
11
Mathematical Description of
the Relationship between
Section Forces and Loading

In the previous chapter, a direct approach was used to determine the varia-
tion of section forces. Section forces were determined from the equilibrium
of the isolated member part on the one or other side of the section. Usually
the support reactions have to be determined first.

This chapter introduces a more mathematical approach based on the equi-
librium of a small member segment with length �x that approaches zero
(�x → 0).

In Section 11.1, we derive the differential equations for the equilibrium of
such an infinitesimal member segment.

Using examples, Sections 11.2 and 11.3 show how to determine the varia-
tion of the section forces. The examples in Section 11.2 relate to extension
(relationship between N and qx); those in Section 11.3 relate to bending
(relationship between Mz, Vz and qz).

Since no misunderstanding is possible, we will omit the index z in Mz and
Vz to simplify the writing.
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Figure 11.1 Member with (a) non-deformed geometry and (b)
deformed geometry.

Figure 11.2 (a) Section forces N , V and M acting on the
left-hand sectional plane of a small member segment with length
�x (�x → 0).

11.1 Differential equations for the equilibrium

The differential equations for equilibrium are derived from the equilib-
rium of a small member segment with a length �x that approaches zero
(�x → 0). We assume that the displacements due to the deformation of
the member are negligible small. Therefore the equilibrium, including that
of a small member element, can be related to the non-deformed geometry
(see Figure 11.1).

In Figure 11.2a, a small segment with length �x has been isolated from a
member and greatly magnified. The member segment is subjected to qx and
qz. The loads act on the member axis (this has not been drawn as such for
qz for the sake of clarity).

If length �x of the member segment is sufficiently small (�x → 0), the
distributed loads qx and qz can be considered uniformly distributed.

The (unknown) section forces on the left and right-hand sectional planes are
shown in their positive direction. The section forces are a function of x, the
location of the cross-section, and are generally different in both sectional
planes.

In Figure 11.2a, it is assumed that the forces on the left-hand section are
N , V and M . If the section forces increase over a distance �x in the x

direction by amounts �N , �V and �M , respectively (see Figures 11.2b
to 11.2d), the forces on the right-hand sectional plane are then N + �N ,
V + �V and M + �M (see Figure 11.2e).

From the force equilibrium of the small member segment it follows that

∑
Fx = −N + (N + �N) + qx�x = 0, (a)

∑
Fz = −V + (V + �V ) + qz�x = 0. (b)

From the moment equilibrium it follows that (we have selected the moment
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Figure 11.2 (b) to (d) Over a distance �x in the x direction the
section forces increase by amounts �N , �V and �M respectively.
(e) The section forces on the right-hand sectional plane are then
N + �N , V + �V and M + �M .

sum about point A on the right-hand sectional plane)

∑
Ty |A = −M − V �x + (M + �M) + qz�x · 1

2�x = 0. (c)

With the three equilibrium conditions (a) to (c) this gives

�N + qx�x = 0,

�V + qz�x = 0,

�M − V �x + 1
2qz(�x)2 = 0.

After dividing by �x we find

�N

�x
+ qx = 0,

�V

�x
+ qz = 0,

�M

�x
− V = − 1

2qz�x.

�N/�x is the increase in the normal force per length in the x direction (see
Figure 11.2b). In the limit �x → 0 this is known as the derivative from N

with respect to x and is written dN/dx:

lim
�x→0

�N

�x
= dN

dx
.

In the same way:

lim
�x→0

�V

�x
= dV

dx
,
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lim
�x→0

�M

�x
= dM

dx
.

The three equations for the equilibrium of an elementary member segment
with length �x in the limit �x → 0 are

dN

dx
+ qx = 0,

dV

dx
+ qz = 0,

dM

dx
− V = 0.

In the last equation, with �x → 0, the term 1
2qz�x has disappeared. This

is justified since the contribution by qz in the equation for the moment
equilibrium is one order smaller than the contribution of the other terms.

The formulas derived give important general information about the varia-
tion of N , V and M in member segments (fields) where no concentrated
forces and/or couples are acting. In Sections 11.2 and 11.3 this general
information is translated into rules that allow us to easily draw N , V and
M diagrams.

The first-order differential equation equation

dN

dx
+ qx = 0 (extension) (a)

provides a direct relationship between the (distributed) load qx acting in the
direction of the member axis, and the normal force N . This is known as the
equilibrium equation for extension.
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The equations

dV

dx
+ qz = 0, (b)

dM

dx
− V = 0 (c)

indicate the relationship between the (distributed) load qz acting normal to
the member axis, the shear force V and the bending moment M .

