
(a) A lintel carrying the triangular part of the brick-
work. (b) Modelling of lintel and load as a beam with triangular
load.

13Calculating M, V and N
Diagrams

In this chapter, we will look at a number of examples for calculating
M , V and N diagrams. In the presentation we distinguish between the
self-contained structures in Section 13.1, the somewhat more complex
compound and associated structures in Section 13.2 and the statically inde-
terminate structures in Section 13.3. For some of the calculations we will,
to prevent repetition, make only a start, and leave it to the reader to work out
the answer further. Should you decide to work out the questions yourself,
you will notice that there are several ways to arrive at the answer.

13.1 Self-contained structures

In this section we will be determining the M , V , and sometimes the N

diagrams for self-contained structures subject to distributed loads.

13.1.1 Beam with triangular load (lintel)

The lintel in Figure 13.1a is supporting the part of the brickwork shown
above a door opening. The load on the lintel modelled as a line element
is the triangular load in Figure 13.1b, with top value q̂. The brick wall is
d = 240 mm thick. The mass density of the brickwork is ρ = 1800 kg/m3.

Figure 13.1
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Figure 13.2 (a) Beam with triangular load. (b) The isolated beam
with the field loads on AC and BC replaced by their resultants, and
the associated support reactions. (c) Bending moment diagram and
(d) shear force diagram.

Questions:
a. Determine the top value q̂ of the triangular load.
b. For AB, determine and draw the M and V diagrams. At A and B

also draw the tangents to the M diagram. How large is the maximum
bending moment?

Solution:
a. The height h of the brickwork in Figure 13.1a is

h = (1 m) × tan 60◦ = 1.732 m.

With a gravitational field strength of g = 10 N/kg, the top value q̂ of the
triangular load on the lintel is

q̂ = ρghd = (1800 kg/m3)(10 N/kg)(1.732 m)(0.240 m) ≈ 7.5 kN/m

(see Figure 13.2a).

b. In Figure 13.2b, the distributed loads on AC and BC have been replaced
by their resultants R:

R = 1
2 × (1 m)(7.5 kN/m) = 3.75 kN.

The support reactions are also shown.

In Figures 13.2c and 13.2d, the M and V diagrams due to these resultants
are shown by means of dashed lines. This way, we can find the correct
values for M and V at A, B and C (shown by means of dots) and the correct
slopes of the M diagram.

We can now draw the actual M diagram, a cubic, see the solid line in Fig-
ure 13.2c. The maximum bending moment occurs at midspan and is 2.5
kNm.
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Figure 13.3 Parabolic load over AB on beam ABC.

The actual V diagram is parabolic (see the solid line in Figure 13.2d). The
slope of the V diagram is equal to the magnitude of the distributed load.
At A and B, the distributed load is zero, and the V diagram has horizontal
tangents. At C, the distributed load is largest, and the slope of the V dia-
gram is steepest. The slope is 7.5 kN/m, and is shown separately in Fig-
ure 13.2d.

13.1.2 Beam with parabolic distributed load

Beam ABC in Figure 13.3 is supported by a hinge at A and on a roller at
B. The beam is loaded by a parabolic distributed load in field AB and a
point load of 25 kN at end C of cantilever BC. The longitudinal dimensions
of the beam are shown in the figure. The parabolic distributed load can be
represented with

q(x) = −30
(x

�

)2 + 30
(x

�

)
kN/m.

Here, � = 10 m is the length of AB. The dead weight of the beam is not
considered in the calculation.

Questions:
a. Replace the distributed load over AB by its resultant, and draw the M

and V diagrams for the entire beam ABC.
b. Draw a (rough) sketch of the actual M and V diagrams for AB. In

addition to the deformation symbols in the M and V diagrams, also
include the plus and minus signs in the given xz coordinate system.

c. For AB, through consecutive integration, determine the shear force V

and the bending moment M as a function of x. Determine the values of
V and M at A and B and at the middle D of field AB. At D draw the
tangent to the M diagram.

d. Where in AB is the field moment a maximum? It is enough to give
a rough indication of the location. Using the M diagram estimate the
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value of the maximum field moment. This value need not be determined
accurately.

Solution (units kN and m):
a. With � = 10 m, for the parabolically distributed load on AB it applies
that

q(x) = (−0.3x2 + 3x) kN/m

if x is expressed in metres. The top of the parabola is at the middle of AB.
This is derived from

dq(x)

dx
= −0.6x + 3 = 0 ⇒ x = 5 m.

On the basis of symmetry, the resultant R of the distributed load is acting
here. The magnitude of R is equal to the area of the load diagram, and is
found by integrating the distributed load:

R =
∫ 10

0
q(x) dx =

∫ 10

0
(−0.3x2 + 3x) dx = (−0.1x3 + 1.5x2)

∣∣∣10

0

= 50 kN.

Figure 13.4a shows the resultant R, together with the support reactions at
A and B. In Figures 13.4b and 13.4c, the M and V diagrams due to this
(concentrated) force R are shown (with dashed lines for AB).

b. The M and V diagrams are correct for the cantilever BC. In field AB,
only the values at A and B (shown by means of dots) are correct. In addition,
at A and B the dashed M diagram B is tangent to the actual M diagram.
There are no other handholds to sketch the M diagram, but we can now
certainly make a rough sketch (see the solid line in Figure 13.4b).

Figure 13.3 Parabolic load over AB on beam ABC.
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Figure 13.4 (a) Support reactions, (b) bending moment diagram
and (c) shear force diagram.

The actual V diagram has horizontal tangents at A and B because the dis-
tributed load is zero there. This allows us to make a pretty good sketch of
the V diagram (see the solid line in Figure 13.4c).

c. With

q(x) = −0.3x2 + 3x

integrating gives

V = −
∫

q(x) dx = +0.1x3 − 1.5x2 + C1.

Beware of the signs!

After integrating again we find

M =
∫

V dx = +0.025x4 − 0.5x3 + C1x + C2.

The integration constants C1 and C2 follow from the boundary condi-
tions. Because the M and V diagrams are roughly known, we have a free
choice here. Below we have selected the boundary conditions relating to
the bending moments at A and B:

x = 0; M = 0 ⇒ C2 = 0,

x = 10; M = −50 ⇒ C1 = +20 kN.

For the variation of the shear force and the bending moment we find

V = (0.1x3 − 1.5x2 + 20) kN, (a)

M = (+0.025x4 − 0.5x3 + 20x) kNm. (b)
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Check: With x = 0 and x = 10 expression (a) must give the shear force at
A, and that to the left of B, respectively:

x = 0; V = +20 kN (correct) ,

x = 10; V = +100 − 150 + 20 = −30 kN (correct) .

At D (x = 5):

V = +0.1 × 53 − 1.5 × 52 + 20 = −5 kN,

M = +0.025 × 54 − 0.5 × 53 + 20 × 5 = +53.125 kNm.

At D, the middle of span AB, the tangent to the M diagram is parallel to
the chord k (see Figure 13.4.b).

d. The maximum bending moment in AB will occur slightly to the left of
the middle D. Looking at the M diagram in Figure 13.4b, we can estimate
the magnitude of that moment as approximately 55 kNm.

Accurate determination:
If we are looking for the root of the V diagram, (a) gives

x = 4.33 m.

Substituting this value in (b) leads to an accurate value of the maximum
bending moment:

Mmax = 54.8 kNm (�).

13.1.3 Beam on three bar supports with a uniformly distributed
load

The structure in Figure 13.5 consists of a beam supported by three bars.
Dimensions and loads are given in the figure.

Figure 13.4 (a) Support reactions, (b) bending moment diagram
and (c) shear force diagram.
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Figure 13.5 Beam on three bar supports.

Figure 13.6 Support reactions.

Questions:
a. Determine the support reactions at P, Q and R. Draw them as they act

in reality, and include their values.
b. For ABCD, draw the V and M diagrams, with the deformation sym-

bols. Include relevant values. At A, B and E also draw the tangents to
the M diagram.

c. Determine the location and magnitude of the maximum field moment
in BC.

Solution:
a. In Figure 13.6, the distributed load over AE has been replaced by its
resultant of (8 kN/m)(8 m) = 64 kN. This simplifies the calculation for the
support reactions. From the moment equilibrium about S we can find the
vertical support reaction at Q:

∑
Ty |S = 0 ⇒ Qv = 32 kN (↓).

From the moment equilibrium about T we can find the vertical support
reaction at R:

∑
Ty |T = 0 ⇒ Rv = 48 kN (↑).

From the slope of bar support RC we find

Rh = 1
2Rv = 24 kN (←).

Finally, the horizontal and vertical force equilibrium gives

∑
Fz = 0 ⇒ Pv = 48 kN (↑),∑
Fx = 0 ⇒ Ph = 24 kN (→).
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Optional solution question a:
With Ph = 1

2Pv the moment equilibrium about C gives

Pv = 48 kN (↑),

Ph = 24 kN (→).

The horizontal force equilibrium gives

Rh = 24 kN (←).

The slope of the bar support RC gives

Rv = 2Rh = 48 kN (↑).

Finally, the vertical force equilibrium gives:

Qv = 32 kN (↓).

b. Figure 13.7a shows the isolated beam AD with all the forces acting on it.
To simplify the calculation and drawing of the V and M diagrams for the
fields AB and BC, the resultants of the distributed loads are also shown.

In Figures 13.7b and 13.7c, the dashed line shows the V and M diagrams
due to the concentrated forces. These diagrams have to be adjusted in fields
AB and BE. Here the shear force is linear and the bending moment is
parabolic. The parabolic bending moment diagram “hangs” between the
values at A, B and E. The definitive V and M diagrams are shown as solid
lines.

Checking the M diagram for field BE:
In the middle of the field, the parabola bisects the distance between the
chord (8 kNm) and the top value due to the load resultant (80 kNm). From

Figure 13.5 Beam on three bar supports.

Figure 13.6 Support reactions.
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Figure 13.7 (a) The isolated beam AD with its (b) shear force
diagram and (c) bending moment diagram.

Figure 13.8 A pile that is picked up to be driven, can be seen as a
simply supported beam with overhang.

Figure 13.7c we can deduce:

p = (80 − 8) kNm

2
= 36 kNm.

This value of p, the rise of the parabola, must be equal to 1
8q�2, in which �

is the length of field BE:

p = 1
8 (8 kN/m)(6 m)2 = 36 kNm.

This is the case.

c. From the V diagram we can deduce that the shear force in field BC is
zero at G, 4 m to the right of B. Here the maximum field moment occurs.
We can determine the magnitude from the moment equilibrium of beam
segments AG or GD, or from the area of the V diagram for beam segments
AG or GD. From the area of the V diagram for beam segment AG we find

Mmax =
∣∣∣ 1

2 (2 m)(16 kN) − 1
2 (4 m)(32 kN)

∣∣∣ = 48 kNm (�).

If we look at beam segment GD this must off course give the same value:

Mmax =
∣∣∣ 1

2 (2 m)(16 kN) + (2 m)(16 kN)

∣∣∣ = 48 kNm (�).

13.1.4 Pile (cantilever beam)

A concrete pile with length � = 20.5 m and square cross-section of
0.35 × 0.35 m2 is supported as shown in Figure 13.8. The mass density
ρ of concrete is assumed ρ = 2500 kg/m3.

Questions:
a. Determine and draw the M and V diagrams. At A, B and C also draw

the tangents to the M diagram.
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Figure 13.9 (a) Model for the pile subject to its dead weight.
(b) The load resultants on AB and BC and the associated sup-
port reactions. (c) Bending moment diagram and (d) shear force
diagram.

b. Determine the extreme value(s) of the bending moment.
c. Where should the support B be placed to minimise the bending

moment? Draw the associated M and V diagrams.

Solution:
a. The dead weight of the pile is q = ρgA, in which g = 10 N/kg is the
gravitational field strength and A is the cross-sectional area of the pile:

q = ρgA = (2500 kg/m3)(10 N/kg)(0.35 m)2 = 3062.5 N/m.

Hereafter, assume q = 3 kN/m.

Figure 13.9a shows the model for the pile. In Figure 13.9b, the distributed
loads in fields AB and BC have been replaced by their resultants, and the
support reactions are shown. In Figure 13.9c, the M diagram due to the load
resultants is shown by means of dashed lines. At A, B and C the dashed
diagram gives the correct values for the actual M diagram and the correct
tangents. The actual M diagram is shown by means of a solid line.

Checking the M diagram in field AB (see Figure 13.9c):

p = 1
8q�2 = 1

8 (3 kN/m)(16.5 m)2 = 102.1 kNm = (12 + 192.2)/2 kNm.

In Figure 13.9d, the V diagram due to the resultants is shown by dashed
lines. This V diagram gives the correct values in A, B and C. The actual V

diagram is linear, and is shown by means of a solid line.

Checking the V diagram:
The slope of the V diagram is equal to the distributed load, and is the same
in both fields.

b. From the V diagram in Figure 13.9d we find that the shear force in
field AB is zero at D. This is where the bending moment in the field is
an extreme. The distance from D to A is
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Figure 13.10 (a) Simply supported beam with total length � and
overhang of length a. (b) If the maximum bending moment at E
is equal to the bending moment at B, the hatched areas in the V

diagram are also equal.

�AD = 23.3

23.3 + 26.2
× (16.5 m) = 7.77 m.

The bending moment at D can be found from the moment equilibrium of
the isolated segment AD or, as shown below, from the area of the V diagram
for AD:

Mmax = 1
2 (7.77 m)(23.3 kN) = 90.5 kNm.

Another extreme bending moment is the support moment1 at B. Note that
this moment can be found from the area of the V diagram for segment BC
(see Figure 13.9d):

Mmin = 1
2 (4 m)(12 kN) = 24 kNm.

c. Let the total length of the pile be � and the length of the overhang be a

(see Figure 13.10a). Figure 13.10b shows a sketch of the V diagram. The
shear force to the right of B is equal to qa. The slope of the V diagram
is the same everywhere. The extreme bending moments occur at E and B.
The bending moment at B is equal to the hatched area of the V diagram
between B and C:

MB = 1
2qa2.

