometric relation-
ships had to be linear in the virtual displacements. Mathematically, this
means that the first-order variation has to be assumed for these virtual
displacements.

We previously deduced (see Figure 15.13) that the following applies for
the displacement of an arbitrary point i, due to a translation ux0; uy0 and a
rotation ϕz0:

uxi = ux0 − ri
{

cos αi − cos(αi + ϕz0)
}
,

uyi = uy0 + ri
{

sin(αi + ϕz0) − sin αi

}
.

The first-order variation of uxi is defined as

δuxi = ∂uxi

∂ux0
δux0 + ∂uxi

∂ϕz0
δϕz0.

In the same way, the first-order variation of uyi is defined as

δuyi = ∂uyi

∂uy0
δuy0 + ∂uyi

∂ϕz0
δϕz0.
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Figure 15.16 (a) Two bodies connected in a hinge. (b) The inter-
action forces at the hinged joint.

Elaborating these expressions (for ϕz0 = 0) indeed leads to

δuxi = δux0 − ri sin αiδϕz0 = δux0 − yiδϕz0,

δuyi = δuy0 + ri cos αiδϕz0 = δuy0 + xiδϕz0.

15.4 Virtual work equation for mechanisms

For mechanisms, the complete equilibrium equations can also be replaced
by a virtual work equation. When the virtual displacement is chosen con-
form the freedom of movement at the joints (a kinematically admissible
virtual displacement), the work performed by the interaction forces in
the joints is zero and the virtual work equation includes only the work
performed by the external forces.

When drawing the virtual displacements, one has to imagine that in the
drawing the dimensions of the structure are considerably reduced and that
the (very small) virtual displacements are considerably blown up. The mag-
nitude of the angles (of rotation) is indicated by the so-called orthogonal
value.

15.4.1 Virtual work equation

Mechanisms are systems of interconnected rigid bodies in which the joints
are such that the bodies still have a certain degree of freedom with respect
to one another.

Consider a system of two mutually hinged rigid bodies (1) and (2), loaded
by a number of forces (see Figure 15.16a). There are acting interaction
forces at the joint (joining forces). These occur always in pairs. In this case,
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these forces are the two equal and opposite forces F
(1)
i and F

(2)
i (see

Figure 15.16b).1

To investigate the equilibrium, the two bodies can be isolated from one
another (see Figure 15.16b). The principle of virtual work can then be
applied on each body. The virtual work δA(1) for a virtual displacement
of body (1) is split into a part δA

(1)
e due to the external forces2 on body (1)

and a part δA
(1)
i due to the interaction force on body (1):

δA(1) = δA(1)
e + δA

(1)
i = 0.

The same applies for body (2):

δA(2) = δA(2)
e + δA

(2)
i = 0.

We can choose a virtual displacement for the connected bodies that is con-
sistent with the freedom of movement in the joint. Such a displacement is
referred to as a kinematically admissible virtual displacement. The virtual
work equation is then

δA = δA(1) + δA(2) = δA(1)
e + δA(2)

e + δA
(1)
i + δA

(2)
i = 0.

The benefit of a kinematically admissible virtual displacement is that the
interaction forces F

(1)
i and F

(2)
i together perform zero work. The points of

application of these two equal and opposite forces always undergo the same

1 The upper index refers to the body, the lower index i refers to the interaction.
2 External in this sense does not refer to “the outside”, but rather to the cause of

the force “from the outside”. The so-called external forces (also called loads),
are independent forces in contrast to the interaction forces or joining forces (also
referred to as internal forces), that are dependent forces.

Figure 15.16 (a) Two bodies connected in a hinge. (b) The inter-
action forces at the hinged joint.
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Figure 15.17 (a) A slide or a so-called shear force hinge with
(b) the interaction forces after a kinematically admissible virtual
displacement.

displacement, so that

δA
(1)
i + δA

(2)
i = 0.

The virtual work equation now includes only the work performed by the
external forces:

δA = δA(1)
e + δA(2)

e = 0.

Conclusion: Due to a kinematically admissible virtual displacement of a
mechanism in equilibrium, the virtual work performed by the (external)
load equals zero. The fact that the work performed by the load is zero is a
necessary and sufficient condition for the equilibrium of a mechanism.

The approach can easily be expanded to include mechanisms of more than
two bodies, as well as other than hinged joints.

15.4.2 The magnitude of the virtual displacements

Figure 15.17 shows a slide or a so-called shear force hinge with the inter-
action forces M; N , and a kinematically admissible virtual displacement
δu; δϕ.

