
10Section Forces

Section forces is the collective name for interaction forces or joining forces
in a member axis. We make a distinction between normal force, shear force,
bending moment and torsional moment. Section forces always occur in
pairs and ensure force transfer in a member. This is addressed in further
detail in Section 10.1.

The section forces can vary along the member axis. Here they are a function
of the x coordinate, chosen along the member axis. Drawing these functions
provides a graphic representation of the distribution of the section forces,
known as diagrams.

In Section 10.2, we will determine the diagrams for the normal force (N),
shear force (V ) and bending moment (M) directly from the equilibrium.

For a correct interpretation of the signs in the M and V diagrams, we must
always know the coordinate system in which we are working. For manual
calculations, one often prefers the use of so-called deformation symbols.
The deformation symbols are independent of the coordinate system. In
Section 10.3, we will introduce the bending symbol for bending moments
and the shear symbol for shear forces.

Section 10.4 summarises the sign conventions for N , V and M diagrams.
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Figure 10.1 (a) A member modelled as a line element, loaded by
two forces of 120 kN and 40 kN. (b) The isolated member with its
support reactions.

Figure 10.2 The section forces (interaction forces) that the
member, modelled as a line, element has to transfer at C.

10.1 Force flow in a member

In mechanics, members in a frame are represented by means of lines. Each
one-dimensional line element represents a three-dimensional member (see
Section 4.3.2). All member properties are assigned to this single line. The
force flow in the member is also assumed to occur along this line, which is
known as the member axis.

Section forces is the collective name for interaction forces or joining forces
in the member modelled as a line element. They always occur in pairs. An
example is provided in Section 10.1.1.

In reality, the force transfer is not concentrated in the member axis, but
is distributed over the member cross-section, and is the sum of a large
number of small interactions between adjacent particles of matter. These
interactions are described using the concept stress. We look at this in more
detail in Section 10.1.2.

In Section 10.1.3, we discuss the general definition for the section forces,
related to the stresses in the cross-section.

The sign conventions for section forces are closely related to those for
stresses. They are summarised in Section 10.1.4.

10.1.1 Member axis and member cross-section; section forces

In Figure 10.1a, the load on beam AB in the one-dimensional model is
transferred to the supports via the member axis. Figure 10.1b shows the
support reactions. The lines of action of the resultant forces at A and B
intersect in the line of action of the force of 120 kN (graphical check of the
moment equilibrium for a body subjected to three forces, see Section 3.3.2).

Figure 10.2 shows the interaction forces that the member has to transfer
at C. After introducing a section at C across the member, the interaction
forces are found from the equilibrium of one of the isolated parts, to the
right or left of C.
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Figure 10.3 An arbitrarily shaped cross-section at C. The force
transfer is not concentrated in the member axis but is distributed
over the section as the sum of many very small interactions between
adjacent particles of matter. The stress resultant R is the resultant
force due to the stresses in the section.

Figure 10.4 It is usual to choose the section across a member
as a plane normal to the member axis. The centre of force is the
intersection of the line of action of the stress resultant R with the
plane of the cross-section.

In reality, the member is not one-dimensional, but has cross-sectional di-
mensions. Figure 10.3 shows an arbitrary section across the member at C.
The force transfer is not concentrated in the member axis, but varies over
the section as the sum of a large number of very small interactions between
adjacent particles of matter. Mathematically, we describe this phenomenon
in the section by means of the concept stress (see Section 6.5).1

The distributions in magnitude and direction of the stresses in the section
are as yet unknown. The equilibrium, however, shows that the stress re-
sultant R, regardless of the shape of the section, must be 50 kN, and that
the line of action of R must coincide with the line of action of the support
reaction at A (see Figure 10.3).

We usually do not give the section across a member an arbitrary shape, but
rather choose one that is straight and normal to the member axis, as shown
in Figure 10.4. This type of section is called a normal section or simply
cross-section. Hereafter, when we refer to a section, we always mean a
normal section.

The intersection of the line of action of the stress resultant R and the cross-
sectional plane is known as the centre of force.

The intersection of the member axis with the cross-sectional plane is the
normal force centre, or normal centre, of the section. The normal (force)
centre is indicated by the two-character symbol NC (see Figure 10.4).

Consistent with the model used for a line element, it is usual to represent

1 In Section 10.1.2, the definition of the concept stress, as introduced in Sec-
tion 6.5, is adapted to describe the interaction between the particles of matter.
The member axis is by definition chosen through the normal centre NC of the
cross-section. The location of the normal centre is covered in Volume 2 Stresses,
Deformations, Displacements. In so-called homogeneous cross-sections (the
whole cross-section consists of the same material) the normal centre coincides
with the centroid of the cross-section.

2

2
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Figure 10.5 Linked up with the modelling as line element, the
section forces (interaction forces) are said to act at the normal centre
NC, the intersection of the member axis with the cross-sectional
plane. Here there are three different section forces: a normal force
of 40 kN, a shear force of 30 kN and a bending moment of 120 kNm.

Figure 10.6 The sign of the section forces is related to a (local)
coordinate system with the x axis along the member axis and the yz

plane parallel to the cross-sections.

the forces in a section as acting in the member axis, or in other words, at
the normal centre NC. The vertical component of the stress resultant R at
section C is 30 kN and can be shifted directly along its line of action to
the member axis. The horizontal component of R is 40 kN and has to be
shifted 3 m in section C parallel to its line of action. This gives a moment
of (40 kN)(3 m) = 120 kNm. The section forces in section C, acting at the
member axis, are shown in Figure 10.5.

The section forces on the left- and right-hand sides of the section are equal
and opposite. Section forces are interaction forces and always occur in
pairs. You should always keep this in mind, even if you are drawing only
one of the member segments to the right or left of the section.

In the case shown in Figure 10.5, we can distinguish between the following
three section forces:
• A normal force: this is the pair of forces of 40 kN with their lines of

action along the member axis; a normal force acts normal to the cross-
sectional plane.

• A shear force: this is the pair of forces of 30 kN in the cross-sectional
plane; a shear force acts transverse to the member axis.

• A bending moment: this is the pair of couples of 120 kNm in a plane
normal to the cross-sectional plane.

For normal force, shear force and bending moment1 we use the symbols N ,
V and M respectively.

Since section forces are interaction forces, their sign convention is some-
what more complicated than that for a force F or couple T . The sign of the
section forces is related to a (local) coordinate system with the x axis along
the member axis and the yz plane parallel to the member cross-sections
(see Figure 10.6).

1 These names used in practice in no sense reflect that we are talking about
interaction forces (pair of forces).
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Figure 10.7 The sectional planes I are positive because the x axis
points out of the matter and the unit normal vector �n points in the
positive x direction. The sectional planes II are negative because the
x axis points into the matter and the unit normal vector �n points in
the negative x direction.

Figure 10.8 The positive directions of the normal force N , shear
force V and the bending moment M in an xz coordinate system.

After applying a section, there are two cross-sectional planes. To distin-
guish these from one another, we call the sectional plane positive where the
x axis points outwards, and the sectional plane negative where the x axis
points inwards. This is shown in Figure 10.7 where the sectional planes I
are positive, and sectional planes II are negative.