The bending moment at E is equal to the hatched area of the V diagram
between A and E. The bending moment in the pile is least when the extreme
bending moments at E and B are equal:

ME = MB = 1
2qa2.

1 A support moment is the bending moment in the beam at a support.
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Figure 13.11 (a) The pile supported in such a way that the maxi-
mum field moment in AB and the support moment at B are of equal
magnitude. (b) Associated shear force diagram and (c) bending
moment diagram.

In that case, the shear force diagrams for AE and BD must be equal. From
this it follows that the shear force at A is equal to qa, and the length of
AE is equal to a. From the linear variation of the shear force along AB,
it follows that the shear force to the left of B is equal to q(� − 2a). The
total area of the M diagram is zero as there are no concentrated couples
acting. The hatched area of the V diagram must therefore be equal to the
non-hatched area:

2 × 1
2qa2 = 1

2q(� − 2a)2.

This leads to the following quadratic equation in a:

2a2 − 4�a + �2 = 0.

The solution is

a = −(−4�) ± √
(−4�)2 − 4 × 2 × �2

2 × 2
=
(

1 ± 1
2

√
2
)

�.

Since a < � the solution with the plus sign is invalid, so that

a =
(

1 − 1
2

√
2
)

� = 0.293�.

With � = 20.5 m this gives

a = 0.293 × (20.5 m) = 6 m.

Figure 13.11 shows the associated M and V diagrams. The extreme bend-
ing moments are

ME = MB = 1
2 (3 kNm)(6 m)2 = 54 kNm.
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Figure 13.13 (a) Due to the prestressing, the eccentric compres-
sive forces Fp are exerted on the ends of the beam. (b) The beam
modelled as a line element. The eccentric compressive forces on the
beam ends cause couples. (c) Shear force diagram and (d) bending
moment diagram. (e) The maximum bending moment at the shear
force zero E can be found from the moment equilibrium of AE.

Figure 13.12 Simply supported prestressed beam with a uni-
formly distributed load on the right-hand side. The straight single
bar tendon has eccentricity e.

13.1.5 Prestressed beam

The simply supported beam AB in Figure 13.12 has a length � = 8 m and
is prestressed with a straight single bar tendon. The tendon is at a distance
e = 0.2 m under the beam axis. The prestressing force is Fp = 200 kN.
The right-hand half of the beam is loaded by a uniformly distributed load
q = 20 kN/m.

Questions:
a. Model beam AB as a line element and draw all the forces acting on it.
b. Draw the V and M diagrams with the deformation symbols. Include

relevant values.
c. Determine the location and magnitude of the maximum bending mo-

ment in the beam.

Solution:
a. Via the anchorages the tensile force Fp = 200 kN in the tendon ex-
erts equal compressive forces Fp = 200 kN on the beam ends (see Fig-
ure 13.13a). In Figure 13.13b, the beam has been modelled as a line
element. By definition, the line element coincides with the beam axis. So
the force flow is assumed to occur via the beam axis. All the forces are
therefore shifted to the beam axis. The eccentric compressive forces on the



558 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

beam ends are statically equivalent with centric compressive forces (forces
acting in the beam axis) Fp = 200 kN and additional couples T :

T = Fpe = (200 kN)(0.2 m) = 40 kNm.

To simplify the calculation, the uniformly distributed load over BC has been
replaced by its resultant R in Figure 13.13b:

R = q × 1
2� = (20 kN/m)(4 m) = 80 kN.

The support reactions follow from the moment equilibrium about supports
A and B.

b. Figure 13.13c shows the V diagram. We can first draw the V diagram for
all the concentrated forces (dashed line), and then adapt them for field CB
by drawing a linear path between the values at C and B.

Figure 13.13d shows the M diagram. We first draw the M diagram due to
the concentrated forces (dashed line) and then adjust the variation for field
CB by sketching a parabola between the values at C and B, where it is
tangent to the M diagram due to the resultant R of the distributed load. At
the middle D of field CB the distance p between chord k and the parabola
is

p = 1
8q

(
1
2�
)2 = 1

8 (20 kN/m)(4 m)2 = 40 kNm.

Here the tangent is parallel to chord k.

For the bending moment at the middle D of field CB, we can read from the
M diagram in Figure 13.13d:

MD = p = 40 kNm (�)

Figure 13.13 (a) Due to the prestressing, the eccentric compres-
sive forces Fp are exerted on the ends of the beam. (b) The beam
modelled as a line element. The eccentric compressive forces on the
beam ends cause couples. (c) Shear force diagram and (d) bending
moment diagram. (e) The maximum bending moment at the shear
force zero E can be found from the moment equilibrium of AE.
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Figure 13.14 (a) A slice from a long floating concrete barge. (b)
The slice modelled as a line element.

Check: The tangents at C and B intersect at D at a distance 2p under chord
k.

c. The maximum bending moment in field AB occurs where the shear force
V = dM/dx is zero. This is at E, 1 m to the right of the middle C of beam
AB. The magnitude of this maximum can, for example, be determined from
the moment equilibrium about E of beam segment AE (see Figure 13.13e).
This gives

Mmax = 50 kNm (�).

Note that this maximum moment is not equal to the area of the V diagram
for beam segment AE or BE, while the total area of the V diagram certainly
is zero. It is left to the reader to explain this.

13.1.6 Slice from a long floating barge

A transverse slice has been isolated from the long floating concrete trough
in Figure 13.14a, and has been modelled as the line element in Fig-
ure 13.14b. The dead weight of the slice is uniformly distributed over walls
and bottom and is 12 kN/m. The dimensions and depth can be read from
the figure. Note: The width of the slice is unknown.

Questions:
a. From the equilibrium of the slice modelled as a line element, determine

the water pressure on the bottom AB. Draw the water pressure on both
the bottom and the walls. Include the values.

b. Isolate bottom AB, and draw all the forces acting on it. Include the
values.

c. For the entire slice, draw the M , V and N diagrams, with the defor-
mation symbols. Include relevant values.

d. Determine the maximum bending moment. Where does it occur?
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Figure 13.15 (a) The distribution of the water pressure and (b) the
resulting water pressure on the walls. (c) The isolated bottom with
all the forces and couples acting on it.

Solution:
a. Figure 13.15a shows the water pressure on the slice modelled as a line
element. The water pressure on the bottom is constant. Let the water pres-
sure there be qw. The water pressure on the walls varies linearly from zero
at the water level to qw at the bottom. The upward water pressure qw on
the bottom must be in equilibrium with the dead weight of the bottom and
walls of the strip:

(6 m) × qw (↑) = {(6 m) + 2 × (3 m)} × (12 kN/m) (↓)

= 144 kN (↓).

This gives qw = 24 kN/m.

b. The resulting water pressure R on the walls is (see Figure 13.15b):

R = 1
2 (24 kN/m)(2.5 m) = 30 kN.

The forces R, which pass through the centroid of the load diagram and
therefore act (2.5 m)/3 above bottom AB, exert horizontal forces of 30 kN
on AB and couples of (30 kN)(2.5 m)/3 = 25 kNm. The bottom AB can be
seen as an eccentrically compressed beam. In addition, at A and B, the verti-
cal forces due to the dead weight of the walls are (3 m)(12 kN/m) = 36 kN.
In Figure 13.15c, the base AB has been isolated, and all the forces are
shown. The resulting (uniformly) distributed load q on base AB is equal to
the difference between the upward water pressure qw = 24 kN/m (↑) and
the dead weight qw = 12 kN/m (↓):

q = qw − qdw = (24 kN/m) − (12 kN/m) = 12 kN/m) (↑).

c. Figures 13.16a to 13.16c shows the M , V and N diagrams for the entire
structure.
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Figure 13.16 (a) Bending moment diagram, (b) shear force dia-
gram and (c) normal force diagram for the slice from the floating
concrete barge modelled as a line element.

Walls: Due to the linearly distributed water pressure, the M diagram is a
cubic, and the V diagram is a parabola. In order to find the tangents to the
M diagram at A and B, the M diagram due to resultant R has been shown by
means of dashed lines. The slope of the V diagram is zero, where the water
pressure is zero and increases downwards. Due to the uniformly distributed
dead weight, the normal force in the wall is linear.

Bottom: Due to the uniformly distributed (upward) load, the bending mo-
ment is parabolic and the shear force is linear. The moments at A and B “go
round the corner”. Between A and B a parabola is “hanging” with a rise p

in the middle:

p = 1
8q�2 = 1

8 × (12 kN/m)(6 m)2 = 54 kNm.

Because the distributed load is acting upwards, the parabolic M diagram is
turned upwards. The normal force in the bottom is a constant compressive
force of 30 kN.

d. In the middle of field AB, the shear force is zero and the bending moment
is an extreme. The maximum field moment is an upward bending moment
and can be determined from the M diagram in Figure 13.16b:

Mmax = (54 kNm) − (25 kNm) = 29 kNm (�).

In addition, there are boundary extremes at A and B of 25 kNm (�).

13.1.7 Floating tunnel segment

A tunnel segment is afloat, waiting to be towed to the location where it
will be sunk. The tunnel segment can be seen as a rigid beam and has a
freeboard of 0.09 m (see Figure 13.17). The length �, width b and height h

of the tunnel segment are respectively 80, 9.5 and 6 m.
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Figure 13.17 Longitudinal view and cross-section of a floating
tunnel segment.

Figure 13.18 Distribution of the water pressure on the tunnel
segment.

Figure 13.19 (a) Water pressure on the tunnel segment modelled
as a plane element.

Figure 13.17 also shows the place of the normal force centre NC of the
tunnel segment. The dead weight of the tunnel is 554 kN/m. The two tem-
porary bulkheads both have a dead weight of 298 kN. The mass density of
water is γw = 10 kN/m3.

Questions:
a. Determine and draw the water pressure on the base of the tunnel. Write

down the units.
b. Draw the variation of the water pressure on a bulkhead. Write down the

units.
c. Model the tunnel segment as a line element. Draw all the forces

(distributed or not) (and/of couples) acting on it. Include the values.
d. Draw the N diagram, V diagram and M diagram for the tunnel segment

including the deformation symbols. Include relevant values. Determine
the maximum bending moment in the tunnel segment.

Solution:
a. The water pressure pw on the base of the tunnel is

pw = γwd

in which d = (6.00 m) − (0.09 m) = 5.91 m is the depth of water at the
base of the tunnel (see Figure 13.18), so that

pw = (10 kN/m3)(5.91 m) = 59.1 kN/m2.

b. The horizontal water pressure on the bulkheads varies linearly over the
height (see Figure 13.18).

c. In Figure 13.19a, the tunnel has been modelled as a plane element. The
water pressure on the base is

qw = bpw = (9.5 m)(59.1 kN/m2) = 561.45 kN/m.
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Figure 13.19 (b) Forces (and couples) on the tunnel section
modelled as a line element.

Figure 13.20 (a) The tunnel segment modelled as a line element
with its (b) normal force diagram (c) shear force diagram and (d)
bending moment diagram.

The resulting water pressures R on the bulkheads are

R = 1
2qwd = 1

2 × (561.45 kN/m)(5.91 m) = 1659 kN.

The forces R act at a distance d/3 = 5.91 m)/3 = 1.97 m from the base
of the tunnel segment. The eccentricity e with respect to the tunnel axis
(through the normal force centre NC) is

e = (2.92 m) − (1.97 m) = 0.95 m.

In Figure 13.19b, the tunnel segment has been modelled as a line element.
The force flow is assumed to take place along the tunnel axis, through the
normal centre NC. All the forces are therefore shifted to the tunnel axis. By
shifting the eccentric water pressures R on the bulkheads to the tunnel axis,
couples T are generated at the ends of the line element:

T = Re = (1659 kN)(0.95 m) = 1576 kNm.

In addition to the upward water pressure qw = 561.45 kN/m (↑), there
is also the dead weight of the tunnel segment qdw = 554 kN/m (↓). The
resulting distributed load is an upward load q:

q = qw − qdw = (561.45 kN/m) − (554 kN/m) = 7.45 kN/m) (↑).

Check: The resulting upward load q , shown in Figure 13.20a, must be in
equilibrium with the dead weight of the bulk heads:

∑
Fvert (↓) = 2 × (298 kN) − (7.45 kN/m)(80 m) = 0.

d. Figure 13.20b to d shows the N , V and M diagrams. The normal force is
a constant compressive force. The shear force varies linearly. The bending
moment varies parabolically. Since the distributed load is acting upwards
the parabolic M diagram is also aimed upwards. The maximum bending
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moment occurs in the middle of the tunnel segment. This can be determined
from the moment equilibrium of half a tunnel segment or directly from the
M diagram. In the middle of the tunnel segment, the distance a from the
chord k to the parabola is

a = 1
8q�2 = 1

8 × (7.45 kN/m)(80 m)2 = 5960 kNm

with which we can find the maximum bending moment:

Mmax = (1576 kNm) + (5960 kNm) = 7536 kNm (�).

Figure 13.20d shows the end tangents to the M diagram.

13.1.8 Oblique roof beam on bar supports with triangular load

The structure in Figure 13.21 is subject to a linear distributed load normal
to ABC, varying from from 18 kN/m at A to zero at C.

Questions:
a. Determine the support reactions at A, E and D. Draw them as they act

in reality and include their values.
b. Isolate beam ABC, and draw all the forces acting on it.
c. For ABC draw a clear sketch of the V and M diagrams, with the de-

formation symbols and the plus and minus signs in the given (local) xz

coordinate system. Include relevant values, and at A, B and C draw the
tangents to the M diagram.

d. For AB, determine the shear force V and the bending moment M as a
function of x. Use the given xz coordinate system.

Solution:
a. The support reactions are shown in Figure 13.22. To determine the
support reactions, the triangular load on ABC is replaced by its resultant

Figure 13.20 (a) The tunnel segment modelled as a line element
with its (b) normal force diagram (c) shear force diagram and (d)
bending moment diagram.
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Figure 13.21 Oblique roof beam with triangular load.