The shear force V can be eliminated by differentiating (c) to x and adding
it to (b). This gives the second-order differential equation

d2M

dx2
+ qz = 0 (bending). (d)

This equation provides the direct relationship between the (distributed) load
qz normal to the member axis and the bending moment M . This is known
as the equilibrium equation for bending.

The variation of the normal force N depends only on the load in the di-
rection of the member axis, qx . The variation of the bending moment M

and the shear force V depends only on the load qz normal to the member
axis. For a member, this means that the equilibrium equations for extension
(only normal forces due to axial loads) and bending (only bending moments
and shear forces due to loads normal to the member axis) can be treated
separately.1

Comment 1: In Sections 10.2.1 to 10.2.3 we discussed the fact that axial
loads give only normal forces (extension) and that loads normal to the mem-

1 The loads have to be applied on the member axis.
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ber axis (including couples) give only shear forces and bending moments
(bending).

Comment 2: The derivation is not applicable if a concentrated force or a
concentrated couple acts on the member segment. In that case, there is a
“step change” or “abrupt change in slope” in the N , V and/or M diagram;
see the examples in Section 10.2.1. N , V and/or M are, as functions of x,
no longer continuous and/or continuously differentiable. In such a case, the
member can be split into a number of fields, so that the differential equation
is applicable for each individual field (see Section 11.2, Example 2 and
Section 11.3, Example 4).

11.2 Mathematical elaboration of the relationship
between N and qx (extension)

We derived for the relationship between the normal force N and the
distributed axial load qx

dN

dx
+ qx = 0

or in other words

dN

dx
= −qx.

By integrating once, we find the variation of the normal force N :

N = −
∫

qx dx.

With the exception of a constant, we have determined the indefinite integral
(or primitive function) of qx , and therefore the variation of the normal force
N .
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Figure 11.3 Since the distributed load is not acting along the entire
length, the member has to be divided into two fields.

Figure 11.4 (a) Model of a column and its load. (b) The boundary
condition (end condition) N = −46.4 kN follows from the force
equilibrium in the x direction of the small end segment in A (with
�x → 0). (c) N diagram.

The unknown integration constant is found using a known (prescribed)
value of N at one of the member ends. This is referred to as an end
condition.

It is sometimes necessary to divide the member into a number of segments
(fields), as in Figure 11.3. In that case, we also have to formulate conditions
for the joining from one field to another. These conditions are referred to as
joining conditions.

Purely mathematically both the end conditions and joining conditions can
be regarded as boundary conditions for a specific field. They can be derived
from the equilibrium of a small member segment with length �x (�x → 0)
at the boundaries of the field (an end and/or a joining).

For a statically determinate member, there are always sufficient boundary
conditions to find the normal force variation without previously determining
the support reactions.

We will illustrate this by means of two examples previously covered in
Section 10.2.3:
• A column subject to its dead weight.
• A simply supported member that is loaded over two-thirds of its length

by a uniformly distributed axial load along the member axis.

Example 1
Figure 11.4a gives the model of a column and its load.

Question:
Determine the variation of the normal force (the N diagram) from the
differential equations for the equilibrium.

Solution:
The units used are m and kN; they are omitted hereafter from the calcula-
tion.
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In the given coordinate system:

qx = 1.92 kN/m

so that

N = −
∫

qx dx = −
∫

1.92 dx = (−1.92x + C) kN. (a)

The integration constant C is found from the fact that there is a compressive
force of 46.4 kN at the top of the column. The boundary condition (end
condition) is therefore

x = 0 : N = −46.6 kN. (b)

This boundary condition can also be derived more formally from the force
equilibrium in the x direction of a small member segment with length �x

(�x → 0) at the top of the column (see Figure 11.4b):

∑
Fx = 46.4 + N = 0 → N = −46.4 kN.

With �x → 0 the contribution of qx�x, due to the distributed load,
disappears.

Substitute the values of x and N from (b) in (a) and we find

C = −46.6 kN.

This gives the variation of the normal force N :

N = (−1.92x − 46.4) kN.

The normal force diagram is shown in Figure 11.4c. The results agree with
what we found earlier in Section 10.2.3, Example 1.

Figure 11.4 (a) Model of a column and its load. (b) The boundary
condition (end condition) N = −46.4 kN follows from the force
equilibrium in the x direction of the small end segment in A (with
�x → 0). (c) N diagram.
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Figure 11.5 (a) A simply supported member with a uniformly
distributed axial load on section BC. (b) The boundary condition
(joining condition) at B, N(1) = N(2), follows from the force equi-
librium in the x direction of a small member segment at the joining
at B (with �x → 0). (c) The boundary condition (end condition) at
C, N(2) = 0, follows from the force equilibrium in the x direction
of a small end segment at C (with �x → 0).