More formally, we describe the position of a sectional plane using a so-
called unit normal vector �n. This is a unit vector (a vector with length 1)
pointing outwards from the matter and normal to the sectional plane that is
considered. The position of a sectional plane in space is fully determined
by the scalar components nx ; ny ; nz of the unit normal vector �n. Since
the cross-section is normal to the x axis as chosen along the member axis,
ny = nz = 0. The sectional plane is now said to be positive if the unit nor-
mal vector �n points in the positive x direction (nx = +1), and negative if �n
is pointing in the negative x direction (nx = −1). Again, see Figure 10.7.

Figure 10.8 shows the positive directions in the given xz coordinate system
of the normal force N , the shear force V and the bending moment M . The
sign conventions are as follows:
• A normal force N is positive when it acts on a positive sectional plane in

the positive x direction and on a negative sectional plane in the negative
x direction. To simplify: a normal force N is positive as a tensile force
and negative as a compressive force. This sign convention has already
been used in trusses (see Section 9.3).

• A shear force V is positive when it acts on a positive sectional plane in
the positive z direction, and on a negative sectional plane in the negative
z direction.

• A bending moment M is positive when it causes tension (tensile
stresses) at the positive z side of the x axis, and causes compression
(compressive stresses) at the negative z side.
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Figure 10.9 The positive directions of the section forces N , V and
M in different coordinate systems.

In an xy coordinate system, the positive/negative section forces are defined
in the same way. Figure 10.9 shows the positive directions of the section
forces in various coordinate systems.1

The sign convention given here for the section forces N , V and M is asso-
ciated with the sign convention for stresses in the cross-section. We look at
this in more detail in Section 10.1.2.

10.1.2 Stresses in the cross-section

On a positive sectional plane, consider a small area �A. Let � �F be the
resultant of all the small forces that are transferred by the matter via that
small area. � �F is built up by the contributions of a large number of interac-
tions between the particles of matter. Figure 10.10a shows the components
� �Fx ; � �Fy ; � �Fz of the small force � �F .

If �A is smaller, so is � �F . It is assumed that the relationship between � �F
and �A has a limit when �A approaches zero. This limit was defined in
Section 6.5 as the stress vector �p:

�p = lim
�A→0

� �F
�A

.

The definition of the stress vector is based on the idealised model of contin-
uous matter. Figure 10.10b shows the components px ; py ; pz of the stress
vector �p.

1 Note: it is wrong to say that a bending moment is positive when the couple acts
on the positive sectional plane in accordance with the positive sense of rotation
and on the negative sectional plane in accordance with the negative sense of
rotation. This is shown in Figures 10.9a and 10.9d.
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Figure 10.10 (a) The small force � �F is the resultant of all the
small forces acting on a small but finite area �A. (b) The stress
vector �p is defined as the limit value of � �F/�A for �A → 0.

Figure 10.11 The stress vectors �p(I) and �p(II) in corresponding
points on the positive and negative sectional plane are equal and
opposite, so �p(I) = − �p(II).

If we look at the same small area �A on the negative sectional plane, there
is an equal but opposite force, in accordance with the principle of action
and reaction. The stress vectors �p(I) and �p(II) have the same magnitude
at corresponding points (�A → 0) on the positive and negative sectional
plane, but have opposite directions (see Figure 10.11):

�p(I) = − �p(II).

The stress vector is defined in a particular point and for a particular sec-
tional plane. If we want to indicate the force transfer (interaction) at a point
of the cross-section, the stress vector �p alone is not enough, as we also have
to indicate the status of the sectional plane that is considered. This is done
by means of the unit normal vector �n on that plane.

To describe the action of the forces that the matter to the right of the section
exerts on the matter to the left, and vice versa, we introduce the following
quantities, which are known as cross-sectional stresses (see Figure 10.12):

σxx = lim
�A→0

�Fx

�A · nx

,

σxy = lim
�A→0

�Fy

�A · nx

,

σxz = lim
�A→0

�Fz

�A · nx

.

Here, nx is the x component of the unit normal vector �n on the sectional
plane that is considered.
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Figure 10.12 The stresses in the cross-section reflect the interac-
tion through the area �A (�A → 0), of the right-hand part on the
left-hand part, and vice versa. The normal stress σxx acts normal
to the cross-sectional plane; the shear stresses σxy and σxz act in
cross-sectional plane.

The kernel symbol σ for stress has two sub-indices. The first index relates
to the normal of the plane on which the stress is acting; the second index re-
lates to the direction of the stress (that is, the direction of the corresponding
force component on that plane).

If we look at two corresponding equal areas �A to the right and to the left
of the section, they are subject to two equal and opposite forces �F . Since
the unit normal vectors also have opposite directions, the limit results for
the negative sectional plane are the same as those for the positive sectional
plane. The concept stress reflects the interaction through the small area
�A (�A → 0), both for the right-hand part on the left-hand part, and vice
versa.

The stress σxx , acting normal to the cross-sectional plane is known as the
normal stress. The stresses σxy and σxz, that act in the cross-sectional plane
are known as shear stresses.

The sign convention for the stresses results directly from their definition.
The normal stress σxx is positive if nx and �Fx are both positive or are
both negative; the normal stress is negative if nx and �Fx have different
signs. In the same way, the shear stresses σxy and σxz are positive if nx

and �Fy , respectively nx and �Fz are both positive or both negative; the
shear stresses are negative if nx and �Fy , respectively nx and �Fz, have
different signs.

The sign convention can be summarised as follows:
• A stress is positive when it acts on a positive plane in the positive

direction or on a negative plane in the negative direction.
• A stress is negative when it acts on a positive plane in the negative

direction or on a negative plane in the positive direction.
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Figure 10.13 Positive stresses on the sides of a rectangular block.
The kernel symbol σ for stress has two indices. The first index re-
lates to the normal of the plane on which the stress is acting; the
second index relates to the direction of the stress. The stress is a
normal stress when both indices are equal, and a shear stress when
both indices are different.

For more general cases, the stress definition can be summarised in short as
follows:

σij = lim
�A→0

�Fj

�A · ni

(i, j = x, y, z)

in which both i and j can be replaced by x, y or z.1

Figure 10.13 shows the positive stresses acting on the sides of an (infini-
tesimally) small rectangular block. The block is bounded by six planes, of
which three are positive and three are negative.

σij

• on a small area with the unit normal vector parallel to the i axis (1st
index),

• due to a force component parallel to the j axis (2nd index).

The stress σij is a normal stress when the indices are the same (i = j ) and
a shear stress when the indices are different (i �= j ).

10.1.3 General definition of section forces

In a member cross-section, there are only normal stresses σxx and shear
stresses σxy and σxz (see Figure 10.12). These stresses are as yet unknown
functions of y and z, so that

σxx = σxx(y, z), σxy = σxy(y, z) and σxz = σxz(y, z).

1 The stresses σij (i, j = x, y, z) are the components of a quantity (the so-called
stress tensor) that in a certain point for each arbitrary plane links the components
of the stress vector �p and the components of the unit normal vector �n.

is the stress
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Figure 10.14 (a) The resultant of the normal stresses on a small
area �A around a point P is a small force �N . This force in P is sta-
tically equivalent to (b) a small force �N in the normal force centre
NC (the intersection of the member axis with the cross-sectional
plane), together with (c) a small moment �My in the xy plane and
(d) a small moment �Mz in the xz plane.

The resultant of the normal stresses on a small area �A around a point P is
a small force �N :

�N = σxx�A.

This small force �N in P is statically equivalent to a small force �N in the
member axis (the origin of the yz coordinate system), together with two
small moments �My and �Mz, acting in the xy plane and the xz plane
respectively (see Figure 10.14):

�My = y · �N = y · σxx�A,

�Mz = z · �N = z · σxx�A.