Figure 13.22 Support reactions.

RABC:

RABC = 1
2 × (18 kN/m)(6

√
2 m) = 54

√
2 m.

The vertical support reaction Av (↑) at A is found from the moment
equilibrium about G, the intersection of the two-force members BE and
CD:

∑
T|G = (4

√
2 m)(54

√
2 kN) − (4 m) × Av (↑) = 0

⇒ Av = 108 kN (↑).

The vertical support reaction Ev (↑) in E is then found from the moment
equilibrium about C:

∑
T|C = (4

√
2 m)(54

√
2 kN) − (6 m)(108 kN) − (2 m) × Ev (↑)

= 0

so that

Ev (↑) = −108 kN

or in other words

Ev = 108 kN (↓).

Finally, the support reactions at D follow from the horizontal and vertical
force equilibrium of the structure:

Dh = 54 kN (←),

Dv = 54 kN (↑).

�
�
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Figure 13.23 Isolated beam ABC with the load resultants for the
fields AB and BC.

This final calculation is left to the reader.

b. In Figure 13.23, the beam ABC has been isolated, and all forces acting on
it at A, B and C are shown. To draw the M and V diagrams, the distributed
loads in fields AB and BC have been replaced by their resultants RAB and
RBC. For the triangular load on BC

RBC = 1
2 × (6 kN/m)(2

√
2 m) = 6

√
2 kN.

The trapezoidal load on AB is divided into triangular loads (1) and (2); their
resultants can be calculated easier:

R(1) = 1
2 × (18 kN/m)(4

√
2 m) = 36

√
2 kN,

R(2) = 1
2 × (6 kN/m)(4

√
2 m) = 12

√
2 kN,

RAB = R(1) + R(2) = 48
√

2 kN.

The location of the line of action of RAB is found from the moment about
A:

aRAB = 1
3 × 4

√
2 × R(1) + 2

3 × 4
√

2 × R(2) = 160 kNm

so that

a = 160 kNm

48
√

2 kN
= 5

3

√
2 m.

c. Figure 13.24a shows all the forces acting normal to the beam axis. They
generate shear forces and bending moments in the beam. The distributed
loads on AB and BC have been replaced by their load resultants. In Fig-
ures 13.24b and 13.24c, the V and M diagrams due to the load resultants
are shown by means of dashed lines. The solid lines are the actual V and
M diagrams.
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Figure 13.24 (a) Isolated beam ABC with (b) shear force diagram
and (c) bending moment diagram.

The actual V diagram has a parabolic variation with a step change at B.
At C, the distributed load is zero, and the V diagram has a “horizontal”
tangent. To the left and to the right of B, the V diagram has the same slope.
In other words: the slope of the V diagram is continuous at B.

The actual M diagram is a cubic, with a bend at B. The M diagram due to
the load resultants gives the tangents to the actual M diagram at A, B and
C.

d. The load q on ABC varies linearly:

q = c1x + c2.

The coefficients c1 and c2 follow from the values q = +18 for x = 0 and
q = 0 for x = 6

√
2:

q = − 3
2x

√
2 + 18.

The units used are kN and m, and are omitted in this part of the answer.

By integrating, we can find the variation of the shear force and the bending
moment from the distributed load:

V = −
∫

q dx = 3
4x2

√
2 − 18x + C1,

M =
∫

V dx = 1
4x3

√
2 − 9x2 + C1x + C2.

The integration constants C1 and C2 can be found from the boundary
conditions at A:

x = 0 : V = +54
√

2 ⇒ C1 = +54
√

2,

x = 0 : M = 0 ⇒ C2 = 0.



568 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 13.25 (a) Railway sleeper in a ballast bed with (b) the
schematic representation.

The functional forms of the shear force V and the bending moment M in
AB are

V = + 3
4x2

√
2 − 18x + 54

√
2,

M = + 1
4x3

√
2 − 9x2 + 54

√
2.

These expressions can be verified by substituting x = 4
√

2 m to obtain the
previously determined values of V and M at B:

x = 4
√

2 m : V = +6
√

2 kN (correct)

x = 4
√

2 m : M = +208 kNm (correct).

13.1.9 Railway sleeper in a ballast bed

Figure 13.25a shows a railway sleeper in a ballast bed. In Figure 13.25b the
sleeper is modelled as a line element. The sleeper is loaded across the width
of the rail by a uniformly distributed load q = 15 kNm. It is assumed that
the ballast bed exerts a uniformly distributed counter-pressure p (kN/m) on
the entire length of the sleeper. The dimensions are shown in the figure.

Questions:
a. Determine the counter-pressure p exerted by the ballast bed.
b. Draw the V diagram with the deformation symbols, and include

relevant values.
c. Draw the M diagram with the deformation symbols and the tangents at

A, B and C.
d. Determine the extreme bending moments in the railway sleeper. Where

do they occur?
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Figure 13.26 (a) The distributed loads on the railway sleeper
replaced by (b) their resultants. (c) Shear force diagram and (d)
bending moment diagram.

Solution:
a. The magnitude of p follows from the vertical force equilibrium of the
railway sleeper (see Figure 13.25b):

∑
Fvert (↓) = 2 × (0.2 m)(15 kN/m) − (2.4 m) × p = 0

so that

p = 2.5 kN/m.

b. In Figure 13.26a, the railway sleeper is split into the fields AB, BC, etc.
Figure 13.26b shows the resultants of the field loads. In Figure 13.26c, the
V diagram due to the load resultants is shown by means of dashed lines.
The values denoted by a dot at the field boundaries A, B, C, and so forth,
are the correct values. The actual (solid) V diagram varies linearly per field
between the values indicated by means of dots.

c. Figure 13.26d shows the M diagram due to the load resultants by means
of dashed lines. The values on the field boundaries A, B, C, and so forth,
indicated by a dot, are the correct values. They can be determined directly
from the dashed M diagram. The dashed M diagram also gives the tangents
to the actual (solid) M diagram at A, B, C and so forth. In each field,
the actual M diagram varies parabolically. In the fields AB, CD and EG,
the parabola is turned upwards (the distributed load is acting upwards),
in the fields BC and DE the parabola is turned downwards (the resulting
distributed load is acting downwards).

Per field, the parabolic variation can be drawn in the standard manner. For
field CD it holds that

p1 = 1
8q�2 = 1

8 × (2.5 kN/m)(1.2 m)2 = 0.45 kNm
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so that

M1 = p1 − (0.15 kNm) = 0.3 kNm (�).

In the middle of the fields BC and DE it applies that

p2 = 1
8q�2 = 1

8 × (12.5 kN/m)(0.2 m)2 = 0.0625 kNm

so that

M2 = (0.3 kNm) − p2 = 0.2375 kNm (�).

The values p2 and M2 are not shown in Figure 13.26d.

d. The M diagram has three extreme values, as the V diagram has three
zeros (not including the end zeros). The largest extreme value Mmax occurs
in the middle of the railways sleeper. This maximum was determined in
question c, and can be read directly from the M diagram:

Mmax = M1 = 0.3 kNm (�).

The two other extreme values are equal, and occur in the fields BC and DE.
Here we will determine the extreme value Mmin for field BC. In the shear
force diagram the distance from A to the zero in BC is (see Figure 13.26c)

(0.4 m) + 1 kN

(1 kN) + (1.5 kN)
× (0.2 m) = 0.48 m.

The magnitude of Mmin is now found most easily from the area of the V

diagram:

Mmin = 1
2 × (0.48 m)(1 kN) = 0.24 kNm (�).

Figure 13.26 (a) The distributed loads on the railway sleeper
replaced by (b) their resultants. (c) Shear force diagram and (d)
bending moment diagram.
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Figure 13.27 Beam on the ground. Due to the uniformly distrib-
uted load q, the ground pressure is distributed linearly.

13.1.10 Beam on the ground

Figure 13.27 shows a beam AB lying on the ground, of which the dead
weight can be ignored. A uniformly distributed load q is acting on the right-
hand side of the beam over a length a. Due to this load, the earth pressure
on the underside of the beam varies linearly, from 0 at A to 48 kN/m at B.

Questions:
a. From the equilibrium of the beam, determine length a and load q .
b. Make a good sketch of the V diagram and the M diagram for the beam.
c. At which cross-section is the shear force an extreme? Write down the

extreme values for the V diagram. For these cross-sections, also include
the tangents to the M diagram.

d. At which cross-section is the bending moment an extreme? Determine
this value, and include it with the M diagram.

Solution:
a. The resultant of the earth pressure and the resultant of the q load must
have the same line of action (moment equilibrium of a body subject to two
forces). The distance from B to the line of action of both resultants is (see
Figure 13.27)

1
2a = 1

3 × (1.80 m) ⇒ a = 1.20 m.

On the basis of the vertical force equilibrium, both resultants must be of
equal magnitude:

qa = 1
2 × (1.80 m)(48 kN/m) = 43.2 kN

so that

q = 43.2 kN

1.20 m
= 36 kN/m.
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Figure 13.28 (a) Beam with load and earth pressure. (b) Resulting
distributed load on the beam and the resultants per field. (c) Shear
force diagram and (d) bending moment diagram.

b. In Figure 13.28a, all the loads on beam AB are shown. In Figure 13.28b,
the beam has been modelled as a line element, and the resulting load is
shown. Three fields with a triangular load can be distinguished. The figure
also shows the resultants of these triangular loads.

In Figures 13.28c and 13.28d, the V and M diagrams due to the three
load resultants are shown by means of dashed lines. They give the correct
values on the field boundaries, in both figures shown by dots. In the field
boundaries, the dashed M diagram also gives the tangents to the actual M

diagram. The actual V and M diagrams are shown by means of solid lines.

c. A linearly distributed load produces a parabolic V diagram. The shear
force is an extreme where the (resulting) distributed load is zero or changes
sign, so at A, C and D. At A and D, the V diagram has a horizontal tangent
(the distributed load is zero here) and the parabolas have their top. At C,
the step change in the distributed load gives a bend in the V diagram. The
extreme values can be read off directly from the V diagram.

d. The bending moment is a cubic and is relatively simple to draw using
the tangents at the field boundaries. The maximum bending moment Mmax
occurs where the shear force is zero. This is at E, 0.9 m to the left of B, see
the V diagram in Figure 13.28c. The magnitude of Mmax can be determined
from the moment equilibrium of the isolated part EB in Figure 13.29:

Mmax = (2.7 kN)(0.6 m) = 1.62 kNm (�).

Mmax can also be determined from the area of the parabolic V diagram for
EB. To do so we have to know that the area of the parabola is equal to
two-thirds of the area of the rectangle with a width of 0.9 m and a height of
2.7 kN. This then gives the same value:

Mmax = 2
3 × (0.9 m)(2.7 kN) = 1.62 kNm (�).
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Figure 13.29 The maximum bending moment at E can be derived
from the moment equilibrium of EB.

Figure 13.30 Lean-to.

13.1.11 Lean-to subject to dead weight, wind and snow loads

In Figure 13.30, the lean-to ACD is modelled as a line element. We want
to determine the N diagram and the extreme values of the bending moment
due to the three uniformly distributed loads:
a. A wind pressure of qw = 5 kN/m (force per length measured along

ACD).
b. A dead weight of qdw = 5 kN/m (force per length measured along

ACD).
c. A snow load of qsn = 5 kN/m (force per length measured along the pro-

jection of ACD on the horizontal ground plane).

Solution:
Since the dead weight and the snow load have components transverse to
the beam axis (qtr) and parallel to the beam axis (qpa), the N , V and M

diagrams are first determined due to the separate loads qtr = 1 kN/m (Fig-
ure 13.31a) and qpa = 1 kN/m (Figure 13.31b). By means of superposition,
we then determine the final N diagram for each of the given loads and the
extreme values of the bending moments.

In preparation, the dimensions given in Figure 13.30 are first used to deter-
mine the angles α, β and γ and the lengths �AC, �CD and �ACD of AC, CD
and ACD respectively. The angles α, β and γ we find from

tan α = 2/5 ⇒ α = 21.8◦,

tan β = 4/5 ⇒ β = 38.7◦,
γ = α + β = 60.5◦.

The lengths of AC, CD and ACD are

�AC = (5 m)/ cosα = 5.385 m,

�CD = (2 m)/ cos α = 2.154 m,

�ACD = �AC + �CD = 7.539 m.
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Figure 13.31 Lean-to loaded by a uniformly distributed load of
1 kN/m (a) normal to and (b) parallel to roof plane ACD.

• N , V and M diagrams due to qtr = 1 kN/m (Figure 13.31a)
In Figure 13.32, ACD has been isolated. The distributed load qtr = 1 kN/m
has been replaced by its resultant Rtr. In addition, the joining forces acting
at A and C on ACD are also shown. The indices “pa” and “tr” point to the
directions “parallel to the beam axis” respectively “transverse to the beam
axis”.

Since BC is a two-force member, the resultant of Ctr and Cpa must be along
BC:

Cpa = Ctr/ tan γ.

The resultant of the uniformly distributed load is

Rtr = qtr�
ACD = (1 kN/m)(7.539 m) = 7.539 kN.

The moment equilibrium about A gives Ctr:

∑
T|A = Rtr × 1

2�ACD − Ctr × �AC

= (7.539 kN) × 1
2 × (7.539 m) − Ctr × (5.385 m) = 0

so that

Ctr = 5.277 kN.

Cpa is found from the direction of two-force member BC:

Cpa = Ctr/ tan γ = 5.277 kN

tan 60.5◦ = 2.986 kN.

�
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Figure 13.33 (c) Shear force diagram and (d) bending moment
diagram due to a uniformly distributed load of 1 kN/m normal to
the roof plane.

Figure 13.32 Isolated beam ACD with the support reactions at A
and C due to a uniformly distributed load normal to the roof plane.