Example 2
In Figure 11.5a, a uniformly distributed axial load q is acting on segment
BC of member ABC which is simply supported at A and C.

Question:
Determine the variation of the normal force (the N diagram) from the dif-
ferential equations for the equilibrium.

Solution:
Since the uniformly distributed load q acts only on part of the member, we
have to distinguish between two segments:
• segment AB (0<x<a), hereafter known as field (1).
• segment BC (a<x<3a), hereafter known as field (2).

The normal force variation is determined per field. The field number is used
as upper index for units that are field-dependent.

Field (1):

dN(1)

dx
= −q(1)

x = 0 → N(1) = C(1).

In an unloaded field, the normal force is constant.

Field (2):

dN(2)

dx
= −q(2)

x = −q → N(2) = −qx + C(2).

In a field with a uniformly distributed load, the normal force is linear.

Per field, there is one unknown integration constant; with two fields there
is a total of two integration constants, C(1) and C(2). There are two bound-
ary conditions available to solve these constants: a joining condition at B
(x = a) and an end condition at C (x = 3a).
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• The joining condition at B (x = a)
At B, the normal force in field (1) is equal to the normal force in field
(2):

x = a : N(1) = N(2). (a)

This boundary condition can be derived directly from the force
equilibrium in the x direction of the small member segment with
length �x (�x → 0) at the joining in B (see Figure 11.5b). The
contribution of q disappears from the equilibrium equation as �x → 0.

• The end condition at C (x = 3a)
At a roller support C the horizontal support reaction is zero, as is
therefore the normal force:

x = 3a : N(2) = 0. (b)

This boundary condition can also be derived from the equilibrium of
a small member segment at the end of the member (see Figure 11.5c).
Here also, the contribution of q disappears in the equilibrium equation
as �x → 0.

Elaboration of the conditions (a) and (b) leads to two equations with two
unknowns:

C(1) − C(2) = −qa,

C(2) = 3qa.

The solution is

C(1) = 2qa,

C(2) = 3qa.

This results in the normal force variation for both fields:

Figure 11.5 (a) A simply supported member with a uniformly
distributed axial load on section BC. (b) The boundary condition
(joining condition) at B, N(1) = N(2), follows from the force equi-
librium in the x direction of a small member segment at the joining
at B (with �x → 0). (c) The boundary condition (end condition) at
C, N(2) = 0, follows from the force equilibrium in the x direction
of a small end segment at C (with �x → 0).
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Figure 11.6 The loaded member with its N diagram.

Field (1):

N(1) = 2qa (0 ≤ x < a).

Field (2):

N(2) = −qx + 3qa (a < x ≤ 3a).

Figure 11.6 shows the N diagram. The results agree with those found
previously in Section 10.2.2, Example 2.

11.3 Mathematical elaboration of the relationship
between M, V and qz (bending)

We derived the following for the relationship between M , V and a dis-
tributed load qz normal to the member axis:

dV

dx
+ qz = 0,

dM

dx
− V = 0.

Eliminating the shear force leads to a direct relationship between the
bending moment M and the distributed load qz:

d2M

dx2 + qz = 0

or in other words:

d2M

dx2 = −qz.
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On the basis of this latter equation, we find the shear force V after inte-
grating once:

dM

dx
= V = −

∫
qz dx

and after integrating again we find the variation of the bending moment M:

M =
∫

V dx = −
∫ ( ∫

qz dx
)

dx.

With each integration, an integration constant appears. This means that the
expression for the shear force V contains one unknown (C1), and that for
the bending moment M contains two (C1 and C1).

The two constants C1 and C2 follow from end conditions and/or joining
conditions relating to V and M . They can be derived from the equilibrium
of a small member segment with length �x (�x → 0) on the boundaries
(end or joining) of the field.

For statically-determinate members, there are always sufficient end and/or
joining conditions to find the variation of the shear force and bending
moment without previously determining the support reactions. This is
illustrated using the following four examples:

1. A fixed beam, loaded at its free end by a concentrated load.
2. A simply supported beam and a beam fixed at one of its ends, both with

a uniformly distributed load along its entire length.
3. A simply supported beam with a triangular load.
4. A simply supported beam with overhang (cantilever beam) and a

uniformly distributed load along its entire length.
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Figure 11.7 (a) A beam fixed at A and loaded at its free end B
by a force F normal to the beam axis. (b) The boundary condi-
tions V = +F and M = 0 are found from the force and moment
equilibrium of a small boundary segment at B (with �x → 0).

