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Figure 1.1 Model of our Galaxy and its globular star clusters.
Source: Natuur en Techniek 89/10, p. 757.

This chapter provides a number of definitions and describes various con-
cepts. Following a brief description of the field of mechanics in Section 1.1,
Section 1.2 addresses the character of a number of important quantities in
mechanics, and the units in which they are expressed. Quantities of a mag-
nitude and direction that meet the conditions of the so-called parallelogram
rule are called vectors, which are covered in Section 1.3.

Newton’s three Laws of Motion and his Law of Gravitation were an impor-
tant step forward in the development of mechanics. We look at these laws
at the end of the chapter in Section 1.4.

1.1 Mechanics

1.1.1 Examples from the field of mechanics

Mechanics is the subdivision of physics which addresses equilibrium and
the motion of matter.

Mechanics therefore includes for example:
• The description of the movement of natural and artificial heavenly bod-

ies. Figure 1.1 is a schematic representation of our Galaxy. The vast
majority of all stars are in a flat disk. Above and below this disk, there
are some 200 globular star clusters that revolve in ellipsoidal orbits
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Figure 1.2 The forces exerted on a swimming shark. Source:
Natuur en Techniek 90/02, p. 136.

Figure 1.3 A surfer balancing on his board. Source: Leidraad voor
surfers, Vereniging Zeilscholen Nederland.

around the centre of the Galaxy.
• A calculation of the forces exerted on a swimming shark. In Figure 1.2a,

in which the shark is at rest, the shark is subject to forces resultant from
its weight W and the upward force A caused by the water pressure.
As a result, the animal tips over (see Figure 1.2b). If the shark’s tail
generates a thrust T , vertical forces are generated that keep the shark in
vertical equilibrium (see Figure 1.2c).

• Balancing on a surfboard (see Figure 1.3).
• A calculation as to the deformation of an oil platform at sea subject to

wave action. Figure 1.4 shows a concrete platform designed for the Nor-
wegian Troll field with a water depth of 340 metres. The seabed consists
of extremely weak clay. The sea conditions are extremely rough with
waves over 10 metres in height. The mass of the deck is 60,000 tons
(60 × 106 kg).

• The description of water currents in a river, estuary, or sea. Figure 1.5
represents a current model for the North Sea. The arrows indicate the
direction and strength of the current for certain areas. This type of
model can be used to investigate the distribution of toxic materials.

• The investigation of stresses in prostheses, such as an artificial hand,
hip joint or knee joint. As shown in Figure 1.6, the attachment of the
prosthesis in a knee joint is extremely important. Figure 1.7a shows the
magnitude of the forces calculated by using an arithmic model. Major
tensile stress occurs at the end of the prosthesis (black area). This stress
can lead to fractures in the cement (adhesive) as shown in the X-ray in
Figure 1.7b.

• Finding the right shape for a high tower by effectively transferring the
loading by wind and its dead weight onto the foundation. Figure 1.8
shows the 300-metre Eiffel Tower, completed in 1889 and the first
1000-foot tower, built for the 1889 World Exhibition in Paris. The tower
is constructed of wrought iron.
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Figure 1.5 A current model for the North Sea. Source: Natuur en
Techniek 90/04, p. 292.

Figure 1.6 Open knee prosthesis. Source: Heron 1986, no. 1,
p. 100.

Figure 1.4 Design of a concrete platform in 340-metre deep water.
Source: Heron 1986, no. 1, p. 86.
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Figure 1.7 In the model of the knee prosthesis (a) the grey shades
indicate the size of the stress according to an arithmetic model. The
largest tensile force occurs in the black area near the end of the
prosthesis. The X-ray (b) shows a fracture in the cement at that
point. Source: Heron 1986, no. 1, p. 105.

• Water flow through a dam. In Figure 1.9, you can see stream lines and
equipotential lines for a dam on an impermeable subsoil. They are per-
pendicular to one another and form a so-called flow net. The EF section
of the slope is known as the seepage surface. Here the water leaves the
dam and flows down along the slope.