Figure 13.33 (a) Isolated beam ACD with a uniformly distributed
load of 1 kN/m normal to the roof plane and associated (b) normal
force diagram.
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The force equilibrium in the longitudinal direction of ACD gives

Apa = Cpa = 2.986 kN

and the force equilibrium normal to ACD

Atr = Rtr − Ctr = (7.539 kN) − (5.277 kN) = 2.262 kN.

Figure 13.33a again shows ACD with the forces determined at A and C,
and the resultants of the load on fields AC and CD. In Figures 13.33b to
13.33d, the N , V and M diagrams are shown. It is assumed that the reader
is familiar with the necessary calculation. The V and M diagrams due to
the load resultants are shown by means of dashed lines.

The M diagram has two extreme values: the (in an absolute sense) smallest
moment Mmin is the bending moment at C and the (in an absolute sense)
largest moment Mmax is the bending moment in field AC:

Mmin = 2.320 kNm (�).

The maximum moment in field AC is found 2.262 m from A. The magni-
tude can be determined from the area of the V diagram:

Mmax = 1
2 (2.262 m)(2.262 kN) = 2.558 kNm (�).

Figure 13.33 (c) Shear force diagram and (d) bending moment
diagram due to a uniformly distributed load of 1 kN/m normal to
the roof plane.
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Figure 13.34 Isolated beam ACD with the support reactions in A
and C due to a uniformly distributed load parallel to the roof plane.

Figure 13.35 (a) Isolated beam ACD with a uniformly distributed
load of 1 kN/m normal to the roof plane and associated (b) normal
force diagram.

• N , V and M diagrams due to qpa = 1 kN/m (Figure 13.31b)
In Figure 13.34, ACD has been isolated and the joining forces acting on
ACD are shown. The distributed load qpa = 1 kN/m has been replaced by
its resultant Rpa:

Rpa = qpa�
ACD = (1 kN/m)(7.539 m) = 7.539 kN.

The moment equilibrium about A gives Ctr = 0 and so Cpa = 0. The force
equilibrium of ACD gives Atr = 0 and Apa = Rpa = 7.539 kN.

In Figure 13.35a, ACD is shown again with the forces determined. In
Figure 13.35b, the associated N diagram is shown: due to a uniformly dis-
tributed load the normal force is linear. With this load there are no bending
moments and shear forces.
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Figure 13.36 (a) Lean-to with wind load of 5 kN/m and (b) asso-
ciated normal force diagram.

Figure 13.37 The components of the dead weigh qdw of a member
segment with length a.

a. Wind load
The wind load qw = 5 kN/m in Figure 13.36a is normal to the roof
plane ACD. The associated N , V and M diagrams are equal to those in
Figure 13.33b to d, but with values that are five times as large:

Mw;max = (2.558 kNm) × 5 = 12.79 kNm,

Mw;min = (2.320 kNm) × 5 = 11.60 kNm,

NAC = (2.986 kNm) × 5 = 14.93 kNm.

The N diagram for ACD is shown in Figure 13.36b.

b. Dead weight
In Figure 13.37 we take a closer look at a member segment with length
a. The dead weight of this member segment is aqdw with components
aqdw cos α and aqdw sin α respectively normal to and parallel to the beam
axis. For the components of the distributed load normal to and parallel to
the beam axis we find

qdw;tr = aqdw cos α

a
= qdw cos α = (5 kN/m) cos 21.8◦ = 4.642 kN/m,

qdw;pa = aqdw sin α

a
= qdw sin α = (5 kN/m) sin 21.8◦ = 1.857 kN/m.

The distributed load qdw = 5 kN/m due to the dead weight (Figure 13.38a)
has components of 4.642 kN/m normal to the beam axis (Figure 13.38b)
and 1.857 kN/m parallel to the beam axis (Figure 13.38c).

The bending moment in ACD is caused by the load of 4.642 kN/m normal
to the beam axis. The M diagram is equal to that in Figure 13.33d, but 4.462
as large, so that the extreme values of the bending moments are

Mdw;max = (2.558 kNm) × 4.642 = 11.87 kNm,

Mdw;min = (2.320 kNm) × 4.642 = 10.77 kNm.
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Figure 13.39 (a) The N diagram due to the component normal to
the roof plane, superposed on (b) the N diagram due to the com-
ponent parallel to the roof plane gives (c) the requested N diagram
due to the dead weight.

Figure 13.38 (a) The dead weight of beam ACD of 5 kN/m, re-
solved into components (b) normal to the roof plane and (c) parallel
to the roof plane.
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The N diagram in Figure 13.39a due to the 4.642 kN/m load normal to
the beam axis is equal to the N diagram in Figure 13.33b, but with values
that are 4.642 times as large. The N diagram in Figure 13.39b due to the
load of 1.857 kN/m parallel to the beam axis is equal to the N diagram in
Figure 13.35b, but then with values that are 1.857 times as large. Super-
posing the N diagrams in Figures 13.39a and 13.39b gives the N diagram
in Figure 13.39c. This is the requested N diagram due to the dead weight
qdw = 5 kN/m.

Figure 13.40 The components of the snow load qsn on a member
segment with length a measured horizontally.

Figure 13.39 (a) The N diagram due to the component normal to
the roof plane, superposed on (b) the N diagram due to the com-
ponent parallel to the roof plane gives (c) the requested N diagram
due to the dead weight.
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Figure 13.41 (a) The snow load of 5 kN/m on the lean-to, resolved
into components (b) normal to the roof plane and (c) parallel to the
roof plane.

c. Snow load
Over a length a measured horizontally, the resultant of the snow load is aqsn
(see Figure 13.40). The components of this force normal to and parallel to
the axis are respectively aqsn cos α and aqsn sin α. They act on a member
segment with length a/cos α. For the components of the distributed load
normal to and parallel to the beam axis we now find

qsn;tr = aqsn cos α

a/ cosα
= qsn cos2 α,

= (5 kN/m) cos2 21.8◦ = 4.310 kN/m,

qsn;pa = aqsn sin α

a/ cosα
= qsn sin α cos α,

= (5 kN/m) sin 21.8◦ cos 21.8◦ = 1.724 kN/m.

The distributed load qsn = 5 kN/m due to the snow (Figure 13.41a) has
components of 4.310 kN/m normal to the beam axis (Figure 13.41b) and
1.724 kN/m parallel to the beam axis (Figure 13.41c).

The bending moment in ACD is caused by the load of 4.310 kN/m normal
to the beam axis. The M diagram is equal to that in Figure 13.33d, but now
4.310 times as large, so that the extreme values of the bending moment are:

Msn;max = (2.558 kNm) × 4.310 = 11.02 kNm (�),

Msn;min = (2.320 kNm) × 4.310 = 10 kNm (�).
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Figure 13.42 (a) The N diagram due to the component normal
to the roof plane, superpositioned on (b) the N diagram due to
the component parallel to the roof plane gives (c) the requested N

diagram resulting from the snow load.

The N diagram in Figure 13.42a due to the load of 4.310 kN/m normal to
the beam axis is equal to the N diagram in Figure 13.33b, but with values
that are 4.310 times as large. The N diagram in Figure 13.42b due to the
load of 1.724 kN/m parallel to the beam axis is equal to the N diagram in
Figure 13.35b, but with values that are 1.724 times as large. By superposing
the N diagrams in Figures 13.42a and 13.42b on one another we get the N

diagram in Figure 13.42c. This is the requested N diagram due to the snow
loading qsn = 5 kN/m.

13.1.12 Indirectly loaded beam

With indirectly loaded beams, the load does not act on the beam directly,
but is rather transferred to the beam by means of a system of stringer beams
and cross beams.

Figure 13.43 shows a schematic representation of a bridge constructed as
an indirectly loaded beam. Main beam (mb) AB is carrying cross beams
(cb) at regular distances which in turn are carrying stringer beams (sb).

The main beam is divided into a number of fields by the cross beams, five in
Figure 13.43. It is assumed that the lengths of the stringer beams are equal
to the field lengths, and that the stringer beams are simply supported at the
cross beams.

Since the main beam is loaded only by forces exerted by the cross beams,
the shear force in each field is constant, and the bending moment in each
field is linear (excluding the dead weight of the main beam).

For the indirectly loaded beam in Figure 13.43, the M and V diagrams are
determined for the following two loading cases:

1. a concentrated load,
2. a uniformly distributed full load.
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Figure 13.43 A bridge constructed as an indirectly loaded beam.
The load on the stringer beams is transferred to the main beams via
crossbeams.

Figure 13.44 (a) Indirectly loaded beam AB, loaded in field CD
by a point load. (b) The bending moment diagram of the indirectly
loaded beam can be found from the dashed bending moment di-
agram of the directly loaded beam by snipping it between C and
D. (c) The bending moment diagram of stringer beam CD is equal
to the difference between the bending moment diagrams for the
directly and indirectly loaded beam.

Example 1
In Figure 13.44a, the main beam AB is indirectly loaded by a point load of
60 kN in field CD. The dimensions can be read from the figure.

Question:
Determine the M and V diagrams for the indirectly loaded main beam and
for the stringer beams.

Solution:
The support reactions at A and B are 40 kN and 20 kN respectively (see
Figure 13.44a).

In Figure 13.44b, the M diagram is shown for the directly loaded beam.
The dashed line indicates how this deviates from the requested M diagram
for the indirectly loaded beam.

The force of 60 kN in field CD exerts forces on the main beam of 20 kN
and 40 kN via the cross beams in C and D respectively (see Figure 13.44f).
The other cross beams do not exert any forces on the main beam. The M

diagram due to these forces of 20 and 40 kN at C and D is equal to the M

diagram due to the (resulting) force of 60 kN (this is the M diagram for the
directly loaded beam), with the exception of field CD. In field CD, the M

diagram varies linearly between the values of 120 kNm at C and 180 kNm
at D. The M diagram of the indirectly loaded beam can therefore be found
by snipping the M diagram of the directly loaded beam over field CD.

The snipped part of the M diagram is equal to the M diagram of the simply
supported stringer beam CD (see Figure 13.44c).
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Figure 13.44

The V diagram is found from the slope of the M diagram (see Fig-
ure 13.44d). The V diagram for the indirectly loaded beam deviates from
the dashed V diagram for the directly loaded beam only in the field CD.

The area enclosed in field CD between dashed and solid lines (the V dia-
grams for the directly and indirectly loaded beam respectively) is exactly
the same as the V diagram for the simply supported stringer beam CD (see
Figure 13.44e). The V diagram for the indirectly loaded beam can therefore
be found by reducing the shear force of the directly loaded beam in field
CD by the shear force in the stringer beam.

Example 2
In Figure 13.45a the indirectly loaded beam AB is carrying a uniformly
distributed load of 16 kN/m. The dimensions are found in the figure.

Question:
Determine the M and V diagrams for the indirectly loaded main beam and
for the stringer beams.

Figure 13.44 (a) Indirectly loaded beam AB, loaded in field CD
by a point load. (b) The bending moment diagram of the indirectly
loaded beam can be found from the dashed bending moment di-
agram of the directly loaded beam by snipping it between C and
D. (c) The bending moment diagram of stringer beam CD is equal
to the difference between the bending moment diagrams for the
directly and indirectly loaded beam. (d) The shear force diagram
of the indirectly loaded beam can be found from the slopes of the
associated bending moment diagram. (e) The shear force diagram
of the stringer beams can be found from the slopes of the associated
bending moment diagram and is equal to the difference between the
shear force diagrams for the directly and indirectly loaded beam. (f)
The forces exerted via the cross beams in C and D on the main beam
are found from the equilibrium of the stringer beam CD.
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Figure 13.45

Solution:
The support reactions at A and B are 120 kN (see Figure 13.45a).

In Figure 13.45b, the M diagram for the directly loaded beam is shown.
The values at the cross beams can be determined directly from the equi-
librium or (because the M diagram is parabolic) by means of the formula
M = 1

2qab, in which a is the distance to A and b is the distance to B (see
Section 12.1.6). By snipping the M diagram for the directly loaded beam
over the fields we can find the M diagram for the indirectly loaded beam.

The snipped part of the M diagram is equal to the M diagram of the simply
supported stringer beams (see Figure 13.45c).

The V diagram is found from the slope of the M diagram (see Fig-
ure 13.45d). The V diagram for the directly loaded beam is shown by means
of a dashed line. The difference between both V diagrams is equal to the V

diagram of the simply supported stringer beams (see Figure 13.45e).

Note that the shear forces at the end fields are not equal to the support
reactions. Half of the load on the end fields is not carried by the main beam
but is transferred by the end cross beams directly to the supports.

Figure 13.45 (a) Indirectly loaded beam AB with a uniformly dis-
tributed load. (b) The bending moment diagram of the indirectly
loaded beam is found by snipping the dashed (parabolic) bend-
ing moment diagram of the directly loaded cross beams. (c) The
bending moment diagram of the stringer beams is equal to the
difference between the bending moment diagrams for the directly
and indirectly loaded beam. (d) The shear force diagram of the
indirectly loaded main beam can be found from the slopes of the
associated bending moment diagram. (e) The shear force diagram
of the stringer beams can be found from the slopes of the associated
bending moment diagram and is equal to the difference between the
shear force diagrams for the directly and indirectly loaded beam.
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Figure 13.46 Three-hinged shored frame.

13.2 Compound and associated structures

To be able to draw the M , V and N diagrams for compound and associated
structures, it is first necessary to determine the support reactions and the
joining forces between the compound sections. Subsequently, the M , V

and N diagrams can be determined and drawn for the constituent parts, in
the same way as for the self-contained structures in Section 13.1. By then
adding together the M , V and N diagrams of the constituent parts we can
determine the requested M , V and N diagrams for the entire structure.

13.2.1 Three-hinged shored frame

The three-hinged shored frame ASB in Figure 13.46 is loaded over CDSEG
by a uniformly distributed load of 16 kN/m. The dimensions are shown in
the figure.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in shores DD′ and EE′, with the correct signs for

tension and compression.
c. Isolate CDSEG, and draw all the forces acting on it.
d. For CDSEG, draw the N , V and M diagrams with the deformation

symbols and the tangents at C, D, S, E and G to the M diagram. Include
relevant values.