Example 1
Figure 11.7a shows a beam AB fixed at A and of length �. At its free end B
the beam is loaded normal to its axis by a force F .

Question:
Determine the V and M diagrams using the differential equations for equi-
librium.

Solution:
For 0<x<� it holds that

d2M

dx2
= −qz = 0.

Repeated integration gives

dM

dx
= V = C1, (a)

M = C1x + C2. (b)

In an unloaded field the shear force is constant and the bending moment is
linear.

The integration constants C1 and C2 are found from the boundary con-
ditions at the free end B. Here both V and M have a prescribed value:
the shear force is equal to F (pay attention to the sign), and the bending
moment is zero:

x = � : V = +F, (c)

x = � : M = 0. (d)

The boundary conditions can also be derived from the force and moment
equilibrium of a small member segment with length �x (�x → 0) at the
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Figure 11.8 The loaded beam and its V and M diagrams.

Figure 11.9 A beam for which the type of support at A and/or
B is still unknown, with a uniformly distributed load normal to the
member axis.

free end B (see Figure 11.7b). The section forces V and M , which here are
acting on a negative section plane, have to be drawn in accordance with
their positive directions. The equilibrium of the member segment gives

∑
Fz = −V + F = 0 ⇒ V = +F,∑
Tz|B = −M − V �x = 0 (with �x → 0) ⇒ M = 0.

Substitute (c) in (a) and (d) in (b); elaboration of the boundary conditions
leads to

C1 = +F,

C2 = −F�.

This gives the variation of shear force V and bending moment M for beam
AB:

V = F,

M = Fx − F� = −F(� − x).

The V and M diagrams are shown in Figure 11.8. The shear force V is
constant. The bending moment M is negative everywhere and is linear. The
bending moment (in the absolute sense) has its maximum at the fixed end:

|M|max = F�.

Example 2
In Figure 11.9, a uniformly distributed load q is acting normal to the beam
axis over the entire length � of beam AB. The method of support in A and/or
B is given below.
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Figure 11.10 The same beam supported in three different ways,
with the associated V and M diagrams: (a) simply supported at A
and B, (b) fixed at A and (c) fixed at B.

Question:
For the following three cases, determine the V and M diagrams using the
differential equations for equilibrium (see Figure 11.10):

(a) The beam is simply supported at A and B;
(b) The beam has a fixed support at A and a roller support at B;
(c) The beam has a fixed support at B and a roller support at A.

Solution:
In all three cases, with qz = q the following applies:

d2M

dx2 = −q,

dM

dx
= V = −

∫
q dx = −qx + C1,

M =
∫

V dx =
∫

(−qx + C1) dx = − 1
2qx2 + C1x + C2.

Due to a uniformly distributed load, the shear force is linear, and the
bending moment is quadratic (parabolic).

The constants C1 and C2 are determined by the boundary conditions
(associated with the type of support) at A and/or B.

The boundary conditions are

case (a) case (b) case (c)

x = 0 : M = 0 x = � : V = 0 x = 0 : V = 0

x = � : M = 0 x = � : M = 0 x = 0 : M = 0
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• Elaboration of the boundary conditions in case (a):

x = 0 : M = C2 = 0 ⇒ C2 = 0,

x = � : M = − 1
2q�2 + C1� + C2 = 0 ⇒ C1 = 1

2q�

from which it follows that

V = −qx + 1
2q� = 1

2q(� − 2x),

M = − 1
2qx2 + 1

2q�x = 1
2qx(� − x).

• Elaboration of the boundary conditions in case (b):

x = � : V = −q� + C1 = 0 ⇒ C1 = q�,

x = � : M = − 1
2q�2 + C1� + C2 = 0 ⇒ C2 = − 1

2q�2

V = −qx + q� = q(� − x),

M = − 1
2qx2 + q�x − 1

2q�2 = − 1
2q(� − x)2.

• Elaboration of the boundary conditions in case (c):

x = 0 : V = C1 = 0 ⇒ C1 = 0,

x = 0 : M = C2 = 0 ⇒ C2 = 0

from which it follows that

V = −qx,

M = − 1
2qx2.

Figure 11.10 shows the V and M diagrams for all three cases. The tangents
to the M diagram are also shown at A and B. These intersect in x = 1

2�,
at mid-span. In the figure, an important variable p is shown: p = 1

8q�2. We
will make use of p in Chapter 12.