If we sum up the contributions of all the forces �N for the entire cross-
section, this gives:

N =
∫

A

σxx dA,

My =
∫

A

yσxx dA,

Mz =
∫

A

zσxx dA.

• N is the resulting force (or rather: the resulting pair of forces) due to
the normal stresses in the cross-section, and is by definition known as
normal force when it acts at the normal centre NC of the cross-section
(the intersection of the member axis with the cross-sectional plane).

• My is a moment (or rather: a pair of moments) that acts in the xy plane.
My is known as the bending moment in the xy plane.

• Mz is a moment (or rather: a pair of moments) that acts in the xz plane.
Mz is known as the bending moment in the xz plane.
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Figure 10.15 The positive directions of the section forces that are
transferred via normal stresses. N is the normal force, My is the
bending moment in the xy plane and Mz is the bending moment in
the xz plane.

Figure 10.16 (a) The resultant of the shear stresses on a small area
�A around a point P is a small shear force, with components �Vy

and �Vz.

Note that indices y and z in My and Mz also occur under the integral
symbol. This makes the formulas easy to memorise. In addition, y and z

reoccur in the indication of the planes in which the bending moments act:
My in the xy plane and Mz in the xz plane.

The normal force N is positive as a tensile force and negative as a com-
pressive force.

The bending moments My and Mz are positive when a tensile stress
(σxx >0) on a small elemental area �A for y >0 makes a positive
contribution to My or for z > 0 makes a positive contribution to Mz.

Figure 10.15 shows the positive directions of N , My and Mz. These are
the section forces that are transferred via normal stresses in the member
cross-section.

The resultant of the shear stresses on a small area �A around a point P is a
small shear force �V , with components �Vy and �Vz:

�Vy = σxy�A,

�Vz = σxz�A.

When assuming these small forces act in the member axis (by shifting them
to the origin of the yz coordinate system), we have to add a small moment
�Mt in the cross-sectional plane (see Figure 10.16):

�Mt = y · �Vz − z · �Vy = (yσxz − zσxy)�A.

Summation of the contributions of all the forces �Vy and �Vz for the entire
cross-section results in
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Figure 10.16 (a) The resultant of the shear stresses on a small area
�A around a point P is a small shear force, with components �Vy

and �Vz. The forces �Vy and �Vz in P are statically equivalent to
(b) the small forces �Vy and �Vz in the normal force centre NC
(the intersection of the member axis with the cross-sectional plane),
together with (c) a small moment �Mt in the cross-sectional plane.

Vy =
∫

A

σxy dA,

Vz =
∫

A

σxz dA,

Mt =
∫

A

(yσxz − zσxy) dA.

• Vy and Vz are the components of the shear force V , that are the resultant
forces (or rather: pair of forces) due to the shear stresses in the cross-
section.

• Mt is a moment (or rather: pair of moments) that acts in the cross-
sectional plane (the yz plane). Mt is known as a torsional moment.

The components Vy and Vz of the shear force V are (in accordance with
the sign convention for the shear stresses σxy and σxz) positive when they
act on a positive plane in the positive coordinate direction and on a negative
plane in the negative coordinate direction.

The torsional moment Mt is positive when the couple acts on the positive
sectional plane in the positive sense of rotation about the x axis and when
the couple acts on the negative plane in the negative direction of rotation.

Figure 10.17 shows the positive directions of Vy , Vz and Mt. These are the
section forces that are transferred in the cross-section via shear stresses.

Note: The expression given for the torsional moment is not universally ap-
plicable. Sometimes, to determine the torsional moment, we do not move
the lines of action of the shear forces Vy and Vz to the normal centre NC (or
the member axis, where we selected the origin of the yz coordinate system),
but to another point in the cross-section that we refer to as the shear force
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Figure 10.17 The positive directions of the section forces that
are transferred via shear stresses. Vy and Vz are the components of
the shear force V in respectively the y and z direction. Mt is the
torsional moment and acts in the plane of the cross-section.

Figure 10.18 Examples of cross-sections with rotational symme-
try. The angle of rotation α is mentioned for each cross-sectional
shape.

centre, or shear centre, SC.1 With (ySC, zSC) as the coordinates of the shear
force centre, the expression for the torsional moment in that case is

Mt =
∫

A

[(y − ySC)σxz − (z − zSC)σxy] dA.

The expression given earlier,

Mt =
∫

A

(yσxz − zσxy) dA,

applies only when ySC = 0; zSC = 0, or in other words, when the shear cen-
tre SC coincides with the normal centre NC. This occurs for cross-sections
that have rotational symmetry.

A cross-section is said to have rotational symmetry when we rotate the
cross-section n times (n > 1) with an angle of α = 360◦/n about the
member axis, and the rotated cross-section coincides with the original,
un-rotated cross-section.

Figure 10.18 gives a number of examples of cross-sections with rotational
symmetry; the angle of rotation α is given for each of the cross-sectional
shapes.

10.1.4 Summary of the sign conventions for stresses and
section forces

We use a (local) coordinate system with the x axis along the member axis.

A cross-section is straight and normal to the member axis. The location of
a cross-section is determined by the x coordinate.

1 Volume 2, Stresses, Deformations, Displacements, addresses the location of the
shear force centre SC in more detail.
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The unit normal vector is a unit vector pointed outwards from matter, and
normal to the sectional plane that is considered.

A sectional plane is
• positive when the unit normal vector is pointing in the positive coordi-

nate direction;
• negative when the unit normal vector is pointing in the negative

coordinate direction.

This can also be formulated as follows, without the unit normal vector.

A sectional plane is
• positive when the coordinate axis points out of the matter;
• negative when the coordinate axis points into the matter.

A stress is
• positive when it acts on a positive plane in the positive coordinate

direction or on a negative plane in the negative coordinate direction.
• negative when it acts on a positive plane in the coordinate negative

direction or on a negative plane in the positive coordinate direction.

In general, stress σij acts
• on a plane with the unit normal vector parallel to the i axis (1st index),
• due to a force component, parallel to the j axis (2nd index).

The stress σij is a normal stress when the indices are the same (i = j ) and
a shear stress when the indices are different (i �= j ).

The section forces transferred by normal stresses are
• the normal force N ;
• the bending moment My , acting in the xy plane;
• the bending moment Mz, acting in the xz plane.

The section forces transferred by shear stresses are
• the shear force Vy in y direction;
• the shear force Vz in z direction;
• the torsional moment Mt, acting in the yz plane.
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The following sign conventions apply for section forces:
• A normal force N is positive when it acts on a positive cross-sectional

plane in the positive x direction. In other words, a normal force N is
positive as a tensile force and negative as a compressive force.

• A shear force Vy (Vz) is positive when it acts on a positive cross-
sectional plane in the positive y direction (z direction) and on a negative
cross-sectional plane in the negative y direction (z direction).

• A bending moment My (Mz) is positive when it causes tensile stresses
at the positive y side (z side) of the x axis and compressive stresses at
the negative y side (z side).

• A torsional moment Mt is positive when the couple on the positive
cross-sectional plane acts in accordance with the positive direction of
rotation about the x axis and the couple on the negative cross-sectional
plane acts in accordance with the negative direction of rotation.

10.2 Diagrams for the normal force, shear force and
bending moment

The section forces in a member are in general not constant, but may vary
along the member axis. They are then a function of the x coordinate chosen
along the member axis. By drawing these functions, we get a graphical rep-
resentation of the distribution of the section forces. These types of diagrams
are extremely useful to see at a glance where the section forces change sign
(direction) and where they are at largest.