We can see immediately that the pair of bending moments M does not
perform any work. How different is it for the normal force pair N , that
as a couple Nδu undergoes a (small) rotation δϕ and therefore, taking into
account the directions shown in the figure, performs the work −Nδuδϕ.
The geometric significance of δuδϕ can be seen on the figure.

When deriving the virtual work equation for a rigid body, the demand arose
that the geometric relationships have to be linear in the virtual displace-
ments. To achieve that, the virtual displacements have to be very small.
Quadratic terms in the virtual displacements are therefore a degree smaller
in the virtual work equation and can be discarded. Mathematically, this
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Figure 15.18 (a) The simply supported beam AC with a slide
or shear force hinge at midspan B. (b) A kinematically admissible
virtual displacement: the segments to the right and left of the slide
remain parallel to one another. (c) The displacements in case the
rotation δϕ is small and the quadratic terms in δϕ can be neglected.

demand is formulated by looking only at the first-order variation of the
displacements in the virtual work equation (in other words, only the linear
terms in the virtual displacements). This limitation with respect to the vir-
tual displacements means that the δuδϕ is neglected, and the normal force
pair N performs no virtual work.

In diagrams, the dimensions of the structure are greatly reduced and
the displacements, even though they are infinitesimally small, are greatly
enlarged. This can give rise to problems at first sight.

As an example, consider the simply supported beam ABC modelled as a
line element in Figure 15.18a, with a slide or shear force hinge at midspan
B. The mechanism has one degree of freedom. For a kinematically admis-
sible virtual displacement, the displacement must be consistent with the
freedom of movement at the supports and the slide. The latter means that
beam segments AB and BC must remain parallel to one another on both
sides of the shear force hinge. Figures 15.18b and 15.18c show the vir-
tual displacement for the mechanism in two different ways. Figure 15.18b
would seem to be the correct one, but this is not so.

One has to imagine that the virtual rotation δϕ is very small. In that case
the horizontal displacement of the beam ends with respect to one another
at B, �(δϕ)2, is a degree smaller than the vertical displacement �δϕ. So the
displaced beam ends at the shear force hinge B can be drawn directly above
one another. Figure 15.18c gives therefore the correct representation of the
virtual displacements in the mechanism.

Another example is beam ABC in Figure 15.19a, that has been changed into
a mechanism by the introduction of the hinge at S. Figure 15.19b shows a
virtual displacement: a bend δθ occurs at hinge S. The small angle (rotation)
δθ , that is drawn to a large scale, can be defined by the ratio δa/�. This value
is known as the orthogonal value. The orthogonal value is not equal to the
sine or tangent of the angle, nor to the value in radians.
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Figure 15.20 Three angles θ with the same orthogonal value a/b.Figure 15.19 (a) Mechanism with (b) a kinematically admissible
virtual displacement.

Figure 15.20 shows three angles θ that differ in magnitude from a trigono-
metric perspective, but for which the orthogonal value a/b is the same.
Referring to Section 15.3.2 for the displacement due to a small rotation, it
holds for all three cases that the vertical displacement a is equal to “angle
(of rotation) θ× horizontal distance b to the centre of rotation”.

15.5 Calculating forces using virtual work

With statically determinate bar type structures, the support reactions and
section forces follow directly from the equilibrium. When determining
these forces, we can also use the principle of virtual work instead of the
equilibrium equations. To do so, we have to change the structure into a
mechanism in such a way that the force to be determined can perform work
if the mechanism is subject to a virtual displacement. This is explained
below by means of a number of examples.
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Figure 15.21 (a) Beam with (b) a mechanism for determining
the vertical support reaction at B and (c) a kinematically admissible
virtual displacement of the mechanism (displacements in m).

15.5.1 Support reactions

Example 1 – support reaction
We will now determine the vertical support reaction at B for the beam in
Figure 15.21a using the principle of virtual work.

Solution:
Assume Bv, the vertical support reaction at B, has the direction as shown
in Figure 15.21b. By removing the support at B we form a mechanism
in which Bv can perform work. The mechanism has one degree of free-
dom.1 Apply a virtual rotation δθ at A. Figure 15.21c shows the virtual
displacement of the mechanism. The virtual displacements at B and C
are equal to “rotation × horizontal distance to centre of rotation A” (see
Section 15.3.2); they are respectively 5δθ and 7δθ m.

Note that the deformation of the beam is not taken into account.

Due to the virtual displacement, the couple and the forces perform virtual
work. The total amount of work performed is

δA = +(30 kNm) × δθ + Bv × (5δθ m) − (50 kN) × (7δθ m).