Figure 11.10 The same beam supported in three different ways,
with the associated V and M diagrams: (a) simply supported at A
and B, (b) fixed at A and (c) fixed at B.

from which it follows that
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Figure 11.11 (a) Small end segment at hinged support A (see
Figure 11.10a). (b) Small end segment at free end B (see Figure
11.10b).

Below we again show how, for two cases, the boundary conditions (end
conditions) can be derived from the equilibrium of a small element with
length �x (�x → 0) at the beam ends.

Boundary condition at the hinged support A in case (a)
In Figure 11.11a, a member segment with length �x (�x → 0) has been
isolated at the hinged support at A. The figure shows all the forces act-
ing on it, including the unknown vertical support reaction at A. Moment
equilibrium about A requires

∑
Ty |A = M − V �x − q�x · 1

2�x = 0.

For �x → 0 the terms with �x disappear and we find the boundary
condition at A:

M = 0.

Boundary conditions at the free member end B in case (b)
In Figure 11.11b, the small “last” member segment at the free end B is
shown, with all the forces acting on it. The element has a length �x.

The equations for the equilibrium are

∑
Fz = −V + q�x = 0,∑
Ty |B = −M − V �x + q�x · 1

2�x = 0.

For �x → 0 the terms with �x disappear in both equations and we find
the boundary conditions at the free member end B:

V = 0,

M = 0.
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Figure 11.12 (a) The water pressure on a water-retaining slide (b)
modelled as a line load on a line element.

Example 3
Figure 11.12a shows a water-retaining slide of width b and height h, which
is supported by a hinge at the top and supported against a sill below. The
mass density of water is ρ.

Question:
Model the slide as a line element with a line load, and use the differential
equations for equilibrium to find the variation of the shear force and the
bending moment.

Solution:
The water pressure on the slide at a depth x is

p = ρgx,

in which g is the gravitational field strength. The water pressure increases
linearly with the depth.

In Figure 11.12b the slide with width b is modelled as a line element
(beam). The support at the base is considered a roller support. At a depth x

the load on the slide is

qz = pb = ρgbx.

It holds

d2M

dx2
= −qz = −ρgbx,

V = dM

dx
= −

∫
qz dx = −

∫
ρgbx dx = − 1

2ρgbx2 + C1,

M =
∫

V dx =
∫ (

− 1
2ρgbx2 + C1

)
dx = − 1

6ρgbx3 + C1x + C2.
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Figure 11.13 (a) The water-retaining slide modelled as a beam
with its (b) shear force diagram and (c) bending moment diagram.

Due to a linear distributed load, the shear force is a quadratic (parabolic)
function in x, and the bending moment is a third degree (cubic) function in
x.

The constants C1 and C2 follow from the boundary conditions that the
bending moment at both the top and the base is zero:

x = 0 : M = 0,

x = h : M = 0.

Elaboration of the boundary conditions leads to

C1 = 1
6ρgbh2,

C2 = 0.

The expressions for the shear force and the bending moment are therefore

V = 1
6ρgb(h2 − 3x2), (a)

M = 1
6ρgb(h2x − x3). (b)

The V diagram is a second degree curve (parabola); the M diagram is a
third degree curve (cubic).

Both diagrams are shown in Figure 11.13. At A and B tangents to the V

and M diagrams are also shown. Note that the tangents to the M diagram
intersect at x = 2

3h, the location where the resultant R of the triangular
load acts. We will make use of this in the next chapter.

The bending moment is extreme when

dM

dx
= V = 0.
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Figure 11.14 The support reactions are found from the V diagram
as the shear forces at the member ends.

In other words: the bending moment is extreme where the shear force is
zero. This location can be found from (a):

V = 1
6ρgb(h2 − 3x2) = 0 ⇒ x = 1

3h
√

3.

Substituting this value of x in the expression for M gives the maximum
bending moment:

Mmax = M
(x= 1

3 h
√

3)
= 1

6ρgb

{
h2

(
1
3h

√
3
)

−
(

1
3h

√
3
)3
}

=
√

3

27
ρgbh3 = 0.064ρgbh3.

The support reactions can be found from the V diagram as the shear forces
on the beam ends:

x = 0 : V = + 1
6ρgbh2,

x = h : V = − 1
3ρgbh2.

These shear forces on the boundaries of the beam are shown in Fig-
ure 11.14. As a check, one can be examine whether the beam as a whole
is in equilibrium. The resultant R = 1

2ρgbh2 of the distributed load acts at
x = 2

3h. This gives

∑
Fz = R − 1

6ρgbh2 − 1
3ρgbh2 = 0,∑

Ty |B = R · 1
3h − 1

6ρgbh2 · h = 0.