In this section, we cover examples of diagrams for the normal force, shear
force and bending moment. Section 10.2.1 covers members subject to con-
centrated forces and couples, while Sections 10.2.2 and 10.2.3 look at
members subject to a uniformly distributed load.
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Figure 10.19 (a) A simply supported member loaded by two
forces of which the lines of action coincide with the member axis.

10.2.1 Members subject to concentrated forces/couples

We look at three examples:
1. a simply supported member with forces in the direction of the member

axis;
2. a simply supported member with forces normal to the member axis;
3. a simply supported member subject to a couple.

Example 1
The simply supported member AD in Figure 10.19a is loaded at B and C
by two forces of respectively 50 and 20 kN, of which the lines of action
coincide with the member axis.

Question:
Determine the diagrams for the section forces.

Solution:
In Figure 10.19b, the member has been isolated from its supports and the
support reactions are shown; the vertical support reactions are zero.

The interaction forces in a section (the section forces) can be determined
from the equilibrium of the isolated member segments to the left or to the
right of the section. Figure 10.19c shows the member segment to the left
of a section located between A and B. In the section, both segments are
rigidly joined. The section must therefore be able to transfer a normal force
N , shear force V and bending moment M . In Figure 10.19c, the unknown
section forces are shown with their positive directions in the given xz axis
system.1

Actually, the shear force and the bending moment in this xz coordinate
system should be shown as respectively Vz and Mz. In obvious situations,
the indices are generally omitted to simplify the writing.

1 Remember that you should always include quantities shown as symbols to which
a sign is linked positively in the calculation.
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Figure 10.19 (b) The isolated member with its support reactions.
(c) The isolated part of the member to the left of a section between
A and B. The section can transfer a normal force N , shear force V

and bending moment M . The unknown section forces are shown in
accordance with their positive directions in the coordinate system.
(d) The isolated part of the member to the left of a section between
B and C. In the section, only the unknown normal force N is shown
as it was determined earlier that the shear force V and the bending
moment M are zero throughout the member. (e) The isolated part
of the member to the right of a section between B and C, with the
unknown normal force N .

From the force and moment equilibrium of the segment to the left of the
section it follows that

∑
Fx = −(30 kN) + N = 0 ⇒ N = +30 kN,∑
Fz = 0 ⇒ V = 0,∑
Ty |section = 0 ⇒ M = 0.

The normal force N is a tensile force of 30 kN, while the shear force
V and the bending moment M are zero. These values are independent
of the location of the section between A and B and therefore apply for
(0 m) ≤ x < (2 m).

The shear force and bending moment are not only zero in AB, but also
in the rest of the member. This follows from equilibrium of each member
segment to the left or right of a (arbitrarily chosen) section. For this reason,
we will look only at the distribution of the normal force.

Figure 10.19d shows the isolated member segment to the left of a section
between B and C. The equation for the force equilibrium in the x direction
now also includes the force of 50 kN at B:

∑
Fx = −(30 kN) + (50 kN) + N = 0 ⇒ N = −20 kN.

This result, a compressive force of 20 kN, is independent of the location of
the section between B and C and therefore applies for (2 m) < x ≤ (6 m).

Of course, instead of the equilibrium for the part to the left of the section,
we can also determine the equilibrium for the part to the right of the section
(see Figure 10.19e):

∑
Fx = −N − (20 kN) = 0 ⇒ N = −20 kN.
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Figure 10.20 The normal force diagram (N diagram) for the sim-
ply supported member loaded by two forces of which the lines of
action coincide with the member axis. Step changes occur in the N

diagram at the location of the point loads at B and C.

Figure 10.21 A step change in the N diagram can be found from
the equilibrium of a small member segment. In this way, the normal
forces on both sectional planes of a small member segment are in
equilibrium with the load of 50 kN (shown eccentrically for the sake
of clarity).

Note that the positive direction of N on a cross-sectional plane is by defi-
nition always that of a tensile force.

For a section between C and D, the equilibrium of the part to the right of
the section gives

N = 0.

To summarise, for normal force N applies:

N = +30 kN for (0 m) ≤ x < (2 m),

N = −20 kN for (2 m) < x < (6 m),

N = 0 for (6 m) < x ≤ (8 m).

Figure 10.20 shows the distribution of the normal force N graphically in a
diagram. This is called the normal force diagram, or N diagram. Positive
values of N (tensile forces) are plotted at the positive side of the z axis
and negative values (compressive forces) are plotted at the negative side
of the z axis. We usually place the sign of N (“+” for tension and “−”
for compression) within the diagram and write down the relevant values
without a sign.

At x = 2 m and x = 6 m there is a step change in the N diagram equal to
the forces acting there. In these sections, the value of N is undetermined.
This is a result of modelling the load into concentrated forces (acting in a
particular point).

The step change in the normal force diagram can be found from the equi-
librium of a small member segment with length �x (�x → 0), at the point
load. Figure 10.21 shows “joint” B between the member segments AB and
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Figure 10.22 (a) A simply supported member that is loaded in
B normal to the member axis by a force of 60 kN. (b) The isolated
member with its support reactions. (c) The isolated part of the mem-
ber to the left of a section between A and B. The section can transfer
a normal force N , shear force V and a bending moment M . The
unknown section forces are shown in accordance with their positive
directions in the coordinate system. (d) The shear force diagram (V
diagram) for AB. (e) The moment diagram (M diagram) for AB.

BC. From the N diagram we can read off that there is a tensile force of
30 kN directly to the left of B and a compressive force of 20 kN directly to
the right of B. Both forces are in equilibrium with the 50 kN load (which is
shown eccentrically for clarity).

Example 2
The simply supported member AD in Figure 10.22a is loaded at B normal
to the member axis by a force of 60 kN.

Question:
Determine the distribution of the section forces.

Solution:
The units used are m and kN. To simplify the writing, the units have been
omitted from the calculation.

In Figure 10.22b, the member has been isolated and the support reactions
are shown; the horizontal support reaction at A is zero.

Figure 10.22c shows the member segment to the left of a section between A
and B, with all the forces acting on it. The section forces N (normal force),
V (shear force) and M (bending moment) follow from the equilibrium.1

For a length x of the isolated member segment it holds that

∑
Fx = 0 ⇒ N = 0,∑
Fz = −45 + V = 0 ⇒ V = +45 kN,∑
Ty |section = −45x + M = 0 ⇒ M = 45x kNm.

1 The sub-index z is again omitted from the symbols for shear force (Vz) and
bending moment (Mz); see also Example 1.



406 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 10.23 (a) The isolated member with its support reactions.
(b) The isolated part of the member to the left of a section between
B and D. The section can transfer a normal force N , shear force V

and a bending moment M . The unknown shear forces are shown in
accordance with their positive directions in the coordinate system.
(c) The isolated part of the member to the right of a section between
B and D. (d) The shear force diagram (V diagram) for BD. (e) The
moment diagram (M diagram) for BD.

The normal force N is not only zero in AB, but also in the rest of the
member. This follows from the force equilibrium in the x direction of each
member segment to the left or right of a (arbitrarily chosen) section. We
will therefore only look at the shear force and the bending moment.

The shear force is constant between A and B: V = +45 kN. The bend-
ing moment M varies linearly, from 0 at A (x = 0 m) to +90 kNm at B
(x = 2 m).