Solution (units kN and m):
a. Determining the support reactions is left to the reader (see Section 5.3,
Example 1).

b. In Figure 13.47, all parts of the frame have been isolated, and all the
joining forces are shown. The support reactions at A and B are also shown.
Both shores DD′ and EE′ are at 45◦:
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Figure 13.47 Girder, posts and shores isolated from the three-
hinged shored frame, with joining forces and support reactions.

Dh = Dv = 1
2NDD′√

2,

Eh = Ev = 1
2NEE′√

2.

Dh can be determined from the moment equilibrium of post AD′C about C:

∑
T|C = +32 × 5 + Dh × 2.5 = 0 ⇒ Dh = Dv = −64 kN

so that

NDD′ = −64
√

2 kN (a compressive force).

In the same way, Eh can be determined from the moment equilibrium of
post BE′G about G:

∑
T|G = −32 × 7.5 − Eh × 2.5 = 0 ⇒ Eh = Ev = −96 kN

so that

NEE′ = −96
√

2 kN (a compressive force).

The forces in C and G follow from the force equilibrium of AC and BG:

Ch = −32 − Dh = +32 kN,

Cv = +72 + Dv = +8 kN,

Gh = −32 − Eh = +64 kN,

Gv = +88 + Ev = −8 kN.

�
�
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Figure 13.48 (a) Isolated girder with the associated (b) normal
force diagram, (c) shear force diagram and (d) bending moment
diagram.

c. In Figure 13.48a, CDSEG has been isolated, and all the forces are shown.
The force and moment equilibrium of CDSEG can be used to check the
correctness of the forces determined above.

d. In Figures 13.48b to d the N , V and M diagrams are shown for CDSEG.
Three fields are distinguished: CD, DSE and EG.

In each field the normal force is constant. In CD and EG, the normal force
is a tensile force, while in DSE it is a compressive force.

The shear force is linear in each field, and the bending moment is parabolic.
The V and M diagrams due to the resultants of the field loads are shown in
Figure 13.48c and d by means of dashed lines.

The V diagram has the same slope in all fields, equal to the distributed load
of 16 kN/m.

The dashed M diagram due to the load resultants gives the tangents at
A, D, E and G. The parabola in field DE passes through hinge S, since
M = 0. Here, in the middle of field DE, the tangent is parallel to the chord
k between the M values at D and E.

Note that the M diagram at C and G has no horizontal tangents as the shear
force is not zero.

Check M diagram:
Per field, p = 1

8q�2 applies for the rise p of the parabolic M diagram.
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Figure 13.49 Three-hinged frame with a tie rod.

Figure 13.50 Three-hinged frame ASB with the support reactions
and the forces exerted by tie rod AB at A and B.

13.2.2 Three-hinged frame with tie rod

Figure 13.49 shows a three-hinged frame ASB with tie rod AB. Girder CSD
is carrying a uniformly distributed full load of 25 kN/m. The dimensions are
shown in the figure.

Questions:
a. Determine the support reactions at A and B and the force in tie rod AB.
b. Isolate frame ASB, and draw all the forces acting on it at A and B.
c. For ASB, draw the M , V and N diagrams, with the deformation sym-

bols. Include relevant values. At D, S and C, draw the tangents to the
M diagram.

d. Determine the maximum bending moment in field CSD.

Solution (units kN and m):
a. The support reactions at A and B are forces of 100 kN aimed upwards.
The calculation is left to the reader. In Figure 13.50, frame ASB has been
isolated at A and B. In addition to the support reactions of 100 kN, there
are also joining forces exerted by the tie rod AB. With a tensile force
N in the tie rod, the horizontal forces exerted on ASB at A and B are
4
5N , and the vertical forces are 3

5N , as shown in Figure 13.50. N can be
found from the moment equilibrium about S of ADS or BCS. The moment
equilibrium of BCS about S gives:

∑
T|S = +100 × 2 + 4

5N × 2 + 3
5N × 4 − 100 × 4 = 0

⇒ N = +50 kN.

In bar AB, there is therefore a tensile force of 50 kN.

�
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Figure 13.51 (a) Isolated three-hinged frame ASB with the re-
sulting forces at A and B and the associated (b) bending moment
diagram, (c) shear force diagram and (d) normal force diagram.

b. In Figure 13.51a, the resulting forces on the isolated frame ASB are
shown, and the associated M , V and N diagrams are shown in Figures
13.51b to 13.51d.

c. To draw the M , V and N diagrams due to the forces at A and B, and
the resultants of the field loads on CS and DS please refer to Section 5.3,
Example 5.

The M and V diagrams due to the resultants of the field loads on CS and
DS are not correct for girder CSD. They are therefore shown by means of
dashed lines in Figures 13.51b and 13.51c. For the uniformly distributed
load, the shear force over DSC is linear and the bending moment is par-
abolic. The dashed M and V diagrams give the correct values of V and M

at C, S and D, and the correct tangents to the M diagram.

d. The zero shear force in CSD is found at E, 30
30+70 ×4 = 1.2 m to the right

of S (see Figure 13.51c). Here the bending moment is an extreme. Because
the bending moment at S is zero, the bending moment at E is equal to the
(hatched) area of the V diagram for SE:

ME = 1
2 × 1.2 × 30 = 18 kNm (�).

This maximum field moment, which is significantly smaller than the bound-
ary moments at C and D, can of course also be found from the moment
equilibrium of the frame part ADSE to the left of E, or ECB to the right of
E.

13.2.3 Trussed beam

The trussed beam ABSC in Figure 13.52 is carrying a uniformly distributed
load of 12 kN/m. The dimensions of the structure are shown in the figure.
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Figure 13.52 Trussed beam ABC with uniformly distributed load.

Figure 13.53 Normal force NCD in two-force member CD is
found from the moment equilibrium of part SCD about S.

Figure 13.54 (a) Force polygon for the equilibrium of joint D.
(b) Joint D with the forces exerted on it by members AD, BD and
CD.

Questions:
a. Determine the forces in the members AD, BD and CD with the correct

signs for tension and compression. Include the force polygon for joint
D.

b. Isolate ABSC, and draw all the forces acting on it.
c. For ABSC, draw the M , V and N diagrams, with the deformation sym-

bols. At A, B, S and C draw the tangents to the M diagram.
d. Determine the maximum bending moment in ABSC.

Solution (units kN and m):
a. In Figure 13.52 the support reactions are already shown. The calculation
is left to the reader. In order to determine the normal forces in the two-force
members AD, BD and CD, part SCD has been isolated in Figure 13.53.
At D, the (normal) force NCD has been resolved into its components. The
force NCD is found from the moment equilibrium of the isolated part about
S:

∑
T|S = +72 × 3 − 96 × 6 + 2

5

√
5 × NCD × 3 = 0

so that:

NCD = +60
√

5 kN (= +134.2 kN).

The normal forces in the members AD and BD can now be determined from
the force equilibrium of joint D. To do so, we have created the closed force
polygon in Figure 13.54a. We first set down the tensile force F CD

D = NCD,
which is the force member CD exerts on joint D. Next, the force polygon is
closed with two lines parallel to AD and BD.

The magnitude of the forces F AD
D and F BD

D can be found from the force
polygon. In order to interpret them as normal forces N , with the correct
signs (positive as tensile force and negative as compressive force), we first
have to check whether the forces F AD

D and F BD
D from the force polygon

�
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Figure 13.55 (a) Isolated beam ASC with (b) bending moment
diagram, (c) shear force diagram and (d) normal force diagram.

exert tension or compression on joint D (see Figure 13.54b). We find

NAD = +F AD
D = +20

√
109 kN (= +208.8 kN),

NBD = −F BD
D = −40

√
13 kN (= −144.2 kN).

There is therefore tension in AD and CD and compression in BD.

b. In Figure 13.55a, the beam ABSC has been isolated. At A and C, in
addition to the support reactions, the components of the tensile forces in
AD and CD are also active. At B the components of the compressive force
in BD are acting. In the figure, the distributed loads in the fields AB, BS
and SC have been replaced by their resultants.

c. In Figures 13.55b to 13.55d the M , V and N diagrams are shown. The M

and V diagrams due to the resultants of the field loads are shown by means
of dashed lines. They give the correct values in the field boundaries. Here
the dashed M diagram also gives the tangents.

The final M diagram shown in Figure 13.55b with a solid line, can be
checked using the rise p of the parabolas for both fields:

p1 = 1
8 × 12 × 82 = 96 kNm,

p2 = 1
8 × 12 × 62 = 54 kNm.

These values of p fit in the M diagram shown.

Note that in Figure 13.55c the shear forces at the supports A and C are not
equal to the support reactions there. This is caused by the vertical com-
ponents of the member forces in AD and CD.

Also note that the shear force in all fields has the same slope, equal to the
distributed load of 12 kN/m.
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Figure 13.56 (a) Sideways-supported mast ABC with (b) its
support reactions.

There is a compressive force over the entire length of beam ABSC (see
Figure 13.55d). At B, a step change in the N diagram occurs due to the
horizontal component of the member force in BD.

d. The largest bending moment in an absolute sense is the support moment
at B:

MB = 96 kNm (�).

In addition, there are extreme field moments at E and G three metres from
the supports, where the shear force is zero (see Figure 13.55c). The easiest
way to find their magnitudes is from the hatched area of the V diagram:

ME = MG = 1
2 × 3 × 36 = 54 kNm (�).

MG is also equal to the maximum bending moment in the simply supported
beam SC with uniformly distributed full load:

MG = 1
8 × 12 × 62 = 54 kNm (�).

Note that the M diagram has mirror symmetry about B.

13.2.4 Sideways-supported mast

The mast ABC in Figure 13.56a is supported sideways by a number of bars.
Dimensions and load are shown in the figure.

Questions:
a. Determine the support reactions at A and D.
b. Determine the forces in the bars 1 to 3, with the correct signs for tension

and compression.
c. Isolate beam ABC, and draw all the forces acting on it.
d. For beam ABC draw the M , V and N diagram, with the deformation
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Figure 13.57 (a) Force polygon for the equilibrium of joint E. (b)
Joint E with the forces exerted on it by bars (1), (2) and (3).

symbols. At A, B and C, also draw the tangents to the M diagram.
e. Determine the extreme moments in ABC.

Solution (units kN and m):
a. The vertical support reaction Dv (↓) at D follows from the moment
equilibrium of the entire structure about A:

∑
T|A = −(12 × 5) × 6 + Dv × 6 = 0 ⇒ Dv = 60 kN (↓).

Bar (1) is a two-force member so that the line of action of the support
reaction at D coincides with DE. The horizontal component Dh is therefore

Dh = 4
6 × Dv = 40 kN (←).

The support reactions at A follow from the force equilibrium of the
structure as a whole:

Ah = 20 kN (←),

Av = 60 kN (↑).

The support reactions are shown in Figure 13.56b.

b. The support reactions at D show that there is a tensile force in bar (1):

N(1) = +
√

402 + 602 = +20
√

13 kN (= +72.11 kN).

The (normal) forces in bars (2) and (3) can now be determined from the
force equilibrium of joint E. To do so we have to draw the force polygon for
joint E (see Figure 13.57a). The force F

(1)
E = N(1) = 20

√
13 kN, which bar

(1) exerts on joint E, is known. We close the force polygon with the forces
F

(2)
E and F

(3)
E , parallel to the two-force members (2) and (3). Figure 13.57b

Figure 13.56 (a) Sideways-supported mast ABC with (b) its
support reactions.

�
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Figure 13.58 (a) Isolated mast ABC with (b) bending moment
diagram, (c) shear force diagram and (d) normal force diagram.

shows that all the forces in the force polygon are tensile forces:

N(2) = +F
(2)
E = +20 kN,

N(3) = +F
(3)
E = +20

√
10 kN (= +63.24 kN).

c. In Figure 13.58a, ABC has been isolated and all the forces acting on it
have been shown. For the fields AB and BC, the resultants of the distributed
load are also shown.

d. In Figure 13.58b to d the M , V and N diagrams are shown. The dashed
M and V diagrams, which are determined first, are an important tool for
drawing the actual M and V diagrams. The answer is left to the reader. The
value p can be used to check the M diagram shown:

p = 1
8 × 5 × 62 = 22.5 kNm.

Note that the M diagram has mirror symmetry about B.

e. The bending moment is an extreme at G and H, where the shear force is
zero, and at B, where the shear force changes sign (see Figure 13.58c).

The M diagram in Figure 13.58b gives

The actual maximum bending moment occurs at G and H, 4 m from the
ends A and B, and is most easily determined from the area of the V

diagram:

MB = 30 kNm ( ).�

MG = MH = Mmax = 1
2 × 4 × 20 = 40 kNm ( ).�
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Figure 13.59 Statically indeterminate trussed beam with uni-
formly distributed load.

Figure 13.60 Three joining forces are acting between joint D
and beam ACB, namely the normal forces in the three two-force
members.

Figure 13.61 Support reactions.

13.3 Statically indeterminate structures

With statically indeterminate structures, it is not possible to determine all
the support reactions and joining forces directly from the equilibrium, as
there are too few equilibrium equations. In this section, sufficient support
reactions and/or joining forces are given in magnitude and direction for a
statically indeterminate structure so that all the other support reactions and
joining forces can be determined with the available number of equilibrium
equations. Thereafter, it is possible to determine and draw the M , V and N

diagrams for the entire structure.

13.3.1 Trussed beam with a given normal force

The dimensions and load for the trussed beam ACB can be found in Fig-
ure 13.59. For the given load, there is a tensile force of 60 kN in member
CD.

Questions:
a. Determine the degree of static indeterminacy of the structure.
b. Isolate beam ACB, and draw all the forces acting on it.
c. For ACB, draw the N , V and M diagrams, with the deformation

symbols. At A, B and C also draw the tangents to the M diagram.