Force and moment equilibrium therefore are satisfied.

Figure 11.13 (a) The water-retaining slide modelled as a beam
with its (b) shear force diagram and (c) bending moment diagram.
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Figure 11.15 (a) For the cantilever beam with a uniformly distrib-
uted load along the entire length we have to distinguish two fields.
(b) The joining condition, M(1) = M(2), at support B is found
from the moment equilibrium of a small beam segment with length
�x → 0.

Example 4
Cantilever beam ABC in Figure 11.15a is simply supported at A and B, and
has an overhang BC at B. The beam is carrying a uniformly distributed load
of 40 kN/m over its entire length. The dimensions are given in the figure.

Question:
Using the differential equations for equilibrium, determine the variation of
the shear force and the bending moment.

Solution:
The as yet unknown support reaction at B gives a discontinuity in the
distributed load on the isolated member. At this point, the differential
equations for the equilibrium are not valid (see Section 11.1). The beam
therefore has to be split into two parts or fields:

• part AB with (0 m)<x <(5 m), hereafter known as field (1).
• part BC with (5 m)<x<(7 m), hereafter known as field (2).

The differential equations for the equilibrium are elaborated per field. For
the units that are field-dependent, the field number is used as upper index.

All units are expressed in m and kN. The units are hereafter omitted from
the calculation.

For field (1) with (0 m)<x <(5 m):

qz = 40 kN/m,

d2M(1)

dx2
= −qz = −40 kN/m,

V (1) = dM(1)

dx
= −

∫
40 dx = (−40x + C

(1)
1 ) kN,
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M(1) =
∫

V (1) dx =
∫

(−40x + C
(1)
1 ) dx

= (−20x2 + C
(1)
1 x + C

(1)
2 ) kNm.

For field (2) with (5 m)<x<(7 m):

qz = 40 kN/m,

d2M(2)

dx2 = −qz = −40 kN/m,

V (2) = dM(2)

dx
= −

∫
40 dx = (−40x + C

(2)
1 ) kN,

M(2) =
∫

V (2) dx =
∫

(−40x + C
(2)
1 ) dx

= (−20x2 + C
(2)
1 x + C

(2)
2 ) kNm.

There are four boundary conditions available for solving the total of four
unknown integration constants C

(1)
1 , C

(1)
2 , C

(2)
1 and C

(2)
2 :

1. end condition at A: x = 0; M(1) = 0.

2. joining condition at B: x = 5; M(1) = M(2).

3. end condition at C: x = 7; V (2) = 0.

4. end condition at C: x = 7; M(2) = 0.

For the joining condition at B, we will show below how this can be derived
from the equilibrium of a member segment with length �x (�x → 0) at
the joining of the two fields.

Figure 11.15b shows the small member segment with the four section forces
acting on it and the unknown support reaction at B. If B is not located

Figure 11.15 (a) For the cantilever beam with a uniformly distrib-
uted load along the entire length we have to distinguish two fields.
(b) The joining condition, M(1) = M(2), at support B is found
from the moment equilibrium of a small beam segment with length
�x → 0.
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in the middle of the element, but at a distance ξ�x from the left-hand
section plane, respectively (1 − ξ)�x from the right-hand section plane
(0 < ξ < 1), then the equation for the moment equilibrium about B is∑

Ty |B =
−M(1) + M(2) − V (1)ξ�x − V (2)(1 − ξ)�x + qz�x

(
ξ − 1

2

)
�x = 0.

As �x → 0 all terms with �x disappear and we are left with

M(1) = M(2).

This is the joining condition we are looking for.

The derivation is considerably simpler if, as is standard, the beam element
is chosen such that B is in the middle. In that case ξ = 1

2 , and

∑
Ty |B = −M(1) + M(2) − V (1) 1

2�x − V (2) 1
2�x = 0.

As �x → 0 this again gives the joining condition we are looking for.

Elaboration of the end conditions and the joining condition leads to a set
of four equations and four unknowns:

1. end condition at A:

C
(1)
2 = 0.

2. joining condition at B:

−20 × 52 + C
(1)
1 × 5 + C

(1)
2 = −20 × 52 + C

(2)
1 × 5 + C

(2)
2 .

3. end condition at C:

−40 × 7 + C
(2)
1 = 0.

4. end condition at C:

−20 × 72 + C
(2)
1 × 7 + C

(2)
2 = 0.
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Figure 11.16 (a) A cantilever beam with a uniformly distributed
load, and the associated (b) V diagram and (c) M diagram. The
bending moment M is extreme where the shear force V is zero or
changes sign.