• Closing the Maeslant barrier (see Figure 1.10).
The Maeslant barrier, the storm barrier in the Nieuwe Waterweg in the
west of the Netherlands, consists of two 22-metre high sector doors
shaped like an arc with an arc length of 214 metres. The doors are
turned towards each other afloat from docks. When closed, the doors
are sunk onto a threshold by the inlet of water. The water pressure on
the doors is diverted to foundation blocks by means of two 260-metre
truss arms. The truss arm and the foundation block are joined by means
of a ball-and-socket joint with a 10-metre diameter.

1.1.2 Subdivisions within mechanics

Mechanics’ extensive field of operation can be subdivided in various ways.

A subdivision addressed in the given description of mechanics is based on
the perspective of rest and movement:
• Statics, or the study of material at rest.
• Dynamics, or the study of moving material.
A subcomponent of dynamics is kinematics, the study that describes the
displacement of bodies, without addressing the cause of the movement.

Another subdivision of mechanics is that which describes the degree of
deformability of matter:
• Theoretical mechanics, the mechanics of particles and rigid (non-

deformable) bodies.
• Solid mechanics, the mechanics of solid deformable bodies.
• Fluid mechanics.
• Gas mechanics.
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Figure 1.9 Stream lines and equipotential lines in a dam on an
impermeable subsoil.

Figure 1.10 The Maeslant barrier – a storm barrier in the Nieuwe
Waterweg near Rotterdam in the Netherlands.

Figure 1.8 The Eiffel tower (1889) was the world’s first 1000-foot
tower. Photograph: Hans Welleman.



6 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 1.11 The Oosterschelde barrier; the subsoil has to be able
to bear the structure.

1.1.3 Applied mechanics

In principle, the mechanics of structures addresses both the statics and
dynamics of structures. This book solely covers the statics of structures.

Mechanics allows us to investigate to what degree a structure, both in its en-
tirety and with respect to its individual components, is effective and reliable
regarding strength, stiffness, and stability.1

For structures made of solid, deformable materials (concrete, wood, syn-
thetics, or metals such as steel or aluminium), the field of mechanics is also
known as applied mechanics.

The part of applied mechanics which focusses on calculating the forces
in a structure is known as structural mechanics. The part in which the
focus is on stress and deformation (strength and stiffness) is known as
mechanics of materials. The division between structural mechanics and the
mechanics of materials is only effective for so-called statically-determinate
structures,2 or structures in which the force flow can be determined di-
rectly from the equilibrium. For calculations relating to structures other
than those that are statically-determinate (so-called statically-indeterminate
structures) one has to use elements from both structural mechanics and the
mechanics of materials.

The behaviour of a structure must be investigated “beyond the base”. For
example, it is important that the slides in the Oosterschelde barrier in Fig-
ure 1.11 are sufficiently strong, but it is equally important that the structure
can be properly carried by the subsoil. Since the behaviour of soil clearly

1 Stability is defined as the reliability of the equilibrium. Since the stability of the
equilibrium depends on the stiffness of the structure, the stability demand can
also be interpreted as a stiffness demand.

2 The concepts statically-determinate and statically-indeterminate are covered in
more detail in Chapter 4.
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differs from that of regular solid material, the investigation into the forces
and deformations in soil is part of a separate field of expertise known as
soil mechanics.

1.1.4 Theory and experiment

Mechanics, as a part of physics, is a science that addresses the determina-
tion of laws and patterns that can be used to describe natural phenomena
and, more importantly, that can be used to predict them. As such, mechanics
is an empirical science: it aims to formulate the phenomena investigated
and their mutual relationship as accurately as possible. In doing so, it is not
the results from the calculations that are decisive, but rather their agree-
ment with what we learn from observation and experimentation. After all,
we want to be able to predict with a certain degree of accuracy whether a
satellite we launch will end up in its orbit, or whether a bridge is sufficiently
strong and rigid.

Reality is however far too complex to be described fully. For this reason,
one always has to work with a model, a simplified representation of reality,
and one which addresses only a limited number of factors concurrently.

are used, depends on the objective in question.

1.1.5

vant issues. When investigating the movement of the earth around the sun,
the dimensions of the earth are of subsidiary importance, and we schema-
tize the earth as a particle. If, however, one is looking to investigate the
rotation of the earth around its axis, we do have to take the dimensions of
the earth into consideration.