Solution:
a. In Figure 13.60, beam ACB and joint D have been isolated from one
another. There are v = 3 unknown joining forces acting between beam
ACB and joint D: the normal forces NAD, NBD and NCD. In addition,
there are r = 3 support reactions, namely Ah, Av and Bv. That makes a
total of r + v = 6 unknowns. Beam ACB provides three equilibrium equa-
tions (force equilibrium and moment equilibrium); joint D provides two
(force equilibrium). In total, there are therefore e = 5 equilibrium equations
available. The degree of static indeterminacy n is equal to the difference
between the number of unknowns and the number of available equilibrium
equations:
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Figure 13.63 (a) Isolated beam ACB with (b) normal force
diagram, (c) shear force diagram and (d) bending moment diagram.

n = (r + v) − e = 6 − 5 = 1.

The structure is therefore statically indeterminate to the first degree.

b. In Figure 13.61 the support reactions are shown; they follow from the
equilibrium of the structure as a whole.

If it is known that a tensile force of 60 kN is acting in CD, the normal forces
in two-force members AD and BD can be determined from the equilibrium
of joint D. In Figure 13.62a the closed force polygon is shown for the
equilibrium of the forces acting on joint D. Figure 13.62b shows how these
forces are acting on the joint. This figure also shows whether the forces are
tensile or compressive. The normal forces are

NAD = −F AD
D = −50 kN,

NBD = −F BD
D = −50 kN,

NCD = +F CD
D = +60 kN (given) .

Figure 13.63a shows the isolated beam ACB. At A and B there are not
only support reactions, but also (the components of) the compressive forces
exerted by the members AD and BD.

Figure 13.62 (a) Force polygon for the equilibrium of joint D. (b)
Joint D with the forces exerted on it by members AD, BD and CD.
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Figure 13.64 Statically indeterminate trussed beam with a uni-
formly distributed load on the left-hand side. We are given a zero
bending moment at C.

Figure 13.65 Support reactions.

c. The N , V and M diagrams are shown in Figures 13.63b to 13.63d. In
beam ACD there is a tensile force of 40 kN. When drawing the V and M

diagrams, we used the dashed V and M diagram associated with the load
resultants of 80 kN in the fields AC and BC. The bending moment is an
extreme at E and G, where the shear force is zero, and at C where the shear
force changes sign:

Mmin = MC = 40 kNm (�),

Mmax = ME = MG = 1
2 (2.5 m)(50 kN) = 62.5 kNm (�).

13.3.2 Trussed beam with a given bending moment

The trussed beam ACB in Figure 13.64 is the same as that in the previous
section, except it now has a different load. Further, we are given a zero
bending moment at C.

Question:
For ACB draw the N , V and M diagrams, with the deformation symbols.
At A, B and C also draw the tangents to the M diagram.

Solution (units kN and m):
The support reactions follow from the equilibrium of the structure as a
whole, and are shown in Figure 13.65.

In the unloaded field BC, the bending moment (dependent on the shear
force) is constant or linear. Since the bending moment is zero at both B and
C (given), the bending moment must be zero throughout field BC.

Due to the uniformly distributed load, the bending moment in field AC is
parabolic. In addition, the bending moment is zero at both A and C. This
allows us to directly draw the M diagram for AB (see Figure 13.66d). At
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Figure 13.66 (a) Isolated beam ACB with (b) normal force
diagram, (c) shear force diagram and (d) bending moment diagram.

the middle of AC:

M = Mmax = p = 1
8 × 20 × 42 = 40 kNm.

The V diagram can be determined from the M diagram. In field BC, the
shear force is zero, in field AC it varies linearly. The shear forces at A and
to the left of C are

2p

1
2�AC

= 2 × 40
1
2 × 4

= 40 kN.

Their deformation symbols follow from the slope of the M diagram (see
Figure 13.66c).

Check: The shear forces found must agree with the support reactions of the
simply supported beam AC.

The vertical force equilibrium of joint C gives (see Figure 13.67)

NCD = +40 kN.

Using the equilibrium of joint D, we can now find the normal forces in AD
and BD. They turn out to be compressive forces:

NAD = NBD = −100/3 kN.

The calculation is left to the reader.

In Figure 13.66a, beam ACB has been isolated, and all forces acting on it
are shown. At A and B, there are acting support reactions and (components
of the) compressive forces exerted by members AD and BD.

Check: By reducing the support reactions (pointed upwards) at A and B by
the vertical component (pointed downwards) of these member forces we
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Figure 13.67 The normal force NCD in member CD follows from
the vertical force equilibrium of joint C.

Figure 13.68 Statically indeterminate portal structure with the
support reactions at A and C.

Figure 13.69 The portal structure consists of two singly-cohesive
sub-structures.

find the same shear forces as from the V diagram.

The horizontal component of the compressive member forces at A and
B results in a tensile force of 80/3 kN in ACB, see the N diagram in
Figure 13.66b.

13.3.3 Portal structure with a number of given support reactions

With the load given, the support reactions at A and C for the structure are
given in Figure 13.68.

Questions:
a. Determine the degree of static indeterminacy of the structure.
b. Determine the support reactions at B.
c. Isolate ADEBH, and draw all the forces acting on it, with the additional

information of a compressive force of 6 kN acting in EG.
d. For ADE and BH, draw the M , V and N diagrams with the deformation

symbols. At D and E, draw the tangents to the M diagram.

Solution (units kN and m):
a. The structure consists of two singly-cohesive sub-structures (see Fig-
ure 13.69). There are v = 2 + 2 = 4 unknown joining forces acting
in the hinged joints between both sub-structures. In addition, there
are r = 2 + 3 + 2 = 7 unknown support reactions. In total, that makes
r + v = 11 unknowns. Each sub-structure offers three equilibrium equa-
tions, making a total of e = 2 × 3 = 6 equilibrium equations available. The
degree of static indeterminacy n is equal to the number of unknown joining
forces and support reactions minus the number of available equilibrium
equations:

n = (r + v) − e = 11 − 6 = 5.

The structure is therefore statically indeterminate to the fifth degree.
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Figure 13.70 (a) Assumed and (b) calculated support reactions at B.

b. The support reactions at B follow from the equilibrium of the structure
as a whole. For the assumed directions of Bh, Bv and Bm in Figure 13.70a,
we find

∑
Fx = 8 + Bh + 2 − 10 − 8 = 0 ⇒ Bh = 8 kN,∑
Fy = 40 + Bv + 35 − 80 − 60 = 0 ⇒ Bv = 65 kN,∑
Tz|B = −40 × 5 + Bm + 35 × 5 + 10 × 4

+ 8 × 8 − 80 × 2.5 + 60 × 2.5 = 0 ⇒ Bm = −29 kN.

The fixed-end moment reaction Bm is acting opposite to the direction as-
sumed in Figure 13.70a. In Figure 13.70b, the support reactions at B are
shown as they act in reality.

c. In Figure 13.71a, ADEBH has been isolated and all forces acting on it are
shown. Additional information given is that member EG exerts a horizontal
compressive force of 6 kN on joint E. The three joining forces at H can now
be determined from the equilibrium of ADEBH, or (less laboriously) from
the equilibrium of CGKH. The calculation is left to the reader.

d. In Figures 13.71b to 13.71d, the N , M and V diagrams for ADEBH are
shown. When determining and drawing these lines, it is best to work from
the member ends A, B and H to joint E. To verify the calculation, the force
and moment equilibrium of joint E can be investigated. One could also first
isolate all the members and determine all the joining forces at D and E. See
for example Section 5.3, Example 3.
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(a) Isolated part ADEBH with (b) bending moment
diagram, (c) normal force diagram and (d) shear force diagram.

Statically indeterminate frame for which the bend-
ing moment at G, and the shear force in BE are given.

13.3.4 Frame with given shear force and bending moment

For the statically indeterminate structure in Figure 13.72 we are given the
following:
• the bending moment at the middle G of DE: MG = 12.5 kNm, and
• the shear force in BE: V BE = 5 kN.

The associated deformation symbols are given in the figure, as are the meas-
urements and the load.

Questions:
a. Determine the degree of static indeterminacy of the structure.
b. Determine the support reactions. Draw them as they are acting in reality

on the structure.
c. Determine the normal force in CD.
d. Determine the N , V , and M diagrams for the entire structure, with

the deformation symbols. At D, G and E draw the tangents to the M

diagram.

Figure 13.71

Figure 13.72
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Figure 13.73 The vertical support reaction at B follows from the
moment equilibrium of ABEG about G.

Figure 13.74 Support reactions.

Solution (units kN and m):
a. The structure BEGD is statically indeterminate to the second degree.
The structure has five unknown support reactions while there are only three
equilibrium equations.

b. The horizontal support reaction at B follows from the shear force in BE.

Bh = 5 kN (→).

Bar AE is a two-force member so that

Av = 0.

Introduce a cut at G, and investigate the moment equilibrium of ABEG
about G (see Figure 13.73):

∑
T|G = +12.5 + 23 × 1, 25 + 5 × 2.5 − Bv × 2.5 = 0

⇒ Bv = 21.5 kN (↑).

The support reactions at A and C are found from the equilibrium of the
structure as a whole:

∑
Fvert = 0 ⇒ Cv = 24.5 kN (↑),∑
T|A = 0 ⇒ Ch = 32.5 kN (→),∑
Fhor = 0 ⇒ Ah = 37.5 kN (←).

In Figure 13.74, the support reactions are shown as they act in reality.

c. By resolving the horizontal and vertical support reaction at C into com-
ponents parallel to and normal to CD we find the normal force NCD and the

�
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Figure 13.75 To determine the normal force and shear force in
CD, the support reactions at C can be resolved into components
normal to and parallel to member CD.

Figure 13.76 (a) Normal force diagram.

shear force V CD (see Figure 13.75):

NCD = 1
2

√
2 × (32.5 + 24.5) = 28.5

√
2 kN,

V CD = 1
2

√
2 × (32.5 − 24.5) = 4

√
2 kN.

The normal force is a tensile force; the deformation symbol for the shear
force is given in Figure 13.75.

d. In Figures 13.76a to 13.76c, the N , V and M diagrams are shown. We
provide a number of comments about the M and V diagrams below. At
E and D, the bending moment “goes round the corner”. At G, the tangent
to the M diagram is parallel to the chord k of the parabola. The tangents
at E and D are formed by the dashed M diagram due to the resultant of
the distributed load on DE. The slope of this dashed M diagram gives the
magnitude and the deformation symbol for the shear forces at E and D. The
shear force in DE varies linearly between the values at D and E. The slope
of the V diagram can be used as a check: it is equal to the distributed load.
The maximum bending moment in DE is slightly to the left of the middle
G of ED, and will be only marginally larger than MG. From the area under
the V diagram we find

Mmax = 1
2 × 21.5 × 21.5

21.5+24.5 × 5 − 12.5 = 12.62 kNm (�).

13.3.5 Frame with two given shear forces

The statically indeterminate structure in Figure 13.77 has a hinged joint at
S. All other joints are rigid. Dimensions and loads are given in the figure.
The shear forces directly next to joint C are given:

V BC
C = 2.5

√
2 kN,

V CS
C = 10 kN.
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Figure 13.77 Statically indeterminate frame with two given shear
forces directly next to joint C.

Figure 13.76 (b) Shear force diagram and (c) bending moment
diagram.
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Figure 13.78 The frame consists of the two singly-cohesive
sub-structures ABCS and DS.

Figure 13.79 (a) The forces on joint C and (b) the closed force
polygon for the force equilibrium (scale: 1 square = 2.5 kN).

The directions follow from the deformation symbols given in the figure.

Questions:
a. Determine the degree of static indeterminacy of the structure.
b. Draw the force polygon for the force equilibrium of joint C.
c. Determine the support reactions at A and D.
d. Determine the M , V and N diagrams for the entire structure, with the

deformation symbols.

Solution (units kN and m):
a. The two parts ABCS and DS provide e = 2 × 3 = 6 equilibrium equa-
tions (see Figure 13.78). The number of unknown support reactions at A
and D is r = 3 + 3 = 6. The number of unknown joining forces at S is
v = 2. The degree of static indeterminacy is:

n = r + v − e = 6 + 2 − 6 = 2.

The structure is therefore statically indeterminate to the second degree.

b. In Figure 13.79a, joint C has been isolated and all forces acting on it
are shown. The bending moments acting on the joint are not shown! Fig-
ure 13.79b shows the closed force polygon for the force equilibrium of the
joint (scale: 1 square = 2.5 kN). The force polygon gives

NBC = +7.5
√

2 kN,

NCS = +5 kN.

c. With NCS = +5 kN the vertical equilibrium of CSD gives

Dv = 5 kN (↑).



13 Calculating M, V and N Diagrams 607

Figure 13.81 (a) Bending moment diagram, (b) shear force
diagram and (c) normal force diagram.

With V CS = 10 kN the horizontal equilibrium of ABC gives

Ah = 10 kN (←).

From the force equilibrium of the structure as a whole follows

Dh = 10 kN (←),

Av = 15 kN (↑).

Finally, the fixed-end moment reactions at A and D follow from the moment
equilibrium about S of DS and ABCS respectively. In Figure 13.80, the
support reactions are shown as they act in reality.

d. In Figures 13.81a to 13.81c the M , V and N diagrams are shown. At B
and C, the bending moment “goes round the corner”. The slopes of the M

diagram are in line with the magnitudes and the deformations symbols of
the shear forces.

Figure 13.80 Support reactions.
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13.4 Problems

General comment: When asked to draw an M , V or N diagram, please
draw the diagrams including the (deformation) symbols (or plus and minus
signs) and the values at relevant points.

Self-contained structures (Section 13.1)

13.1 A beam with length � = 16.90 m is supported as shown. The dead
weight of the beam is uniformly distributed and is 4 kN/m.

Questions:
a. How do you choose distance a to minimise the bending moment in the

beam due to the dead weight (in an absolute sense)?
b. How large is this bending moment?
c. Draw the M and V diagrams.

13.2 Beam ABC is simply supported at A and B. A uniformly distributed
load of 40 kN/m acts upwards over AB, and downwards over BC.