Figures 10.22d and 10.22e show the variation for AB of the shear force and
the bending moment with a so-called shear force diagram (V diagram),
respectively a bending moment diagram (M diagram).

Positive values of V and M are plotted at the positive side of the z axis, and
negative values are plotted at the negative side. The sign is shown within
the diagram; relevant values are written down without a sign.

In Figure 10.23b, the member segment to the left of a section located be-
tween B and D has been isolated. The equations for the force equilibrium in
the z direction and the moment equilibrium now includes the load of 60 kN:

∑
Fz = −45 + 60 + V = 0 → V = −15 kN,∑
Ty |section = −45x + 60 × (x − 2) + M = 0

⇒ M = (−15x + 120) kNm.

These values can also be found from the equilibrium of the member seg-
ment to the right of the section, as shown in Figure 10.23c. It should be
noted that the sectional plane in the coordinate system shown is negative,
and that the positive directions of N , V and M are therefore opposite to
those on a positive sectional plane.
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Figure 10.24 A simply supported member that is loaded at B
normal to the member axis by a force of 60 kN, with its shear force
diagram (V diagram) and bending moment diagram (M diagram).
A step change occurs at the location of the point load in the V

diagram and an abrupt change in slope occurs in the M diagram.

Figure 10.25 A step change in the V diagram can be found from
the equilibrium of a small member segment. In this way, the shear
forces on both sectional planes at B are in equilibrium with the load
of 60 kN.

∑
Fz = −V − 15 = 0 ⇒ V = −15 kN,

∑
Ty |section = 15 × (8 − x) − M = 0 ⇒ M = (−15x + 120) kNm.

The shear force between B and D is constant: V = −15 kN. The bending
moment M decreases linearly, from +90 kNm at B (x = 2 m) to 0 at D
(x = 8 m).

Figures 10.23d and 10.23e show the distribution for BD of respectively the
shear force V and the bending moment M .

The shear force diagram (V diagram) and bending moment diagram (M
diagram) for the entire member AD are shown in Figure 10.24.

At B, the point of application of the concentrated force of 60 kN, there is an
abrupt change in slope of the bending moment diagram. Here the bending
moment is at its largest.

The shear force in B is undetermined; this is the result of modelling the
load as a point load. This finds expression in the shear force diagram as a
step change: the shear force is +45 kN directly to the left of B and −15 kN
directly to the right of B. The magnitude of the step change equals the
magnitude of the point load at B.

The step change in the shear force diagram can be found from the force
equilibrium in z direction of a small member segment at B, with length �x

(�x → 0) (see Figure 10.25). The 60 kN point load is kept in equilibrium
by both shear forces in the sectional planes (the bending moments are not
shown).
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Figure 10.26 (a) A simply supported member AD, which is
loaded in C by a couple of 80 kNm. (b) The isolated member with
its support reactions. (c) The isolated part of the member to the left
of a section between A and C. The section can transfer a normal
force N , shear force V and a bending moment M . The unknown
shear forces are shown in accordance with their positive directions
in the coordinate system. (d) The isolated part of the member to the
left of a section between C and D.

Example 3
The simply supported member in Figure 10.26a is loaded at C by a couple
of 80 kNm.

Question:
Determine the distribution of the section forces.

Solution:
The units used are m and kN.

In Figure 10.26b, the member has been isolated and the support reactions
are shown.

Figure 10.26c shows the isolated member segment to the left of a section
between A and C, with all the forces acting on it. From the equilibrium we
find:∑

Fx = N = 0 ⇒ N = 0,∑
Fz = 10 + V = 0 ⇒ V = −10 kN,∑
Ty |section = 10x + M = 0 ⇒ M = −10x kNm.

Figure 10.26d shows the member segment to the left of a section between
C and D, with all the forces acting on it. The equation for the moment
equilibrium now includes the load from the couple of 80 kNm:

∑
Fx = N = 0 ⇒ N = 0,∑
Fz = 10 + V = 0 ⇒ V = −10 kN,∑
Ty |section = 10x − 80 + M = 0 ⇒ M = (−10x + 80) kNm.
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Figure 10.26 (e) The shear force diagram (V diagram) for AD. (f)
The bending moment diagram (M diagram) for AD. The bending
moment varies linearly and makes a step change at C, the point of
application of the couple. The magnitude of the step change is equal
to the magnitude of the couple.

Figure 10.27 A step change in the M diagram can be found from
the equilibrium of a small member segment. In this way, the bending
moments on both sectional planes of a small member segment are
in equilibrium with the couple of 80 kNm.

Figures 10.26e and 10.26f show the shear force diagram (V diagram)
and the bending moment diagram (M diagram) for member AD. Since
the normal force is zero everywhere, the normal force diagram has been
omitted. The shear force is constant across the entire length of the member:
V = −10 kN. The bending moment varies linearly, from 0 at A (x = 0 m)
to −60 kNm directly to the left of C (x = 6 m) and from +20 kNm directly
to the right of C (x = 6 m) to 0 at D (x = 8 m).

In C, where the couple acts, the bending moment is undetermined. This is a
result of modelling the load as a couple that is concentrated in a single point.
This finds expression in the bending moment diagram as a step change
equal to the magnitude of the couple.

The step change in the bending moment diagram can be found from the
moment equilibrium of a small member segment at C, with a length of �x

(�x → 0) (see Figure 10.27; the shear forces are not shown). The bending
moments on both sectional planes are in equilibrium with the couple of
80 kNm.

10.2.2 Members with a uniformly distributed load in the direction
of the member axis

In straight members a (distributed) longitudinal load does not produce
bending moments or shear forces. In these cases, there are only normal
forces. The variation of the normal force is elaborated for two examples:

1. a column subject to its dead weight;

2. a simply supported member subject to a uniformly distributed axial
load over three-quarters of its length.
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Figure 10.28 (a) Dimensions of a concrete column of the building
used in Section 6.4. (b) The column is loaded on top by a force
of 46.4 kN. The dead weight is to be considered as a uniformly
distributed (line)load along the member axis of 1.92 kN/m.

Figure 10.29 (a) The model for the column and the load. (b) To
determine the normal force N we look at the equilibrium of the part
above the section. (c) The normal force diagram.

Example 1
For the example in Figure 10.28, we will use the concrete column from the
building that we looked at in Section 6.4.

Question:
Determine the N diagram.

Solution:
The column is loaded on top by a force of 46.4 kN (see Figure 10.28b). The
dead weight is a uniformly distributed (line) load along the member axis.
With a specific weight of concrete of 24 kN/m3, and the cross-sectional
dimensions given in Figure 10.28a, the dead weight is

(0.4 m)(0.2m)(24kN/m3) = 1.2kN/m.

The model for the column and load is shown in Figure 10.29a.

In Figure 10.29b, a segment with length x has been isolated at the top of
the column. In the section, the as yet unknown normal force N is shown
according to its positive direction (that of a tensile force). For this segment,
the equation for the force equilibrium in the x direction is

∑
Fx = (46.4 kN) + (1.92 kN/m)(x m) + N = 0

from which it follows that (x expressed in m)

N = (−46.4 − 1.92x) kN.

In Figure 10.29c, the normal force N is shown as a function of x. The
normal force is a compressive force everywhere and varies linearly, from
46.4 kN at A (x = 0 m) to 56 kN at B (x = 5 m).