The couple performs positive work, as does the support reaction Bv; the
force at C in contrast performs negative work. For equilibrium the following
applies

δA = 0

so that

1 The position of the mechanism is fully defined by a single parameter, such as
the rotation at A or the vertical displacement at B.
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Figure 15.22 (a) Hinged beam with (b) a mechanism for determin-
ing the fixed-end moment at A and (c) a kinematically admissible
virtual displacement of the mechanism.

Bv = −(30 kNm) × δθ + (50 kN) × (7δθ m)

(5δθ m)
= +64 kN.

As expected, the support reaction Bv turns out to be independent of the
magnitude and direction of the virtual rotation δθ .

Example 2 – Fixed-end moment
The hinged beam in Figure 15.22a carries a uniformly distributed load over
its entire length. Below we will determine the fixed-end moment using the
principle of virtual work.

Solution:
Assume the fixed-end moment Am acts in the direction shown in Fig-
ure 15.22b. If we replace the fixed-end support by a hinged support, we
create a mechanism in which the, as yet unknown, fixed-end moment Am
can perform work.

We select the vertical displacement of the hinge at S as a degree of freedom.
Assume that the hinge is subject to a virtual displacement δu. Figure 15.22c
shows the virtual displacement of the mechanism. Using “vertical displace-
ment = rotation × horizontal distance” we can express the virtual rotation
δθ at A in the virtual displacement δu:

δθ = δu

a
.

In equilibrium equations, a load on a rigid body can be replaced by its
resultant. This also applies to the formulation of the virtual work equation.
The distributed loads on AS and SB are replaced by their resultants:

RAS = qa and RSB = 2qa.

The virtual displacements at the point of these resultants are easy to
determine, and are both 1

2δu.
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For equilibrium the virtual work is zero:

δA = +Am · δθ + RAS · 1
2δu + RSB · 1

2δu

= +Am · δu

a
+ qa · 1

2δu + 2qa · 1
2δu = 0

so that

Am = − 3
2qa2.

In reality, Am therefore acts in the direction opposite to the one assumed in
Figure 15.22b.

Note: It is incorrect to use the resultant of the total distributed load over
ASB. This gives a different (and incorrect) result. Check it!

15.5.2 Section forces

Example 1 – Bending moment
The simply supported beam in Figure 15.23a carries a uniformly distributed
load over its entire length. Here we will calculate the bending moment MC
at cross-section C, at a third of the span.

Solution:
Change the structure into a mechanism (Figure 15.23b) by applying a hinge
at C. Since a hinge cannot transfer bending moments, the bending moment
MC at C is applied to the mechanism as an external load. We have to take
into account that the bending moment is an interaction force and therefore
occurs as a pair of moments: one moment MC acts on the left-hand part and
another moment MC, equal and opposite, acts on the right-hand part. The
direction of MC in Figure 15.23b is an assumption.

Assume C is subjected to a vertical virtual displacement δu. Figure 15.23c
shows the virtual displacement of the mechanism. AC undergoes a rotation
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Figure 15.23 (a) Simply supported beam with (b) a mechanism
for determining the bending moment at C, and (c) a kinematically
admissible virtual displacement of the mechanism.

δθAC, and CB undergoes a rotation δθCB. Both rotations can be expressed
in terms of δu:

δθAC = δu

a
and δθCB = δu

2a
.

Having replaced the distributed loads on AC and CB by their resultants, we
find the virtual work equation:

δA = −MC · δθAC − MC · δθCB + qa · 1
2δu + 2qa · 1

2δu

= −MC · δu

a
− MC · δu

2a
+ qa · 1

2δu + 2qa · 1
2δu = 0

so that

MC = +qa2.

The plus sign indicates that the bending moment acts in the direction
assumed in Figure 15.23b.

Of course, the result is the same if we select a virtual displacement δu at C
upwards instead of downwards. We have to realise that the virtual displace-
ment of the mechanism has nothing to do with the actual deformation of
the beam. In the virtual work equation, the actual deformation of the beam
is neglected and all beam segments are considered entirely rigid.

In the deformed mechanism, beam segments AC and CB bend with respect
to one another at the joint by δθC. This is also referred to as a “gap”.

From the geometry of the deformed mechanism in Figure 15.23c we find

δθC = δθAC + δθCB.

Looking back to the virtual work equation, we see that the contribution by
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Figure 15.24 (a) Simply supported beam with (b) a mechanism for
determining the shear force at C and (c) a kinematically admissible
virtual displacement of the mechanism.

the pair of moments MC, regardless of the sign, is equal to

δA(due to MC) = “bending moment × gap”

= MC · δθC.