When calculating the force flow in a framework, it is common practice
to schematize the columns and beams as so-called line elements, and to

Which aspects are addressed and which schematisations (simplifications)

Schematisation

Schematisation is an abstraction that at the same time includes all the rele-
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Figure 1.12 When performing calculations for a building, the
columns and beams are generally modelled as so-called line el-
ements; the column-beam joints are thereby reduced to particles,
with negligible dimensions.

Figure 1.13 When detailing the column-beam joints, like here in
reinforced concrete, the dimensions are no longer negligible.

represent the joints between the columns and beams as particles (see Fig-
ure 1.12). If we want to find out more about the interaction of forces in a
column-beam joint, for example in the case of a concrete structure to be
able to determine where the reinforcement has to be placed, the dimen-
sions of the joint can no longer be ignored, and one has to use another

For example, dimensions are ignored for particles, while for rigid bodies
deformation is ignored. Another concept is that of stress, in which a con-
tinuous structure of matter is assumed, while in reality (on a micro level)
this is discrete, with molecules and atoms. You should be aware of these

Much knowledge within mechanics is set down using mathematical for-

sequently offers a language that enables us to formulate and solve the
problems, and interpret the solution unambiguously. We can then use the
findings to make predictions relating to the behaviour of a structure. It
is from this predictive capactity that the science of mechanics derives its
practical use.

results are exact; for this reason, mechanics is often called an exact science.

1.2 Quantities, units, dimensions

1.2.1 Quantities and their units

Mechanics involves measurable, physical quantities. A quantity X is gen-
erally characterised by a numerical value {X} and a unit [X]. This can be
symbolically described as

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

schematisation for the joint (see Figure 1.13).

mulas, based on certain schematisations and modelling. Mathematics sub-

Within a given schematisation, mathematical models are used, and the

Mechanics uses a range of concepts that offer a schematisation of reality.

schematisations.
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Table 1.1 Basic quantities and basic units.

Basic quantity Basic unit

Name Symbol Name Symbol

length � metre m

mass M kilogram kg

time T second s

electric current I amp A

thermodynamic temperature T Kelvin K

amount of material N mol mol

luminosity I candela cd

Table 1.2 Supplementary quantities and units.

Supplementary quantity Supplementary unit

Name Symbol Name Symbol

(plane) angle α radian rad

solid angle � steradian sr

quantity = numerical value × unit

X = {X} × [X].

The unit [X] is the degree to which the quantity X is measured.

In mechanics, one uses the International Units System (Système Inter-
national d’Unité), abbreviated in all languages to SI. The SI includes
• seven basic units (Table 1.1);
• two supplementary units (Table 1.2);
• and a large number of derived units.
Basic units, critical in the structural mechanics, are length, mass and time.

Length (�)
A measure for measuring distances in space. Space is defined as the
geometric area in which people live and work and in which they build their
structures. The basic unit of length is the metre [m].

Mass (m)
A measure for the characteristic of a body that it resists a change in its
movement. This characteristic is known as the inertia of the body. The
basic unit for mass is the kilogram [kg] (not grams!).

Time (t)
A measure for the sequence of events. The fundamental unit for time is the
second [s].

SI derivative units are obtained from the definitions of the derived basic
quantities as products and quotients of powers of basic units. A number
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Table 1.3 Derived units with their own name and symbol.

Derived quantity Derived unit

Name Symbol

area square metre m2

volume, content cubic metre m3

frequency Hertz Hz = s−1

force Newton N = kgm/s2

pressure, tension Pascal Pa = N/m2

work, energy, amount of warmth Joule J = Nm

capacity, energy flow Watt W = J/s

Table 1.4 Common SI prefixes.

Prefix Symbol Factor

giga G 109

mega M 106

kilo k 103

milli m 10−3

micro μ 10−6

nano n 10−9

of derived units have their own names and their own symbols. You will find
a number of these units in Table 1.3.

1.2.2 Prefixes

If numbers are either very large or very small, you can use a prefix for the
unit. Frequently used prefixes are shown in Table 1.4.