Or more neatly put

C
(1)
2 = 0,

5C
(1)
1 + C

(1)
2 − 5C

(2)
1 − C

(2)
2 = 0,

C
(2)
1 = 280,

7C
(2)
1 + C

(2)
2 = 980.

The solution to the set is

C
(1)
1 = 84 kN,

C
(1)
2 = 0,

C
(2)
1 = 280 kN,

C
(2)
2 = −980 kNm.

From this it follows for field (1) with (0 m)<x<(5 m) that

V (1) = (−40x + 84) kN,

M(1) = (−20x2 + 84x) kNm,

and for field (2) with (5 m)<x <(7 m) that

V (2) = (−40x + 280) kN,

M(2) = (−20x2 + 280x − 980) kNm,

Figure 11.16 shows the V and M diagrams. At A, B and C, the tangents to
the M diagram are also shown. These intersect at the middle of each field.

Note that p1 = 1
8 ×40 ×52 = 125 kNm and p2 = 1

8 ×40 ×22 = 20 kNm,
or in other words, for each field: “p = 1

8q�2”.
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Figure 11.17 (a) The magnitude and direction of the support re-
actions at A and B follow from (b) the shear force diagram. (c) The
shear forces directly to the left and right of joint B. The support
reaction at B is the same magnitude as the step change in the shear
force diagram.

Figure 11.18 The isolated beam with all the forces acting on it.

The bending moment in field (1) is a maximum where the tangent to the M

diagram is horizontal, or where

dM

dx
= V = −40x + 84 = 0 ⇒ x = 2.1 m.

The maximum bending moment therefore occurs to the left of the middle
of AB. Substituting x = 2.1 in the expression for M(1) gives the value of
the maximum bending moment:

Mmax = −20 × 2.12 + 84 × 2.1 = 88.2 kNm.

The support reactions at A and B are shown in Figure 11.17a. Their magni-
tude and direction can be found directly from the shear force diagram (see
Figure 11.17b). This is shown below for the support reaction at B.

Figure 11.17c shows (only) the shear forces directly to the left and right of
joint B. The vertical force equilibrium of joint B gives

Bv = 116 + 80 = 196 kN.

The support at B is carrying 116 kN from the left-hand field and 80 kN
from the right-hand field. The support reaction at B is exactly the same
magnitude as the “step change” in the shear force diagram.

The support reactions derived from the shear force diagram can be checked
using the equilibrium of the beam as a whole.

With R = 7 × 40 = 280 kN (see Figure 11.18)

∑
Fz = 280 − 84 − 196 = 0,∑
Ty |A = −280 × 3.5 + 196 × 5 = 0.

The beam as a whole therefore satisfies force and moment equilibrium.
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Problems

Differential equations for the equilibrium (Section 11.1)

11.1 Member AB with length � is subjected to extension by a distributed
axial load qx = qx(x).

Questions:
a. Isolate a small segment of

length �x (�x → 0) from the
member and draw all the forces
acting on it.

b. From the equilibrium of the
member segment, derive the re-
lationship between the normal
force in the member and the
distributed load.

11.2 Beam AB with length � is subjected to bending by a distributed load
qz = qz(x), normal to the beam axis.

Questions:
a. Isolate a small segment of

length �x (�x → 0) from the
member and draw all the forces
acting on it.

b. From the equilibrium of the
member segment, derive the re-
lationship between the bending
moment and the shear force.

c. From the equilibrium of the member segment, derive the relationship
between the shear force and the distributed load.

d. From the equilibrium of the member segment, derive the relationship
between the bending moment and the distributed load.

Mathematical elaboration of the relationship between N and qx

(extension) (Section 11.2)

11.3: 1–4 A four-metre high column AB is subjected to extension by four
different axial loads.

Questions:
a. By integrating the differential equations for the equilibrium, determine

the normal force as a function of x, without previously calculating the
vertical support reaction at A.

b. Draw the normal force diagram.
c. Calculate the vertical support reaction at A from the equilibrium of the

column as a whole and check whether this agrees with the normal force
diagram found.

11.4: 1–2 Column AB, 4 m high, is subjected to extension by two different
axial loads.

Questions:
a. Write down the distributed load as a function of x.

11.4
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b. Determine the variation of N as a function of x by integration of the
differential equation for the equilibrium (without previously calculating
the vertical support reaction at A).

c. Draw the N diagram.
d. At which height is the normal force in the column zero?
e. Calculate the vertical support reaction at A from the equilibrium of the

column as a whole and check whether this is in agreement with the N

diagram found.