As expected, the compressive force increases downwards due to the col-
umn’s dead weight. The compressive force of 56 kN at B is in conformity
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Figure 10.30 (a) A simply supported member AC, with a uni-
formly distributed load q over part BC along the member axis. (b)
The isolated member with its support reactions. (c) The isolated part
to the left of a section between A and B. (d) The isolated part to the
left of a section between B and C. (e) The isolated part to the right
of a section between B and C. (f) The normal force diagram. It has
an abrupt change in slope at the joining of fields AB and BC.

with the previously determined support reaction (in Section 6.3) from the
equilibrium of the column as a whole.

Example 2
In Figure 10.30a, the simply supported member AC is subject to a
uniformly distributed axial load q along segment BC.

Question:
Determine the normal force distribution.

Solution:
There is only one support reaction not equal to zero, namely the horizontal
support reaction at A. Figure 10.30b shows the isolated member, with all
the forces acting on it.

The variation of the normal force can be determined from the force equi-
librium in the x direction for the member segment to the left of a section
at a distance x from A. Here, we have to distinguish between two parts, or
fields:
• AB (0 < x < a),
• BC (a < x < 3a).

For 0<x <a (the section is within AB) the equation for the force equilib-
rium of the left-hand member segment is (see Figure 10.30c)

∑
Fx = −2qa + N = 0

from which it follows that

N = 2qa.

The normal force in field AB is a constant tensile force.

For a < x < 3a (the section is within BC) the equilibrium equation for the
left-hand member segment is (see Figure 10.30d)
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Figure 10.31 The simply supported member AC is subject to a
uniformly distributed axial load q along part BC. If we switch the
hinged support and roller support, the N diagram changes.

∑
Fx = −2qa + q(x − a) + N = 0.

Here q(x−a) is the resultant of the distributed load on the isolated left-hand
segment. This leads to

N = q(−x + 3a).

Of course we find the same result if we look at the segment to the right of
the section (see Figure 10.30e).

In field BC the normal force is a tensile force that decreases linearly, from
2qa at x = a to zero at x = 3a.

Figure 10.30f shows the entire normal force diagram. This gives a bend (an
abrupt change of slope) at the joining of the fields AB and BC.

It should be noted that the normal force variation changes if you swap the
hinged and roller support at A and C (see Figure 10.31). It is up to you to
check this.

10.2.3 Members with a uniformly distributed load normal to the
member axis

This section looks at two examples:
1. a simply supported member;
2. a member fixed at one side and free at the other.

Example 1
The simply supported beam AB in Figure 10.32a carries a uniformly
distributed load q over its entire length �.

Question:
Determine the distribution of all the section forces.
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Figure 10.32 (a) A simply supported beam AB is bearing a uni-
formly distributed load q over its entire length �. (b) The isolated
member with its support reactions. (c) The isolated part of the mem-
ber to the left of a section. The section can transfer a normal force
N , shear force V and a bending moment M . The unknown section
forces are shown in accordance with their positive directions in the
coordinate system. (d) The shear force diagram for AB. (e) The
bending moment diagram for AB, with the tangents in A and B.

Solution:
In Figure 10.32b, the beam has been isolated and the support reactions are
shown. To determine the variation of the section forces, we will look at the
equilibrium of the part to the left of the section (see Figure 10.32c):

∑
Fx = N = 0,∑
Fz = − 1

2q� + qx + V = 0,∑
Ty |section = − 1

2q� · x + qx · 1
2x + M = 0

so that

N = 0

V = −qx + 1
2q�, (a)

M = − 1
2qx2 + 1

2q�x = 1
2qx(� − x). (b)

The normal force is zero everywhere, and therefore not interesting.

The shear force varies linearly from + 1
2q� in A (x = 0) to − 1

2q� in B
(x = �). The shear force diagram is shown in Figure 10.32d.

The bending moment varies quadratically in x and is positive everywhere.
The bending moment diagram is shown in Figure 10.32e and is shaped like
a (second degree) parabola. In A and B, the tangents of the parabola are
also shown; both tangents intersect at the middle of AB.1

1 It is assumed that the reader is familiar with plotting graphical functions,
drawing tangents, and calculating extreme values.
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Figure 10.33 (a) A member AB fixed at A carries a uniformly
distributed load q over its entire length �. (b) To determine the
section forces, we look at the equilibrium of the part to the right
of the section. (c) The shear force diagram for AB. (d) The bending
moment diagram for AB, with the tangents at A and B.

The bending moment is an extreme (maximum or minimum) when the
derivative of M with respect to x is zero:

dM

dx
= −qx + 1

2q� = 0 ⇒ x = 1
2� and Mmax = 1

8q�2.

If we differentiate expression (b) for the bending moment with respect to x

we find the expression (a) for the shear force. The derivative of the bending
moment M is therefore equal to the shear force V :

dM

dx
= V.

Consequently: the gradient of the moment diagram is equal to the shear
force. In Chapter 11 we will demonstrate that this property is generally
applicable. It is up to you to check the property for Examples 2 and 3 in
Section 10.2.1.

Example 2
In Figure 10.33a, the member AB is fixed at A and carries a uniformly
distributed load q over its entire length �.

Question:
Determine the variation of the section forces.

Solution:
To determine the section forces, we will look at the equilibrium of the seg-
ment to the right of the section. In this case, it is not necessary to previously
determine the support reactions at A (see Figure 10.33b):

∑
Fx = N = 0 ⇒ N = 0,∑
Fz = −V + q(� − x) = 0 ⇒ V = q(� − x),∑
Ty |section = −M − q(� − x) · 1

2 (� − x) = 0 ⇒ M = − 1
2q(� − x)2.
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Figure 10.34 The magnitude and direction of the support reac-
tions in A can be derived from the shear force diagram and the
bending moment diagram.

The normal force is zero everywhere, and therefore not of interest.

The shear force is positive everywhere and varies linearly, from q� at
A (x = 0) to zero at B (x = �). The shear force diagram is shown in
Figure 10.33c.

The bending moment is quadratic in x and negative everywhere. It varies
from − 1

2q�2 at the fixed end A (x = 0) to zero at the free end B (x = �).

Figure 10.33d shows the bending moment diagram: a parabola with its apex
at B. The tangents at A and B are also shown. The tangent at B is horizontal.
Both tangents intersect at the middle of AB. The values p are equal to 1

8q�2.

The maximum1 bending moment occurs at the fixed support in A:

|M|max = 1
2q�2.

Note that at A: dM/dx = V �= 0; here it concerns a maximum at a field
boundary.

The support reactions at A can be derived according to magnitude and
direction from the shear force diagram and the bending moment diagram:

VA = +q�,

MA = − 1
2q�2.

Since the support reactions at A act on a negative sectional plane, they have
the directions shown in Figure 10.34. Whether this is correct can easily be
checked by looking at the equilibrium of the structure as a whole.

1 With “maximum” we often mean “the largest value in an absolute sense”; we
call this the global maximum.
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Figure 10.35 A fixed member, loaded at its free end by a force of
75 kN, with its N diagram, M diagram and V diagram. The magni-
tude of the section forces follows directly from these diagrams. The
direction is determined by the sign. To do so, we have to know the
coordinate system in which we are working. Since that is not given,
the signs in the M and V diagrams have here lost their meaning.

10.3 Deformation symbols for shear forces and
bending moments

Figure 10.35 shows a fixed member that is loaded at its free end by a force
of 75 kN. The same figure also shows the N diagram, M diagram and the
V diagram. The magnitude of the section forces can be read directly from
these diagrams. The direction is determined by the plus or minus sign.