Example:

1 MPa = 106 Pa = 106 N/m2 = 1 N/mm2.

For derived units as a product of a number of units, we can join up the
symbol group, unless this gives rise to confusion. In the latter case, place
a multiplication point between the units. In this vein, Nms could either be
Newton-metre-second or Newton-milliseconds. Depending on what one is
trying to say, you should therefore write Nm·s or N·ms.

1.2.3 Dimensions

Besides the unit [X] in which a quantity X is expressed and the associated
numerical value {X}, a quantity also has a dimension dim(X). The dimen-
sion indicates the type of quantity without saying anything about the choice
of unit or the magnitude of the numerical value.

The dimensions of the basic quantities are called the basic dimensions. For
the basic dimensions of length (�), mass (m), and time (t) one writes

dim(�) = L,

dim(m) = M,

dim(t) = T .
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Table 1.5 Examples of derived quantities and their dimensions.

Type of Definition Dimension SI unit

quantity formula

velocity v = du/dt LT−1 m/s

force F = m · a LMT−2 N = kgm/s2

energy, work E = A = F · � L2MT−2 J = kgm2/s2

You will find a number of examples of derived quantities and their
dimensions in Table 1.5.

Dimension formulas can be used to determine whether inaccuracies have
occurred in deriving a physical relationship. This is known as a dimen-
sion check. They can be used to check that the expressions to the left and
the right of the equals sign have the same dimensions. The same can be
achieved by checking whether the products of all the units, expressed in
terms of the basic units, are the same on both sides.

The radian and solid angle are considered dimensionless quantities. When
performing a dimension check, we must assign the symbols for rad and sr
the dimension 1.

1.3 Vectors

1.3.1 Scalars and vectors

Certain physical quantities are fully determined by a numerical value with
the associated unit. These include length, mass, time, temperature, work
and energy, and are referred to as scalar quantities, or scalars. Other phys-
ical quantities can be fully described only if, in addition to the magnitude
(determined by a number and a unit), one also defines in which direction
in space the quantity is oriented. If these quantities with a magnitude and
direction meet the conditions of the so-called parallelogram rule (see Sec-
tion 1.3.4), they are known as vectors. Vectors include motion, velocity,
impulse, acceleration, and force.

In order to distinguish vectors from scalars, the symbols for a vector are
printed in bold (a) or we place an arrow over the symbol (�a).
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Figure 1.14 A right orthogonal coordinate system.

Figure 1.15 A right orthogonal coordinate system in two other
positions, with the positive direction of rotation in the coordinate
planes.

Other physical quantities besides scalars and vectors are tensors1 (of the
second order and above). Tensors are not covered in this book.

1.3.2 Coordinate system

Vectors are quantities with a direction in space. Space is seen as three di-
mensional and Euclidian (after Euclid2). When describing phenomena in
space, one uses a right orthogonal coordinate system. This is a system of
three mutually perpendicular axes x, y and z, that are oriented in such a
way that they meet the conditions of the so-called right-hand rule: if you
make a fist with the fingers of your right hand, as shown in Figure 1.14,
and you point the free thumb in the z direction, the bent fingers in your fist
have to point in the direction of a rotation with the smaller angle of the x

axis to the y axis. This direction of the rotation with the smaller angle of
the x axis to the y axis is called the positive direction of rotation in the xy

plane (about the z axis). In this description, x, y and z can be exchanged
cyclically (see Figure 1.14).

Figure 1.15 shows two more examples of such coordinate systems, with the
positive directions of rotation in the various coordinate planes.

An orthogonal coordinate system is called Cartesian (after Descartes3) if
equal units are chosen along the coordinate axes.

1 Scalars and vectors can be seen as members of the family of tensors. Vectors are
also known as tensors of the first order. Scalars are tensors of the zero order. Sec-
ond order tensors in mechanics include strain tensor, stress tensor, and bending
stiffness tensor. Tensors can be recognised by the transformation rules for their
components when rotating the coordinate system.

2 Euclid (approx. 300 BC), Greek mathematician in Alexandria.
3 René Descartes (Cartesius) (1596–1650), French mathematician and philoso-

pher. Main work: “Discours de la méthode” (1637).
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Figure 1.16 Fixed vector with point of application A.