The sign is determined by the directions in which we choose the bending
moment and the virtual displacement.

Example 2 – Shear force
We will now derive the shear force VC at C for the same beam as in
Example 1 (see Figure 15.24a).

Solution:
Change the structure into a mechanism (Figure 15.24b) by creating a slide
or shear force hinge at C that cannot transfer shear forces.

The shear force is applied to the mechanism at C as an (external) load.
Since the shear force is an interaction force it acts as a pair of forces:
one shear force VC acts on the left-hand segment and another equal and
opposite shear force VC acts on the right-hand segment. The direction of
VC in Figure 15.24b is an assumption.

Let the mechanism undergo a virtual displacement by displacing beam seg-
ments AC and CB at the shear force hinge over a distance δu with respect
to one another. Both beam segments remain parallel to one another and are
subject to the same rotation δθ . We find the relationship between δu and δθ

from the geometry of the deformed mechanism in Figure 15.24c:

δu = 3aδθ.

After replacing the distributed loads on AC and CB by their resultants, we
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Figure 15.25 (a) Hinged beam with the mechanisms for determin-
ing (b) the support moment at B, (c) the shear force directly to the
left of B and (d) the shear force directly to the right of B.

find the following for the virtual work equation:

δA = −VC · aδθ − VC · 2aδθ + qa · 1
2aδθ − 2qa · aδθ = 0

so that

VC = − 1
2qa.

The minus sign indicates that the direction of VC is opposite to the direction
assumed in Figure 15.24b.

In the virtual work equation, the contribution of the shear force VC,
regardless of the sign, is equal to

δA(due to VC) = “shear force × displacement in the shear force hinge”

= VC · δu.

The sign is determined by the directions in which we assume the shear force
and the virtual displacement.

Example 3 – Forces in a hinged beam
For the hinged beam in Figure 15.25a we will look for the mechanisms to
determine the support moment at B, the shear force directly to the left of B
and the shear force directly to the right of B.

Solution:
In order to find the support at B we convert the beam into a mechanism by
introducing a hinge at B (Figure 15.25b). The bending moment is allowed to
act on the mechanism as a load (as a pair of moments). The direction of MB
and the direction of the virtual displacement δθ can be chosen arbitrarily.

Figure 15.25c shows the mechanism for the shear force directly to the left
of B. At this point, a slide or shear force hinge has been fitted into the beam.
The shear force VB has been applied on the mechanism as a load (a pair of
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forces). At the shear force hinge, segments SB and BC can displace only
with respect to one another, and cannot turn with respect to one another.
Segments SB and BC therefore remain parallel. BC is fixed in a horizontal
position due to the supports at B and C. With the vertical displacement δu,
SB therefore remains horizontal.

Figure 15.25d gives the mechanism for the shear force directly to the right
of B. Here too, SB and BC remain parallel. Due to the displacement δu at
the shear force hinge, BC undergoes a rotation δθ = δu/2a. SB undergoes
the same rotation.

If the beam carries a uniformly distributed load q over its entire length
(Figure 15.25a) the support moment at B is

MB = −qa2.

The shear force directly to the left of B is

VB = + 3
2qa.

The shear force directly to the right of B is

VB = − 3
2qa.

Check the answers using these mechanisms.

Example 4 – Normal force
Here we will derive the normal force in the truss in Figure 15.26a for the
member DE using the principle of virtual work.

Solution:
Convert the truss into a mechanism by introducing a connection in mem-
ber DE that cannot transfer normal forces. Such a telescopic connection is

normal force N is applied to the mechanism as a load (a pair of forces). In

Figure 15.25 (a) Hinged beam with the mechanisms for determin-
ing (b) the support moment at B, (c) the shear force directly to the
left of B and (d) the shear force directly to the right of B.

also referred to as a normal force hinge. At the normal force hinge, the
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Figure 15.26 (a) Truss with (b) a mechanism for determining
the normal force in DE and (c) a kinematically admissible virtual
displacement of the mechanism.

Figure 15.26b it has been assumed that the normal force is a tensile force.

Figure 15.26c shows the virtual displacement for the mechanism. The
mechanism consists of two self-contained bodies ACD and BCE that can
respectively rotate about A and B and are hinged at C.

With the rules

“horizontal displacement = rotation × vertical distance”, and

“vertical displacement = rotation × horizontal distance”,

we can determine the rotation of the parts ACD and BCE and the displace-
ments of the joints. Figure 15.26c all the relevant quantities are expressed
in terms of the vertical displacement δw of joint C.