The normal force N can be read directly from the N diagram without coor-
dinate system. The direction of the normal force follows directly from the
plus or minus sign. The N diagram shows that the normal force is negative
and therefore a compressive force.

Other than for the normal force N , we have to know the coordinate system
in which we are working to interpret the signs in the M and V diagrams.
In Figure 10.35, without the coordinate system, the signs in the M and V

diagrams have lost their meaning.

Assume we were working in a xz coordinate system with, of course, the
x axis along the member axis. In order to determine the direction of the
bending moment M from the sign, we have to know the direction of the z

axis.1 In order to determine direction of the shear force V from the sign,
we have to know the direction of the z axis and also the x axis.2

1 A bending moment is positive if it causes tension at the positive z side of the
member axis and compression at the negative z side. The direction of the x axis
is not important here.

2 A shear force is positive if it acts in the positive z direction on a positive sectional
plane, and in the negative direction on a negative sectional plane. Now you also
have to know the direction of the x axis to determine whether a sectional plane
is positive or negative.
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Figure 10.36 The fixed member with the coordinate system used.

Figure 10.37 When you have to deal with bent members or struc-
tures consisting of several members, you have to introduce a local
coordinate system along each straight member segment if you want
to indicate the directions of M and V using the plus and minus
signs. This soon becomes cumbersome and cluttered in manual
calculations.

The signs in the M and V diagrams are in accordance only with the cor-
rect directions for the bending moment M and the shear force V for the
coordinate system given in Figure 10.36.

To interpret the signs in the M and V diagrams correctly, we therefore
have to know the coordinate system. So far, in all the examples showing
the M and V diagrams, the structure has consisted of a single straight
member, and the coordinate system was always shown. When you have
to deal with bent members or structures consisting of several members, you
have to introduce a local coordinate system along each straight member
segment if you want to indicate the directions of M and V using the plus
and minus signs. For the simple structure in Figure 10.37, this already leads
to three local coordinate systems: one for AB, one for BC and one for
CD.

This soon becomes cumbersome and cluttered. In manual calculations, we
will therefore use deformation symbols: the bending symbol for bending
moments, and the shear symbol for shear forces.

The bending symbol and shear symbol symbolise the deformation of the
member axis due to a bending moment and a shear force respectively. These
deformation symbols can be used to set the direction of the section forces
unequivocally, regardless of a coordinate system.

We always use the plus and minus sign for normal forces.

The bending symbol and shear symbol will be explained in more detail
below.
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Figure 10.38 Bending symbols.

Figure 10.39 Shear symbols.

Figure 10.38 (a) A small member segment subject to bending
moments will lengthen at the tension side and shorten at the
compression side. The member segment will bend. (b) The small
arc that represents the deformation is used as deformation symbol
for the bending moment and is known as the bending symbol.

Figure 10.39 (a) In a member segment subject to shear
forces, one sectional plane will try to shift with respect to
the other. (b) This effect can be visualised by introducing an
(imaginary) slide joint in the segment, so that both sectional
planes can move with respect to one another. (c) The step formed
by the moved member axes is used as the deformation symbol for
shear forces and is known as the shear symbol.

• Bending symbol (deformation symbol for bending moments)
Figure 10.38a shows a small member segment subject to bending
moments. The member segment will lengthen at the side being pulled,
and shorten at the side being compressed. The member segment will
bend. Since it is possible to determine the bending moment from the
bent shape of the member axis, we use the small arc as deformation
symbol for the bending moment (see Figure 10.38b).

• Shear symbol (deformation symbol for shear forces)
Figure 10.39a again shows a small member segment, but now with
shear forces. When subject to shear forces, one sectional plane will
try to shift with respect to the other. This effect can be visualised
by applying an (imaginary) slide joint within the segment, so that
both parts can move with respect to one another (see Figure 10.39b).
The step change formed by the moved member axes is used as the
deformation symbol for shear forces (see Figure 10.39c).
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Figure 10.40 (a) A simply supported beam, loaded by a single
point load. (b) and (c) When using deformation symbols, we are
free to choose at which side of the member axis the shear force
is plotted. (d) The bending moment is plotted at the side where
the bending moment causes tension, so at the convex side of the
member axis. The open side of the bending symbol therefore always
faces towards the member axis. The gradient of the M diagram
(�M/�x), shown as a “step”, now corresponds directly to the shear
symbol for the shear force. (e) If however the M diagram is plotted
at the wrong side of the member axis, the relationship with the de-
formation symbol for the shear force (the “step” in the M diagram)
is lost.

Figure 10.40 shows the V diagram and the M diagram with the deformation
symbols for a simply supported beam, loaded by a single point load.

Since there is no coordinate system, we are in principle free to choose on
which side of the member axis we plot the bending moment and the shear
force, as long as we use the correct deformation symbols. See the shear
force diagrams in Figures 10.40b and 10.40c, which are both correct.

We make an exception for the bending moment. It is agreed that the M

values are plotted at the side where the bending moment causes tension, so
at the convex side of the member axis (see Figure 10.40d). The open side
of the deformation symbol is therefore always faced towards the member
axis.1

The advantage of this is that the gradient of the M diagram (�M/�x),
shown in Figure 10.40d as a “step”, now corresponds directly with the shear
symbol for the shear force. This allows us to easily and directly check the
relationship between the moment diagram and the shear force diagram.

In Figure 10.40e, the M diagram has been plotted at the wrong side of
the member axis. Although you will come across this often in books, we
strongly recommend that you do not draw the moment diagram in this way,
as the relationship with the deformation symbol for the shear force (the
“step” in the M diagram) is lost.

1 Thanks to this agreement, the deformation symbol in the M diagram is actually
unnecessary. The deformation symbol is nevertheless always shown for clarity.



420 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

10.4 Summary sign convention for the N, V and M
diagrams

When drawing the N , V and M diagrams, you can use:
• plus and minus signs, related to a (local) coordinate system with the x

axis along the member axis;
• deformation symbols (only for the V diagram and the M diagram).

If working with plus and minus signs, in a xz coordinate system:
• positive section forces are plotted at the positive side of the z axis, and

negative values at the negative side of the z axis;
• the sign is placed within the diagram; relevant values are included

without their sign.

If working with deformation symbols:
• You use plus and minus signs for the normal force N , and you use the

bending symbol for the bending moment M and the shear symbol for
the shear force V .

• The bending moment is plotted at the side where the bending moment
causes tension, this is at the convex side of the member axis. The open
side of the deformation symbol therefore always faces the member axis.
The gradient of the M diagram, shown as a “step”, now corresponds
directly to the shear symbol in the V diagram.

• It does not matter at which side of the member axis you plot the values
for the normal force and the shear force.

• Plus and minus signs for the normal force and deformation symbols
for the bending moment and shear force are placed within the diagram;
relevant values in the diagram are written without sign.
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10.5 Problems

Member axis and member cross-section; section forces (Section 10.1.1)

10.1 The sign of the section forces N , V and M can be related to a coordi-
nate system with the x axis along the member axis and the yz plane parallel
to the member cross-sections.

Questions:
a. When is a section plane positive, and when is it negative?
b. When is a normal force positive, and when is it negative?
c. When is a shear force positive, and when is it negative?
d. When is a bending moment positive, and when is it negative?

10.2: 1–10 You are given two beams loaded in five different ways.

Question:
Determine the bending moment and the shear force, with the correct sign
in the given coordinate system, in the following cross-sections:
a. directly to the right of A.
b. directly to the left of B.
c. in C.
d. directly to the left of D.
e. directly to the right of D.