Figure 1.17 Sliding vector with line of action �.

Figure 1.18 Free vector.

If equal unit vectors are chosen along the axes, this is referred to as an
orthonormal coordinate system (contraction of orthogonal and normalised).

1.3.3 Types of vectors

In a diagram, a vector in space can be represented by an arrow. The direc-
tion of the arrow represents the direction of the vector. The length of the
arrow (in a particular scale) can be drawn to represent the magnitude of the
vector.

There are three types of vector:
• Fixed vectors

Fixed vectors, in addition to their magnitude and direction, also have a
point of application (see Figure 1.16).
Example: a force on a deformable body.

• Sliding vectors
Sometimes the location of the point of application is of no importance
and may be moved in the direction of the vector. This is called a sliding
vector. Sliding vectors do not have a fixed point of action, but have only
a line of action (see Figure 1.17).
Example: the force on a rigid body.

• Free vectors
When the place of the line of action of a vector is not important either,
one refers to a free vector.
Example: The translation of a rigid body. All points of the body are
subject to the same displacement. The free vector stands for the entire
collection of displacement vectors (see Figure 1.18).

Comment:
If we want to investigate the equilibrium (or the motion) of a body as a
whole, the body can often be considered a rigid (non-deformable) body,
with the forces as sliding vectors. After all, it does not make a difference
for rigid bodies whether it is kept in equilibrium by a force from above or
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Figure 1.19 For the equilibrium of a rigid body, it is not relevant
whether a force is moved along its line of action. It certainly makes
a difference with respect to internal phenomena.

Figure 1.20 Vector addition using the parallelogram rule.

Figure 1.21 The vector addition illustrated using a sailor walking
on a moving ship.

below (see Figure 1.19). On the other hand, if one is looking to investigate
deformations or internal phenomena within the body, the points of appli-
cation of the forces do play a role and the forces must be considered fixed
vectors. For phenomena inside bodies (such as human bodies), it certainly
makes a difference whether the body is hung from above or is supported
from below!

1.3.4 Parallelogram rule

We can add two vectors with the same point of application into a single
vector using the so-called parallelogram rule in Figure 1.20. The parallel-
ogram rule is easy to understand if one imagines, as in Figure 1.21, the
movement of a sailor walking on a moving ship. The displacement �u of
the sailor with respect to the earth consists of the sum of the displacement
�u1 of the ship with respect to the earth and his own displacement �u2 with
respect to the ship. In the same way, one can also add up velocity vectors
and forces.

For the vector addition, as shown in Figure 1.20, one writes

�u = �u1 + �u2.

In reverse, we say that �u2 is the difference between �u and �u1, or

�u2 = �u − �u1.

1.3.5 Vector components and scalar components

We often describe a vector by means of its so-called components. If �ex , �ey

and �ez are the unit vectors along respectively the x, y and z axis (vectors
directed along the axes and with a length equal to 1), the vector can also be
defined as the vector sum of its three components (see Figure 1.22):
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Figure 1.22 The vector components �ax , �ay , �az of vector �a.

Figure 1.23 It is possible to add two vectors by adding their asso-
ciated scalar components.

Figure 1.24 Vector notation (a) and visual notation (b).

�a = �ax + �ay + �az = ax �ex + ay �ey + az�ez.

The vector quantities �ax , �ay and �az are known as the vector components of
vector �a. The scalar quantities ax , ay and az are the scalar components1 of
vector �a.

In this book we will usually take the word component to mean scalar
component.

The magnitude or norm2 of the vector �a is:

a = |�a| =
√

a2
x + a2

y + a2
z (a ≥ 0).

To add two vectors given by their components we add the respective com-
ponents. The sum of two vectors �a and �b with components ax , ay and az,
respectively bx , by and bz, is:

�a + �b = (ax + bx)�ex + (ay + by)�ey + (az + bz)�ez.

This is illustrated in Figure 1.23 for two vectors in the xy plane (with
az = bz = 0).

1.3.6 Formal and visual notation of a vector

So far in the figures, the arrow for a vector included the vector symbol
(letter with an arrow above). In addition to this formal notation there is also
a visual notation. Both notations are shown in Figure 1.24.