Questions:
a. Determine the support reactions and draw them as they act on the beam.
b. For ABC, draw the bending moment diagram with the tangents at A, B

and C. Clearly show where these tangents intersect.

d. Determine the maximum and minimum bending moment in the beam
and indicate where these moments occur.

13.3 Beam ACB is supported by a hinge at A, and on a roller at B. The
roller track at B is on a slope of 45◦. A uniformly distributed load of
0.5 kN/m acts over the entire length ACB. At B, the beam is loaded by a
vertical force of 4 kN. At C there is an eccentric axial force of 2 kN.

Questions:
a. Determine and draw the support reactions at A and B.
b. For ACB draw the N diagram.
c. For ACB draw the V diagram.
d. For ACB draw the M diagram. At A, C and B, draw the tangents to the

M diagram, and clearly indicate where they intersect.

13.4: 1–2 Beam AB is supported in two different ways and carries a
linearly distributed load.c. For ABC, draw the shear force diagram.
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Questions:
a. Determine and draw the support reactions.
b. Make a clear sketch of the V and M diagrams. At A, B and the middle

of AB, also draw the tangents to the M diagram.
c. Where are V and M an extreme and how large are these extreme

values?

13.5 The simply supported beam AE is loaded in the fields BC and CD by
two equally large triangular loads. The top value of the distributed load is
100 kN/m.

Questions:
a. Draw the M and V diagrams. At B, C and D draw the tangents to the

M and V diagrams, and clearly show where they intersect.

b. Where is the bending moment an extreme? Using the bending moment
diagram drawn, estimate the value of this moment.

c. Make an accurate calculation of the maximum bending moment.

13.6: 1–3 The simply supported beam AD is loaded in three different ways
by triangular loads with a top value of 16 kN/m.

Questions:
a. Draw the M and V diagrams. At A to D, also draw the tangents to the

M and V diagrams, and clearly show where they intersect.
b. Where is the bending moment an extreme? Determine this moment.
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13.7 A rectangular slab rests on four edge beams, of which it is assumed
that they are simply supported on columns at the corners of the slab. A
uniform full load on the slab of 4 kN/m2 is transferred in accordance with
the envelope pattern shown to the edge beams.

Questions:
a. For each of the edge beams,

draw the loading diagram.
b. Drawn the M and V diagrams

for the short edge beam. How
large is the maximum bending
moment?

c. Draw the M and V diagrams
for the long edge beam. How
large is the maximum bending
moment?

13.8 A barrage is composed of 1.5-metre-wide bulkheads that on the un-
derside rest in a groove at A and on top rest against an I-beam. The I-beam
is supported by the barrage walls.

Questions:
a. Draw the distribution of the wa-

ter pressure on the bulkheads.
b. Draw a model of a bulkhead

with a width of 1.5 m as a
line element, and determine the
support reactions at A and B.

c. Draw the M and V diagrams for
bulkhead AB.

d. How large is the maximum
bending moment, and where
does it occur?

13.9 A steel sheet-pile wall is fixed in a concrete floor with 6 metres of
water on one side, and 3 metres on the other side. The mass density of
water is 1000 kg/m3.

Questions:
a. Schematize a 1-metre wide vertical strip from the sheet-pile wall as a

line element, and draw the load diagram.
b. Determine the support reactions for the strip.
c. Draw the M and V diagrams for the strip. In a number of places, draw

the tangents to the M and V diagrams.

13.10 Beam ABC is supported by a hinge at A and on a roller at B. In field
AB the beam carries a parabolically distributed load, and at the end C of
the overhang BC a point load of 15 kN. In the given coordinate system, the
parabolically distributed load is represented by

q(x) = −20
(x

�

)2 + 20
(x

�

)
kN/m.

Here � = 9 m is the length of AB. The dead weight of the beam is not
considered here.
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Questions:
a. Substitute the distributed load over AB by its resultant, and for the

entire beam ABC draw the M and V diagrams.
b. Now give a (rough) sketch of the actual M and V diagrams for AB,

with the deformation symbols, and also the plus and minus signs in the
given xz coordinate system.

c. For AB, through successive integration, determine the shear force V

and the bending moment M as a function of x. Determine the values of
V and M at A and B and in the middle D of field AB. At D draw the
tangent to the M diagram.

d. Where in AB is the field moment an extreme? It is enough to indicate
the location of this maximum roughly. On the basis of the M diagram,
estimate the value of the maximum field moment. This value need not
be calculated accurately.

13.11: 1–3 A simply supported beam AB with length � is loaded for
bending by three different distributed loads with the same top value q̂:

(1) q(x) = q̂ ·
(

x2

�2
− 2

x

�
+ 1

)
,

(2) q(x) = q̂ ·
(

−x2

�2
+ 2

x

�

)
,

(3) q(x) = 1
2 q̂ ·

(
x2

�2
+ x

�

)
.

For the numerical calculation, as-
sume � = 4 m and q̂ = 48 kN/m.

Questions:
a. Determine M and V as a func-

tion of x.
b. Draw the M and V diagrams

with the deformation symbols.
c. Determine the location and

magnitude of the maximum
bending moment.

d. Determine the support reac-
tions at A and B and draw
them as they actually act on
the beam.
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13.12: 1–4 Two cantilever beams AB with length � are subject to bending
by two different distributed loads with the same top value q̂:

(1) and (2) q(x) = q̂ ·
(

x2

�2 − 2
x

�
+ 1

)
,

(3) and (4) q(x) = q̂ ·
(

−x2

�2 + 2
x

�

)
.

For the numerical calculation, assume � = 4 m and q̂ = 48 kN/m.

Questions:
a. Determine M and V as a function of x.
b. Draw the M and V diagrams with the deformation symbols.
c. Determine the support reactions as they act on the beam.

13.13 The bent beam ABCD is supported by a hinge at A and on a roller at
D. The structure is loaded by a uniformly distributed load in field BC and a
point load at A.

Questions:
a. Determine the support reactions. Draw them in the directions in which

they act.
b. For the entire construction, draw the M , V and N diagrams with the

deformation symbols. At B and C, draw the tangents to the M diagram.
c. Indicate in which cross-section of BC the field moment is an extreme.

Determine this extreme value.

13.14 The structure consists of the members ACD and BCE that are rigidly
joined to one another at C.

Questions:
a. Determine the support reactions

and draw them as they act in
reality.

b. Isolate ACD, and draw all the
forces acting on it.

c. For ACD, draw the M and V

diagrams. At A, C and D draw
the tangents to the M diagram.

d. Determine the maximum bend-
ing moment in field AC. In
which cross-section does this
occur?

e. Draw the M and V diagrams for
BCE.
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13.15 The structure in Figure 13.21 consists of the members AC and BCDE
that are rigidly joined to one another at C.

Questions:
a. Determine the support reactions

at A and D.
b. For the entire structure draw

the M and V diagrams. At B
to E, draw the tangents to the
M diagram, and clearly indicate
where they intersect.

c. Where in field CD is the bend-
ing moment an extreme? Deter-
mine this moment.

d. Draw the N diagram for the
entire structure.

13.16 The structure is subject to a force of 50 kN at E, and a linearly
distributed load q(x) in field CD. The following applies in the given xz

coordinate system: q(x) = (−10x + 30) kN/m with x expressed in metres.

Questions:
a. Determine and draw the support reactions at A and B.
b. Isolate member CDE, and draw all the forces acting on it.
c. Write down the shear force in CD as a function of x. Verify the function

values at C and D.

d. Write down the bending moment in CD as a function of x. Check the
function values at C and D.

e. For CDE, draw the V and M diagrams with the deformation symbols.
At C and D, draw the tangents to the V and M diagrams.

f. Where in field CD is the bending moment an extreme, and how large is
this moment?

13.17 The structure is supported by a hinge at A and on a roller at B. At C,
the overhang is subject to a vertical force of 40 kN. A triangular load acts
between D and E, with a top value of 10 kN/m at E.

Questions:
a. Determine and draw the support reactions.
b. Draw the M , V and N diagrams for the entire structure with the de-

formation symbols. At D and E draw the tangents to the M and V

diagrams.
c. Determine M and V in field DE as a function of x. Use the given xz

coordinate system. Check the values (including the signs) of M and V

at both D and E.
d. Determine the location and magnitude of the maximum bending mo-

ment in field DE.
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13.18 The structure is subject to a uniformly distributed vertical load of
8 kN/m and a horizontal force F = 3 kN at B. The joint at B is hinged, the
joint at C is rigid.

Questions:
a. Determine the support reactions at A and D.
b. Draw the M , V and N diagrams for the entire structure.
c. Determine the location and magnitude of the maximum field moment

in BC.
d. Find the value of F for which the normal force in post AB is zero (with

the given uniformly distributed load of 8 kN/m on BCE).

13.19 A structure, modelled as beam AB, is lying on the ground. Its dead
weight can be ignored. On the right-hand side, the beam is subject to a
linearly distributed load over length a with a top value q̂. Due to this load,
the earth pressure on the underside of the beam is constant, and is 30 kN/m.

Questions:
a. From the equilibrium of the beam determine length a and the top value

q̂.
b. Draw the resulting distributed load on the beam (the load diagram).
c. For the beam, draw good sketches of the V diagram and the M diagram

(with their tangents at relevant points).
d. In which cross-section(s) is the shear force an extreme? At these cross-

sections also draw the tangents to the M diagram.

e. In which cross-section is the bending moment an extreme? Determine
this value.

13.20 A weightless rigid beam AB is resting on a hinge at A, while the
remainder is resting on the ground, which provides a linearly distributed
counter-pressure with top value q̂ at B. The load on the beam consists of a
triangular load with a top value of 8 kN/m at A.

Questions:
a. From the equilibrium of the beam, determine the top value q̂ of the

earth pressure.
b. Draw the resulting load on the beam (the resultant load diagram).
c. For the beam, draw good

sketches of the V diagram
and the M diagram (with
their tangents at relevant
points).

d. At which cross-section(s) is
the shear force an extreme?
Draw the tangents to the
M diagram at these cross-
sections.

e. At which cross-section is the
bending moment an extreme?
Determine this value.
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13.21 Given an eccentrically prestressed T-beam with overhangs and a
uniformly distributed full load. The straight single bar tendon is 90 mm
under the beam axis. The prestressing force is 1200 kN.

Questions:
a. Determine the support reactions.
b. Determine the N , V and M diagrams, with the deformation symbols.

At A to D, draw the tangents to the M diagram.
c. In which cross-section(s) is the bending moment an extreme? Deter-

mine this/these extreme value(s).

13.22 A tunnel segment is afloat, ready to be moved to its final location
where it will be sunk. The tunnel segment, which can be seen as a
rigid body, has a freeboard of 0.08 m. The dead weight of the tunnel is
525 kN/m. The weight of each of the two temporary bulkheads is 234 kN.
The specific weight of water is 10 kN/m3. The dimensions of the tunnel
segments are shown in the figure. The figure also shows the location of the
normal centre NC in the cross-section.

Questions:
a. How large is the water pressure on the underside of the tunnel?
b. Draw the distribution of the water pressure on a bulkhead, and deter-

mine the magnitude and location of the resultant.
c. Model the tunnel segment as a line element, and draw all (distributed

and non-distributed) forces (and/or couples) acting on it.
d. For the tunnel segment, draw the M , V and N diagrams, with the

deformation symbols. How large is the maximum bending moment?

13.23 A long weightless barge is loaded on its walls by a distributed load
of 60 kN/m.

Questions:
a. Determine the draught h of

the barge.
b. Determine the distribution

of the water pressure on
the walls and bottom of the
barge.

c. Draw the M , V and N dia-
grams for a 1-metre wide
strip from the wall.

d. Isolate a 1-metre strip from the bottom of the barge and draw all the
forces acting on it.

e. Draw the M , V and N diagrams for this 1-metre strip out of the bottom.
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13.24 A 1-metre strip has been isolated from a long barge and is modelled
as a bent line element. The dead weight of line element (walls and bottom)
is 10.5 kN/m. The width of the strip is not given.

Questions:
a. Determine the draught

h of the barge.
b. Determine the distribu-

tion of the water pres-
sure on the walls and
bottom.

c. Draw the M , V and N diagrams for the wall.
d. Isolate the bottom of the barge and draw all the forces acting on it.
e. Draw the M , V and N diagrams for the bottom.

13.25: 1–3 A 1-metre strip has been isolated from a long trough filled with
water and is modelled as a line element. There are three different trough
shapes.

Questions:
a. Determine the support reactions.
b. Draw the distribution of the water pressure on the walls and the bottom.
c. Isolate the bottom and draw all the forces acting on it.
d. Draw the M , V and N diagrams for the bottom.
e. Determine the maximum field moment in the bottom.

13.26: 1–2 The two structures shown differ only in their method of support.

Question:
Draw the M , V and N diagrams for the entire structure. At B and C, draw
the tangents to the M diagram, and clearly indicate where they intersect.
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13.27: 1–2 The two structures given differ only in their method of support.

Question:
Draw the M , V and N diagrams for the entire structure. At A and B, draw
the tangents to the M diagram, and clearly indicate where they intersect.

13.28 The structure consists of the members ABC, BE and CD that are
joined together by hinges. A uniformly distributed load of 10 kN/m acts
normal to ABC.

Questions:
a. Determine the support reactions at A, D and E. Draw them as they act

on the structure.
b. Isolate ABC, and draw all the forces acting on it.
c. For ABC determine and draw the M and V diagram, with the deforma-

tion symbols. At A, B and C, draw the tangents to the M diagram, and
clearly indicate where they intersect.
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13.29: 1–2 Two different beams AB are indirectly loaded by a number of
point loads.

Questions:
a. Determine the support reactions at A and B.
b. Determine the M and V diagrams for the indirectly loaded (main)

beam.
c. Determine the M and V diagrams for the directly loaded (stringer)

beams.
d. Explain any difference in magnitude between the support reactions at

A and B, and the shear force in the main beam at those places.