422 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

10.3: 1–4 You are given a column AB fixed at A, with console BC, loaded
in four different ways.

Question:
Determine the sections forces, with the correct sign in the given coordinate
system, in the following cross-sections:
a. directly below the console at B.
b. at D, one meter below B.
c. directly above fixed support A.

Stresses (Section 10.1.2)

10.4: 1–4 You are given a block with the following four states of stress:

(1) σxx = −25 N/mm2

σxy = σyx = −30 N/mm2

σyz = σzy = +15 N/mm2

σzz = +10 N/mm2

(3) σxx = +30 N/mm2

σxz = σzx = +15 N/mm2

σyz = σzy = −25 N/mm2

σzz = −5 N/mm2

(2) σxy = σyx = +15 N/mm2

σxz = σzx = +10 N/mm2

σyy = −5 N/mm2

σzz = +20 N/mm2

(4) σxx = −6 N/mm2

σxy = σyx = −8 N/mm2

σyy = +5 N/mm2

σyz = σzy = +12 N/mm2

Question:
Draw (for each case) the stresses on the block in the directions in which
they act and include their values:
a. for the planes shown.
b. for the planes not shown.

10.5: 1–4 You are given a block with the following four states of stress:

(1) σxx = +10 N/mm2

σxy = σyx = +15 N/mm2

σxz = σzx = −30 N/mm2

σyy = −5 N/mm2

(2) σxy = σyx = +10 N/mm2

σyy = −3 N/mm2

σyz = σzy = −8 N/mm2

σzz = +14 N/mm2
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(3) σxx = −12 N/mm2

σxz = σzx = +5 N/mm2

σyz = σzy = −8 N/mm2

σzz = −15 N/mm2

(4) σxx = +4 N/mm2

σxz = σzx = +10 N/mm2

σyy = +7 N/mm2

σyz = −16 N/mm2

Question:
Draw (for each case) the stresses on the block in the directions in which
they act and include their values:
a. for the planes shown.
b. for the planes not shown.

10.6 The dimensions of a rectangular block are �x; �y; �z and are so
small that three stresses on opposite planes are equal. The figure shows
the top view of the block with only the shear stresses σxy and σyx on two
planes. The other stresses are not shown.

Questions:
a. Draw all the other stresses that act parallel to the xy plane. Show that,

from the moment equilibrium of the block in the xy plane, it follows
that σxy = σyx .

b. Also show that σxz = σzx .
c. Show that σyz = σzy .

General definition section forces (Section 10.1.3)

10.7 A normal force N and the bending moments My and Mz act in a
cross-section. If σ = σ(x, y) is the normal stress in the cross-section, then
the normal force is: N = ∫

A σ dA.

Questions:
a. Draw the (positive) normal force N in the cross-section.
b. Draw the (positive) bending moments My and Mz in the cross-section.
c. How can we express the bending moments My and Mz in the normal

stress σ?

10.8 The shear stresses σxy = σxy(x, y) and σxz = σxz(x, y) in a cross-
section lead to the shear forces Vy and Vz and a torsional moment Mt.

Questions:
a. Draw the (positive) shear forces Vy and Vz in the cross-section.
b. How can the shear forces Vy and Vz be expressed in the shear stresses

σxy and σxz?
c. Draw the (positive) torsional moment Mt in the cross-section.
d. How can the torsional moment Mt be expressed in the shear stresses

σxy and σxz?
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Diagrams for the normal force, shear force and bending moment (Sec-
tion 10.2)

10.9: 1–4 Member AD is supported in two different ways and is loaded at
B and C by forces of respectively 10 and 15 kN.

Questions:
a. From the equilibrium determine the normal force N as a function of x.
b. Draw the N diagram.

10.10: 1–4 You are given four different loaded beams.

Questions:
a. From the equilibrium, determine the shear force V as a function of x.
b. Draw the shear force diagram.
c. From the equilibrium, determine the bending moment M as a function

of x.
d. Draw the bending moment diagram.
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10.11: 1–8 A number of members are loaded for extension by a uniformly
distributed load of 3 kN/m.

Questions:
a. From the equilibrium, determine the normal force as a function of x.
b. Draw the normal force diagram.

10.12: 1–8 The same member is loaded in two different ways and is
loaded for extension in four different ways by a linearly distributed load.
In all cases, the top value of the distributed load is 6 kN/m.

Questions:
a. From the equilibrium, determine the normal force as a function of x.
b. Draw the normal force diagram.
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10.13: 1–4 You are given four differently loaded beams.

Questions:
a. From the equilibrium, determine the shear force V as a function of x.
b. Draw the shear force diagram.
c. From the equilibrium determine the bending moment M as a function

of x.
d. Draw the bending moment diagram.

10.14: 1–3 You are given three beams with a linearly distributed load
normal to the member axis. The top value for the distributed load in all
three cases is 4 kN/m.

Questions:
a. From the equilibrium, determine the shear force V as a function of x.
b. Draw the V diagram.
c. Form the equilibrium, determine the bending moment M as a function

of x.
d. Draw the M diagram.
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10.15 The figure shows a foundation beam on sand and loaded by a force
of 27 kN. For this load, the earth pressure is linearly distributed, as shown
in the load diagram. The dead weight of the beam is ignored.

Questions:
a. Determine the top value of the earth pressure.
b. From the equilibrium, determine the shear force and the bending mo-

ment for AB as a function of x (0 ≤ x < 2 m).
c. From the equilibrium, determine the shear force and the bending mo-

ment for BC as a function of x (2 m < x ≤ 4 m).
d. For ABC, draw the shear force diagram and the bending moment dia-

gram.

Deformation symbols for shear force and bending moment (Section 10.3)

10.16 Question: Explain the shape of the deformation symbols that are
used for shear force and bending moment.

10.17: 1–8 A fixed beam is loaded in various ways.

Question:
Which deformation symbol belongs to the shear force in cross-sections a
and b respectively?



428 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

10.18: 1–4 You are given four different beams. Question:
Which deformation symbol belongs to the shear force in cross-sections a
to e respectively?

10.19: 1–2 Two beams are loaded by an eccentrically applied normal force.

Question:
Which combination of deformation symbols belongs to the shear force and
the bending moment in cross-section a?
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10.20: 1–3 You are given the same cantilever beam with three different
loads.

Question:
Determine the combination of deformation symbols that belong to the shear
force and the bending moment:
a. in the cross-section directly to the right of B.
b. in the cross-section directly to the left of B.
c. in the cross-section directly next to the fixed support A.

10.21: 1–6 You are given two beams loaded in three different ways.

Question:
Determine the bending moment and the shear force, with the correct
deformation symbol, in the following cross-sections:
a. directly to the right of A.
b. directly to the left of B.
c. at C.
d. directly to the left of D.
e. directly to the right of D.
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10.22: 1–4 You are given two beams loaded in different ways.

Question:
Determine the bending moment and the shear force, with the correct defor-
mation symbol, in the following cross-sections:
a. directly to the right of A.
b. directly to the left of B.
c. at C.
d. directly to the left of D.
e. directly to the right of D.

10.23: 1–4 You are given a cantilever beam and four different loads.

Question:
For the entire beam, draw the shear force diagram and the bending moment
diagram, with the deformation symbols. Include their values at relevant
points.

10.24: 1–4 You are given four different structures.

Question:
For the entire structure, draw the V diagram and the M diagram, with the
deformation symbols. Include the values.