1 The scalar components ax ; ay ; az of vector �a are not scalars: they depend on the
coordinate system that is used.

2 The magnitude or norm a of vector �a is a scalar: it is independent of the
coordinate system that is used.
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Figure 1.25 In visual notation, the arrow depicted should be seen
as a unit vector that has to be multiplied by the depicted value.

Figure 1.26 The forces �F1 and �F2 resolved into their components.

Figure 1.27 If we want to define the components of force �F2 as
Fx;2 and Fy;2 in a visual model, we have to place a minus sign next

to Fx;2, the x component of �F2.

In the visual notation, each arrow shown reflects a unit vector, which has
to be multiplied by the value shown with the arrow. If this value is neg-
ative, the vector works in the direction opposite to the one shown (see
Figure 1.25). Since in visual notation the emphasis lies on “seeing what
is happening”, it is preferred to not include a negative value alongside a
vector arrow.

The visual notation is frequently used in mechanics for manual calculations.
When setting up manual calculations, the visual aspect plays an important
role as one generally links the calculation to a “picture” on the basis of
which one can better imagine what is happening.

In Figure 1.26, forces �F1 and �F2 have been resolved into components along
the x and y axis. All the forces have been drawn in the directions in which
they operate and include their magnitude.

If one wants to name the components in the xy coordinate system shown,
one has to imagine that Fx and Fy relate to the (not shown) unit vectors in
the coordinate system, respectively �ex and �ey .

Therefore1

Fx;1 = +3 kN; Fy;1 = +4 kN;
Fx;2 = −3 kN; Fy;2 = +4 kN.

The x component of force �F2 opposes the x direction (is opposite to the
direction of the unit vector �ex) and is therefore negative. If one wants to
denote the components of �F1 and �F2 by Fx and Fy in a visual represen-
tation, as in Figure 1.27, one must place a minus sign next to Fx;2, the x

1 The direction indices x and y always precede the other indices. It is common
practice to separate the indices by a semicolon. Sometimes the separator is
omitted.

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM
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Figure 1.28

component of force �F2.

Forces are vectors. In the formal notation they are indicated with an arrow
over the symbol: �F . In structural mechanics the visual notation is generally
used. In that case it is usual to indicate a force by its magnitude F = | �F |.
In this book we will principally use the visual notation for a force.

1.3.7 Vector properties

Quantities can be imagined as vectors if they meet the calculation rules for
vectors. These rules include the commutative property for addition:

�a + �b = �b + �a

and the associative property for addition:

(�a + �b) + �c = �a + (�b + �c).

These properties indicate that the vector sum is independent of the order in
which the vectors are added.

Not every quantity that is defined by a magnitude and a direction is a vector.
For example, the rotation of a body, a quantity with a magnitude and a
direction, is not a vector, as the quantity does not meet the commutative
and associative properties of the addition. This can be checked for a book
in the xz plane by first rotating it through 90◦ about the y axis and then
through 90◦ about the z axis. As shown in Figure 1.28, the final position
changes if the rotation is performed in a different order.

If the order changes when adding (finite) rotations, the
end result also changes.
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1.4 Newton’s Laws

1.4.1 Basic laws

The basic laws for the displacement of a particle (a body with negligibly
small dimensions but with some mass) were first formulated by Newton
(1687).1 Newton’s three laws are as follows:

• First law or law of inertia.
Every particle persists in its state of rest or uniform motion in a straight
line unless it is compelled to change that state by forces imposed on it.

• Second law or law of motion.
The rate of change in momentum of a particle (the product of mass and
velocity) is equal to the force applied to it, and has the direction of that
force.

• Third law or the law of action and reaction.
If particle (1) exerts a force on particle (2), particle (2) will exert an
equal and opposite force on particle (1).

Law of inertia

The first law states that a particle at rest will remain at rest if no force
is exerted on it, and that a particle that is in motion in a straight line at
a constant speed, will continue that movement at that same speed in the
same straight line if no forces are exerted on it. The property with which a
particle resists a change in its state of rest or movement is called its inertia.
Newton’s first law is therefore also known as the law of inertia.