13.30: 1–4 Four different distributed loads act on the same indirectly
loaded beam AB.

Questions:
a. Determine the support reactions at A and B.
b. Determine the M and V diagrams for the indirectly loaded (main)

beam.
c. Determine the M and V diagrams for the directly loaded (stringer)

beams.
d. Explain any difference in magnitude between the support reactions at

A and B, and the shear force in the main beam at those places.
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Compound and associated structures (Section 13.2)

13.31 The scheme of a (weightless) draw bridge is given. A uniformly
distributed load q acts on the bridge deck ABC. The weight of the balance
is F . Assume that q = 12 kN and F = 90 kN.

Questions:
a. Isolate ABC, and draw all the forces acting on it.
b. Draw the M and V diagram for ABC. At A, B and C, draw the tangents

to the M diagram.
c. How large are the support reactions at D?
d. Calculate F in order to obtain a zero support reaction at A due to the

given load.

13.32 As problem 13.31, but now with q = 12 kN and F = 60 kN.

13.33: 1–4 A number of hinged beams are given.

Questions:
a. Determine the support reactions.
b. Determine the V diagram.
c. Determine the M diagram, with the tangents at a number of points.
d. Determine the location and magnitude of the extreme bending mo-

ments.
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13.34: 1–5 A number of hinged beams are given.

Questions:
a. Determine the support reactions.
b. Determine the V diagram.
c. Determine the M diagram, with the tangents at a number of points.
d. Determine the location and magnitude of the extreme bending mo-

ments.

13.35 A three-hinged portal frame with a uniformly distributed vertical
load of 16 kN/m on the left-hand side of the girder is given.

Questions:
a. Determine the support reactions.
b. Determine the M diagram for the entire structure with the tangents at a

number of points.
c. Determine the V diagram for the entire structure.

d. Determine the location and
magnitude of the maximum
field moment in the girder.

e. Determine the N diagram for
the entire structure.

13.36 A uniformly horizontal distributed load of 36 kN/m acts on the left-
hand column of a three-hinged portal frame.

Questions:
a. Determine the support reac-

tions.
b. Determine the M diagram for

the entire structure with the
tangents at a number of points.

c. Determine the V diagram for
the entire structure.

d. Determine the location and
magnitude of the maximum
field moment in the left-hand
column.

e. Determine the N diagram for
the entire structure.
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13.37: 1–2 Two three-hinged frames with unequal column lengths and a
uniformly distributed full load on the beam are given.

Questions:
a. Determine the support reactions.
b. Determine the M diagram for the entire structure with the tangents at a

number of points.
c. Determine the V diagram for the entire structure.
d. Determine the location and magnitude of the maximum field moment

in the beam.
e. Determine the N diagram for the entire structure.

13.38 The girder of a three-hinged frame with unequal posts is loaded by
a uniformly distributed vertical load and a horizontal force.

Questions:
a. Determine the support reactions.
b. Determine the M diagram for the entire structure with the tangents at a

number of points.

c. Determine the V diagram
for the entire structure.

d. Determine the location and
magnitude of the maximum
field moment in the girder.

e. Determine the N diagram
for the entire structure.

13.39 A three-hinged frame with a tie rod is carrying a uniformly dis-
tributed load of 40 kN/m.

Questions:
a. Determine the support reac-

tions.
b. Determine the force in the tie

rod.
c. Determine the M diagram for

the entire structure with the
tangents at a number of points.

d. Determine the V diagram for
the entire structure.

e. Determine the location and
magnitude of the maximum
field moment in the girder.

f. Determine the N diagram for
the entire structure.
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13.40 A uniformly horizontal distributed load of 2 kN/m acts on the right-
hand post of a three-hinged frame with tie rod.

Questions:
a. Determine the support reac-

tions.
b. Determine the force in the tie

rod.
c. Determine the M diagram for

the entire structure with the
tangents at a number of points.

d. Determine the V diagram for
the entire structure.

e. Determine the location and magnitude of the maximum field moment
of the loaded post.

f. Determine the N diagram for the entire structure.

13.41 As problem 13.40, but now with the distributed load acting on the
left-hand post.

13.42: 1–3 The same three-hinged frame is loaded in three different ways
by a uniformly distributed load on CS.

Questions:
a. Determine the support reactions.
b. For the entire frame, draw the M diagram with the tangents at C and S.
c. Draw the V diagram for the entire frame.
d. Draw the N diagram for the entire frame.
e. Determine the location and magnitude of the maximum bending mo-

ment in field CS.
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13.43 A shored three-hinged frame with a uniformly distributed full load
of 10 kN/m on the girder is given.

Questions:
a. Determine the support reac-

tions.
b. Determine the force in shore

DE, with the correct sign.
c. Isolate parts ADC, CES and

SGB and draw all the forces
acting on them.

d. Draw the N diagram for the
entire structure.

e. Draw the V diagram for the entire structure.
f. Draw the M diagram for the entire structure, with the tangents at C, E

and G.
g. Determine the location and magnitude of the extreme moments in

CESG.

13.44 The structure is supported by a hinge at A and is fixed at B. GK is
a shore with hinged connections at G and K. The structure also has hinged
connections at D, E and H. A uniformly distributed load of 10 kN/m acts
on CDE.

Questions:
a. For ACDEGH draw the M diagram, with the tangents at C, D and E.
b. For ACDEGH draw the V diagram.
c. Determine the support reactions.
d. Determine the force in shore GK, with the correct sign.
e. For HKB draw the M and V diagram.
f. Draw the N diagram for the entire structure.

13.45 The structure shown consists of the bent members ACS and BDS
and the straight members 1 to 5, all joined by hinges. The structure is
supported by a hinge at A, and on a roller at B. The load consists of a
horizontal force of 30 kN at C and a vertical force of 60 kN at G.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in members 1 to 5 (with the correct sign). Draw

the force polygons for joints E and G.
c. Isolate part ACS and draw all the forces acting on it.
d. For ACS draw the M and V diagram.
e. For ACS draw the N diagram.
f. Isolate part BDS and draw all the forces acting on it.
g. For BDS draw the M and V diagram.
h. For BDS draw the N diagram.
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13.46 As problem 13.45, but now without the horizontal force at C.

13.47 As problem 13.45, but now without the vertical force at G.

13.48 The structure shown consists of the bent members ACS and BDS
and the straight bars 1 to 4, all joined at hinges. The structure is supported
by hinges at A and B. At E, a cable is fixed that at G runs through a
frictionless pulley. A weight of 60 kN is attached to the cable. At C there
is a horizontal force of 30 kN.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in members 1 to 4 (with the correct sign). Draw

the force polygons for joints E and G.
c. Isolate part ACS and draw all the forces acting on it.
d. For ACS draw the M and V diagram.
e. For ACS draw the N diagram.
f. Isolate part BDS and draw all the forces acting on it.
g. For BDS draw the M and V diagram.
h. For BDS draw the N diagram.

13.49 As problem 13.48, but now without the horizontal force at C.

13.50 As problem 13.48, but now without the weight of 60 kN at G.

13.51 The cantilever beam AB, with a uniformly distributed full load of
5 kN/m, is supported by means of a cable structure.

Questions:
a. Determine the support reactions.
b. Determine the forces in cables 1 to 5.
c. Isolate beam AB and draw all the forces acting on it.
d. Draw the M , V and N diagrams for AB. At A, D, E and B, draw the

tangents to the M diagram.
e. Determine the magnitude and location of the extreme bending mo-

ments in AB.

13.52 The trussed beam ASD is carrying a uniformly distributed load of
40 kN/m over SD.

Questions:
a. Determine the support reactions.
b. Determine the forces in members 1 to 7.
c. Isolate beam ASD and draw all the forces acting on it.
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d. Draw the M , V and N diagrams for ASD. In S, C and D also draw the
tangents to the M diagram.

e. Determine the location and magnitude of the extreme bending
moments in ASD.

13.53 The trussed beam ASD is carrying a uniformly distributed full load
of 40 kN/m.

Questions:
a. Determine the support reactions.
b. Determine the forces in members 1 to 7.

c. Isolate beam ASD and draw all the forces acting on it.
d. Draw the M , V and N diagrams for ASD. At A, B, S, C and D, draw

the tangents to the M diagram.
e. Determine the location and magnitude of the extreme bending moments

in ASD.

13.54: 1–2 The same trussed beam ASD is loaded in two different ways.

Questions:
a. Determine the support reactions.
b. Determine the forces in members 1 to 7.
c. Isolate beam ASD and draw all the forces acting on it.
d. Draw the M , V and N diagrams for ASD. Also draw at relevant points

the tangents to the M diagram.
e. Determine the location and magnitude of the extreme bending moments

in ASD.
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13.55: 1–2 The same trussed beam ASD is loaded in two different ways.

Questions:
a. Determine the support reactions.
b. Determine the forces in members a to e.
c. Isolate beam ASD, and draw all the forces acting on it.
d. Draw the M , V and N diagrams for ASD. At A, B and S, draw the

tangents to the M diagram.

13.56 The trussed beam ASD carries a uniformly distributed full load of
34 kN/m.

Questions:
a. Determine the forces in members 1 to 5, with the correct sign.
b. Isolate beam ASB and draw all the forces acting on it.
c. For ASB draw the N diagram.
d. For ASB draw the V diagram.
e. For ASB draw the M diagram with the tangents at A, C, D and B.

f. Determine the location and magnitude of the extreme bending moments
in beam ASB.

13.57 The trussed beam ASC carries a uniformly distributed full load of
12 kN/m.

Questions:
a. Determine the forces in members AD, BD and CD. Draw the force

polygon for joint D. Use a force scale of 1 cm ≡ 40 kN.
b. Isolate beam ASC, and draw all the forces acting on it.
c. For ASC draw the N diagram.
d. For ASC draw the V diagram.
e. For ASC draw the M diagram, with the tangents at A, B and C.
f. Determine the location and magnitude of the extreme bending moments

in beam ASC.
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13.58 The trussed beam ACB carries a uniformly distributed full load of
8 kN/m.

Questions:
a. Determine the forces in members DC, DE and DG.
b. Isolate beam ASC and draw all the forces acting on it.
c. For ACB draw the N diagram.
d. For ACB draw the V diagram.
e. For ACB draw the M diagram, with the tangents at A, E and C.
f. Determine the location and magnitude of the extreme bending moments

in beam ACB.

13.59 The trussed beam ASF carries a uniformly distributed load of
10 kN/m over SF.

Questions:
a. Isolate beam ASF, and draw all the forces acting on it.
b. For ASF draw the N diagram.
c. For ASF draw the V diagram.
d. For ASF draw the M diagram with the tangents at S, D, E and F.
e. Determine the location and magnitude of the extreme bending moments

in beam ASF.

13.60 A queen post truss with a uniformly distributed full load of 40 kN/m
is given.

Questions:
a. Determine the M and V diagrams for beam ASB. Also draw at relevant

points the tangents to the M diagram.
b. Determine the location and magnitude of the extreme bending moments

in beam ASB.
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Statically indeterminate structures (Section 13.3)

13.61 The M diagram for BC is given for the structure shown.

Questions:
a. To what degree is the structure statically indeterminate? Substantiate

your answer.
b. Draw the M diagram for AB, with the tangents at A and B.
c. Draw the V diagram for the entire structure.
d. How large is the maximum field moment in AB, and where does it

occur?
e. Draw the N diagram for the entire structure.
f. Determine the support reactions at A, B and C. Draw them as they act

on the structure.

13.62 The structure is supported by hinges at A and B. At joint D all the
members are rigidly joined to one another. With the given load, the bending
moment in the middle of field AD is 25 kNm. The associated deformation
symbol is given in the figure.

Questions:
a. To what degree is the structure statically indeterminate? Substantiate

your answer.
b. Determine the support reactions, and draw them as they act on the

structure.
c. For the entire structure, determine and draw the M and V diagrams.

At A and D and the middle of field AD, draw the tangents to the M

diagram.
d. Determine and draw the N diagram for the entire structure.

13.63 A two-hinged frame is loaded at C by the forces of 8 kN as shown.
With this load, the shear force in girder BC is 6 kN. The associated
deformation symbol is shown in the figure.
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Questions:
a. Determine the support reactions. Draw them as they act in reality.
b. Draw the bending moment diagram for the entire structure.
c. Draw the shear force diagram for the entire structure.
d. Draw the normal force diagram for the entire structure.

13.64 The bend beam is supported by hinges at A and C. The joint at B
is entirely rigid. With the given load the bending moment in member BA,
directly under joint B, is 60 kNm. The deformation symbol is given in the
figure.

Questions:
a. To what degree is the structure statically indeterminate? Substantiate

your answer.
b. Determine the support reactions and draw them as they act on the struc-

ture.

c. Determine and draw the M and V diagrams for the entire structure. At
B and C draw the tangents to the M diagram.

d. Determine and draw the N diagram for the entire structure.

13.65 In the trussed beam ACB the bending moment at C is zero for the
given load.

Questions:
a. Determine the degree of static indeterminacy for the structure.
b. For ACB draw the M and V diagrams. At A, B and C also draw the

tangents to the M diagram.
c. Determine the normal forces in bars AD, BD and CD.
d. Draw the N diagram for ACB.
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13.66 In the trussed beam ACB from problem 13.65 the bending moment
at C with the given load is 36 kNm.

Questions:
a. Draw the M and V diagram for ACB (there are two possibilities). At

A, B and C, draw the tangents to the M diagram.
b. Determine the normal forces in bars AD, BD and CD.
c. Draw the N diagram for ACB.

13.67 The structure consists of a two-hinged frame ADEB that is
supported horizontally by member CD. The link between member CD
and frame ADEB is a hinge. With the given uniformly distributed load of
30 kN/m on CDE, the bending moments with deformation symbols at D
and E are given for DE.

Questions:
a. Draw the M diagram for the entire structure. At D and E, draw the

tangents to the M diagram.
b. Draw the V diagram for the entire structure.
c. Draw the N diagram for the entire structure.
d. Draw all the support reactions in the directions in which they act.