11.5: 1–4 A simply supported member with length � is subjected to
extension by four different distributed loads q(x) with top value q̂:

(1) q(x) = q̂ ·
(

1 − 2
x

�

)
, (2) q(x) = q̂ cos

πx

�
,

(3) q(x) = 4q̂ ·
(

x

�
− x2

�2

)
, (4) q(x) = q̂ sin

πx

�
.

In the calculation use � = 5 m and q̂ = 2.4 kN/m.

Questions:
a. Using the differential equation for the equilibrium, determine the

variation of N as a function of x.
b. Draw the N diagram. Include the numerical values.
c. Where is N extreme, and what is this extreme value?
d. Determine the support reactions, and draw them as they are really

acting on the member.
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Mathematical elaboration of the relationship between M , V and qz

(bending) (Section 11.3)

11.6: 1–4 Four beams subjected to bending.

Questions:
a. By integrating the differential equations for the equilibrium, determine

the variation of the shear force V and the bending moment M as a
function of x, without previously determining the support reactions.

b. Draw the V and M diagrams.
c. Use the V and M diagrams to determine the magnitude and direction

of the support reactions. Draw them as they act on the beam and check
their values on the basis of the equilibrium of the beam as a whole.

11.7: 1–2 A beam with a linearly distributed load is supported in two
different ways.

Questions:
a. Write down the distributed load as a function of x.
b. Without previously calculating the support reactions, use the differen-

tial equations for the equilibrium to determine the variation of V and
M as a function of x.

c. Draw the V and M diagram and include their values and signs.
d. In which cross-sections are V and M extreme, and what are their

extreme values?
e. Using the V and M diagrams, determine the magnitude and direction

of the support reactions. Draw them as they act on the beam, and check
their values on the basis of the equilibrium of the beam as a whole.

11.8 A beam subjected to bending by a trapezoidal load.

Questions:
a. Write down the distributed load as a function of x.
b. Without previously calculating the support reactions, use the differen-

tial equations for the equilibrium to determine V and M as a function
of x.

c. Draw the V and M diagrams and include their values and signs.



11 Mathematical Description of the Relationship between Section Forces and Loading 459

d. In which cross-section is M extreme, and what is its value?
e. Using the V diagram determine the magnitude and direction of the

support reactions. Draw them as they act on the beam and check their
values on the basis of the equilibrium of the beam as a whole.

11.9: 1–3 A simply supported beam AB with length � is subjected to
bending by three different parabolic distributed loads with the same top
value q̂:

(1) q(x) = q̂
x2

�2 ,

(2) q(x) = q̂ ·
(

1 − x2

�2

)
,

(3) q(x) = 4q̂ ·
(

x

�
− x2

�2

)
.

In the calculation use � = 4 m and q̂ = 30 kN/m.

Questions:
a. Determine M and V as a function of x.
b. Draw the M and V diagrams. Include the values and signs.
c. Determine the location and magnitude of the maximum bending mo-

ment.

d. Using the V diagram, determine the support reactions at A and B, and
draw them as they actually act on the beam.

11.10 An opening in a dam is closed by means of a 3 metre high slide. The
top of the slide is two metres below water level. A one metre wide strip
from the slide is modelled as the simply supported beam AB. The specific
weight of water is 10 kN/m3.

Questions:
a. Write down the distributed load on AB due to the water pressure as a

function of x.
b. Without previously calculating the support reactions, use the differen-

tial equations for the equilibrium to determine V and M as a function
of x.

c. Draw the V and M diagram and include their values and signs.
d. In which cross-section is M extreme, and what is its value?
e. Using the V diagram, determine the magnitude and direction of the

support reactions. Draw them as they act on the beam and check their
values on the basis of the equilibrium of beam AB as a whole.
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11.11 A 30-m long ship is stranded on rock just below the water level. The
figure shows a rough model of the situation. The ship is modelled as a line
element with a weight of 100 kN/m. The rock is acting as a hinged support.
The upward water pressure on the ship is modelled as line load and varies
linearly from zero at the rock to the top value q̂w at the free-floating end,
where the ship is deepest.

Questions:
a. Using the equilibrium of the ship as a whole, determine the value of

q̂w.
b. Write down the total distributed load on the ship as a function of x.
c. Use the differential equations for the equilibrium to determine V and

M as a function of x.
d. Draw the V and M diagrams, and include the values and signs.
e. In which cross-sections are V and M extreme, and what are their

values?
f. Give an assessment of the reality of this model.