1 Sir Isaac Newton (1642–1727), an English mathematician and physicist, pub-
lished his laws at the age of 44 in his book “Philosophiae naturalis principia
mathematica”, also known as “Principia”. In his laws, Newton uses the word
body. Later developments in mechanics showed that it must relate to a body
without dimensions, here referred to as a particle. A body with finite dimensions
can still perform rotations, which are not mentioned by Newton.

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM
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Law of motion

The second law is defined by the following formula:

�F = d(m�v)

dt
.

Here, �F is the force on the particle, m its mass, and �v its velocity.1 The
notation with vectors shows that the change in momentum has the same
direction as the force.

If the mass of the particle does not change during the motion, the second
law can also be written as

�F = m�a,

in which �a represents the acceleration of the particle:

�a = d�v
dt

.

It should be noted that the first law is actually a special case of the second
law: if the force on the particle is zero, its acceleration is also zero.

By not including a proportionality constant in the mathematical formulation
of the second law (the formulation in words only refers to proportionality
between force and a change in momentum), we actually define the unit
of force as the force that gives a mass of 1 kilogram an acceleration of
1 metre per second squared. This unit of force is the Newton (symbol N,

1 One of the essential distinctions in mechanics is between speed and velocity:
speed is a scalar and velocity is a vector. The speed v is the magnitude of the
velocity �v: v = |�v|. If a particle traverses, say, a circle, with constant speed v,
then its velocity �v will change, because its direction is changing.



20

Figure 1.29 Newton’s law of action and reaction in (a) vector
notation (“action = –reaction”) and (b) visual notation (“action =
reaction”).

see Section 1.2.2):

1 N = 1 kg · m/s2.

Law of action and reaction

The third law is the so-called law of action and reaction. If one defines the
force that body (1) exerts on body (2) by �F (2)

i and the force which body (2)

exerts on body (1) by �F (1)
i , the third law states that1

�F (1)
i = − �F (2)

i .

According to the law of action and reaction, forces always act in pairs of
equal and opposite forces. The law of action and reaction is depicted in
Figure 1.29 in both vector notation and visual notation.

In the vector notation in Figure 1.29a one would say

“action = −reaction”.

In the visual notation in Figure 1.29b one would rather say

“action = reaction”.

In both cases, the meaning is the same. In the visual notation it can clearly
be seen that the interaction between both bodies occurs between the pair of
forces Fi.

1 The upper index denotes the body on which the force is exerted, the lower index
is the i of interaction.
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1.4.2 Law of gravitation

Newton also formulated the law that describes the attraction between two
bodies. This Law of Universal Gravitation states that the force between two
particles with masses m1 and m2 at a distance r apart is an attraction that
operates along the joining line of the two particles, with magnitude

F = G
m1m2

r2
.

Here, G is a universal constant, which is the same for all pairs of parti-
cles. The value of G, the gravitation constant, has been experimentally
determined as

G = 66.71 × 10−12 Nm2/kg2.

In general, all attractive forces on earth between bodies are dominated by
the attractive force of the Earth on those bodies, as the mass of the Earth is
so much greater (5.975 × 1024 kg) than that of any other body.

On the basis of Newton’s second law and the law of gravitation, it follows
that in the event of a free fall near the surface of the earth, all masses (in the
absence of friction) are subject to the same acceleration (denoted by g, the
gravitational acceleration).

Assuming that one can imagine the mass of the earth as concentrated in its
centre, this gives

g = GM

R2 ,

whereby M is the mass of the earth and R is the distance from the particle
to the centre.

Since the Earth is flattened at the poles, the exact value of g depends on the
location on earth. At the equator, g is approximately 9.790 m/s2, at the poles
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it is approximately 9.832 m/s2, while in the Netherlands (52◦ lattitude) it is
9.813 m/s2.

For simplicity, in building practice, we assume

g = 10 m/s2.

The 2% error is minor if one considers all the uncertainties in, for example,
the magnitudes and points of application of the loads, the dimensions of the
structural elements, and the properties of the materials.

Since 1 N = 1 kg·m/s2, we can also say:

g = 10 N/kg.

In the gravitational field, a mass of 1 kg therefore weighs 10 N. The
gravitational acceleration g is also known as the gravitational field strength.