The member ends in the normal force hinge move with respect to one
another over a distance δu that is equal to the distance that the joints D
and E move towards one another:

δu = 1
4δw + 1

2δw = 3
4δw.

We write down the virtual work equation:

F · 1
2δw + N · δu = F · 1

2δw + N · 3
4δw = 0

so that

N = − 2
3F.

The normal force in member DE is therefore a tensile force.

In the virtual work equation, the contribution by the normal force N ,
regardless of the sign, is equal to
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δA(due to N) = “normal force × displacement in the normal force hinge”

= N · δu.

The sign is determined by the directions of the normal force and virtual
displacement.

This example shows that the initial simplicity of the virtual work equa-
tion to replace the equilibrium equations is somewhat overshadowed by the
more complicated geometry of the deformed mechanism.

Figure 15.26 (a) Truss with (b) a mechanism for determining
the normal force in DE and (c) a kinematically admissible virtual
displacement of the mechanism.
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15.6 Problems

General comment: All calculations must be performed using virtual work.

Virtual work – mixed problems

15.1: 1–2 A particle is compelled to follow the following parabolic path in
the xy plane:

y = −x2

2a
.

The particle is loaded by a horizontal and vertical force, as shown in the
figure. There is no friction.

Questions:
a. At which point(s) is the particle in equilibrium? Give the coordinates

for this/these point(s).
b. Can you (intuitively) say anything about the reliability (stability) of the

equilibrium at this/these point(s)?

15.2: 1–4 A particle is compelled to follow a frictionless path in the xy

plane between A and B with the following definition:
√

x + √
y = √

a.

Here a = 9 m. The particle is loaded by the forces shown in the figure.

Questions:
a. At which position(s)

is the particle in
equilibrium between A
and B? Give the coor-
dinates for this/these
point(s).

b. Can you (intuitively)
say anything about the
reliability (stability)
of the equilibrium at
this/these position(s)?

15.3: 1–2 A particle is compelled to follow the frictionless path of a cubic
parabola:

y = 3
√

x.

The particle is loaded by the forces shown in the figure.

Questions:
a. At which position(s) is the particle in equilibrium? Give the coordinates

for this/these point(s).
b. Can you (intuitively) say anything about the reliability (stability) of the

equilibrium at this/these position(s)?
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15.4: 1–4 A particle is compelled to follow an elliptical path:

x2

a2
+ y2

b2
= 1

with a = 2 m and b = 4 m. The path is frictionless. The particle is loaded
by the forces shown in the figure.

Questions:
a. Draw the path of the particle.
b. At which position(s) is the particle in equilibrium? Give the coordinates

for this/these point(s).
c. Can you (intuitively) say anything about the reliability (stability) of the

equilibrium in this/these position(s)?

15.5: 1–4 A block is supported on a roller at A and a hinge at B, and is
loaded by a force F = 20

√
2 kN in four different ways.

Questions:
a. Determine the support reaction at A.
b. Determine the vertical component of the support reaction at B.
c. Determine the horizontal component of the support reaction at B.

15.6: 1–6 You are given a number of structures fixed at A.

Questions:
a. Determine the horizontal support reaction at A.
b. Determine the vertical support reaction at A.
c. Determine the fixed-end moment at A.

15.7: 1–4 A number of beams are supported on a hinge and a roller. The
dimensions are in m, the forces are in kN.
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Questions:
a. Determine (the components of) the support reaction at A.
b. Determine (the components of) the support reaction at B.

15.8: 1–8 A number of beams, simply supported at A and B, are composed
of segments AC and BC that are rigidly joined at C. The location of joint
C is shown in the figure by means of a vertical dash. The forces are given
in kN, the lengths are in m.

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B
c. Determine the shear force at C.
d. Determine the bending moment at C.

15.9: 1–10 For hinged beam ABC you are given the lengths in metres and
forces in kN.

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B.
c. Determine the support reaction at C.
d. Determine the support moment at B.
e. Determine the shear force directly to the left of B.
f. Determine the shear force directly to the right of B.

15.10: 1–10 As problem 15.9, but replace the concentrated loads by a
uniformly distributed load of 10 kN/m over the entire length of the beam.
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15.11 The hinged beam shown is subject to a uniformly distributed load of
18 kN/m.

Questions:
a. Determine the shear force at E.
b. Determine the bending moment at E.
c. Determine the shear force at G.
d. Determine the bending moment at G.
e. Determine the shear force at H.
f. Determine the bending moment at H.
g. Determine the shear force at K.
h. Determine the bending moment at K.


